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Abstract

A comparative analysis of whole genome sequencing (WGS) and genotype calling was initi-

ated for ten human genome samples sequenced by St. Petersburg State University Peter-

hof Sequencing Center and by three commercial sequencing centers outside of Russia. The

sequence quality, efficiency of DNA variant and genotype calling were compared with each

other and with DNA microarrays for each of ten study subjects. We assessed calling of

SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty

separate QC analyses showed high similarities among the sequence quality and called

genotypes. The ten genomes tested by the centers included eight American patients

afflicted with autoimmune hepatitis (AIH), plus one case’s unaffected parents, in a prelude

to discovering genetic influences in this rare disease of unknown etiology. The detailed inter-

nal replication and parallel analyses allowed the observation of two of eight AIH cases carry-

ing a rare allele genotype for a previously described AIH-associated gene (FTCD), plus

multiple occurrences of known HLA-DRB1 alleles associated with AIH (HLA-DRB1-

03:01:01, 13:01:01 and 7:01:01). We also list putative SNVs in other genes as suggestive in

AIH influence.
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Introduction

In the last decades whole genome sequencing (WGS) has become widely used in genomic

studies. WGS technology improvement and decreasing sequencing costs have led to its

increasing usage in medical diagnostics. As a consequence more and more groups set up new

sequencing facilities to enable processing their samples in-house. A commonly used alternative

is to outsource the sequencing, sending samples to a well-established sequencing center. Com-

prehensive comparisons of different next-generation sequencing (NGS) technologies have

been performed to-date [1–5], aiding to the choice of NGS platform depending on the purpose

of the study.

The Genome Russia Project will gather blood samples of some 3500 Russian people, includ-

ing several hundred family trios (DNA samples of a child and both parents). The project will

create a national collection of genetic data and engage researchers from multiple educational

institutions and research organizations [6,7]. Genome Russia will reach across Russian Bio-

medical Centers and join with the international “1000 genomes project” created to uncover

rare gene variants in different human populations [8]. DNA from the Russian volunteers will

be subject to whole genome sequencing (WGS) suitable for estimating population-specific

allele frequencies of determinants of complex chronic and infectious diseases with a genetic

underpinning.

Genome Russia is important not only for the medical field and healthcare but also for biolo-

gists, political scientists, ethnographers, and historians, since we shall compile a comprehen-

sive DNA variant information database for major ethnic groups living on the Russian

territory. Population genetic analyses will enable historians and ethnographers to achieve bet-

ter understanding of historic movements of ethnic groups, while pharmacists and clinicians

will access data on efficacy of different medical drugs for different people, a beginning to preci-

sion medicine in Russia.

Recently, a new sequencing center has been set up at Peterhof (St. Petersburg State Univer-

sity, Russia) to provide sequencing facilities for various research projects including Genome

Russia. Here we aimed at evaluating the performance of this center to determine whether it is

suitable for sequencing thousands of human genomes within Genome Russia Project in com-

parison with commercial sequencing centers abroad.

We evaluated the WGS quality, efficiency and reproducibility of sequences obtained from

the newly established core sequencing facility at Peterhof and from two established sequencing

centers: Illumina (UK) and Macrogen (Seoul, Korea). Each center received DNA from the

same ten individuals (8 clinical cases and two healthy parents of one case) who were involved

in a disease association study targeting autoimmune hepatitis (AIH). Each facility provided

30x coverage of the same ten individuals with no financial charge, as they wanted to be consid-

ered for sequencing the volunteers collected by the Genome Russia Consortium.

We report here the detailed quality control analyses performed for each center, the effi-

ciency of SNV and genotype calling, genotype comparison with each other and with DNA

array chips of the same patients, the assessment of copy number variation and the speed of

WGS thoughput promised. These data are offered with explicit recommendations for the

Genome Russia sequencing based upon our interpretation. Additionally, we examined variants

predicted as loss-of-function within the AIH cases in a prelude to discovering genetic influ-

ences in this rare disease of unknown etiology.

Our analysis highlights the differences in various aspects of resulting data between commer-

cially available sequencing providers and thus will be of use not only for the newly established

sequencing centers, but also for those who outsource their DNA-sequencing.
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Results

I. Comparison of whole genome sequencing results

Sample description and data generation. Sequencing was performed on a newly gener-

ated dataset of ten samples, of which eight (3 males and 5 females) were patients having auto-

immune hepatitis and two were non-affected parents of one of the patients (Table 1).

In order to compare the results of sequencing performed by different sequence providers,

the same six samples were sequenced at three sequencing centers Illumina-X10 (UK), Macro-

gen-X10 (Korea) and Peterhof-HiSeq4000 (Russia). Illumina-X10 and Macrogen-X10

sequenced all 10 samples (see Table 1).

Quality control of raw reads. Comparison of raw data quality must take into account the

presence of adapters, read quality, error rate, coverage of target genome and uniformity of cov-

erage. To that aim we have chosen five parameters to compare: fraction of read pairs without

adapters or Ns, fraction of read pairs with both reads retained after filtration, fraction of

23-mers with errors, estimated mean coverage and variance coefficient of coverage (see Meth-

ods). These parameters were used to set up criteria for including sequenced samples (see Meth-

ods for the detailed description). Histograms and values of corresponding parameters are

presented in Fig 1, Table 2 and S1 Table.

Read coverage is on average the highest in Illumina-X10, followed by Macrogen-X10 and

Peterhof-HiSeq4000 (Fig 1A, Table 2, S1 Table). The significance of this difference is illus-

trated by the mean coverage by both ANOVA (p-value = 0.0041) and Kruskall-Wallis test (p-

value = 0.009609) (Fig 1A). Pairwise tests also show this trend (Illumina-X10 vs Macrogen-

X10 p-value = 0.00031, 95% CI [1.51, 4.92]); Illumina-X10 vs Peterhof-HiSeq4000 data (p-

value = 0.00101, 95% CI [1.41, 5.35]). As the lower boundary of confidence interval is less than

1.6 (i. e. only approximately 5% of the target 30x coverage) this measure is not important for

our purposes.

Statistically significant differences between facilities were also detected for variance coeffi-

cient of coverage (Fig 1B) by Kruskal-Wallis test (p-value = 0.04262; ANOVA is inapplicable

for this parameter). Pairwise comparison of variance coefficient of coverage showed a

Table 1. Sample description.

Sample Diagnosis Gender Ethnicity� Age at biopsy/diagnosis Sequenced by��

M I P

trio_mother Healthy F EA NA + + +

trio_father Healthy M EA NA + + +

trio_case1 AIH-type II F EA 19 months + + +

case2 AIH-type I F EA 6 years + + -

case3 AIH-type I F EA 20 months + + -

case4 AIH-type I F IA 11 years + + +

case5 AIH-type I F EA 15 years + + +

case6 AIH-type I M AA 8 years + + +

case7 AIH-type I M EA 17 years + + -

case8 AIH-type I M EA 12 years + + -

Phenotype information for 10 samples under study. Last four columns show whether a sample was sequenced at the

corresponding sequencing center (+) or not (-).

�EA—European American; IA—Native American; AA—African American

Sequencing centers:

��M—Macrogen-X10; I—Illumina-X10; P—Peterhof-HiSeq4000

https://doi.org/10.1371/journal.pone.0200423.t001
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significant difference only between Illumina-X10 and Macrogen-X10 (p-value = 0.02105).

Macrogen-X10 had lower values of variance coefficient (which is calculated as a ratio of stan-

dard deviation to mean value), which means more uniform coverage, while Peterhof-

HiSeq4000 data fell between Macrogen-X10 and Illumina-X10 datasets (Fig 1B, Table 2, S1

Table).

We detected no statistically significant difference between the datasets for the fraction of

read pairs with both reads retained after filtration and the fraction of 23-mers with errors

(Table 2, S1 Table) as tested under a parametric model (ANOVA mixed model p-values

0.0930, 0.3291) or a nonparametric model (Kruskal-Wallis test p-values 0.075, 0.4209).

Statistically significant difference for fraction of read pairs without adapters or Ns (Fig 1C,

Table 2, S1 Table) was detected only by Kruskal-Wallis test (p-value = 0.0011) and was not

supported by ANOVA (p-value = 0.0697). This discrepancy was possibly due to fewer samples

(N = 6) sequenced by the Peterhof-HiSeq4000 facility, thus making the parametric test not

able to detect the difference. Pairwise tests showed a small but significant difference in the

comparisons of Illumina-X10 vs Peterhof-HiSeq4000 (p-value = 0.001) and Macrogen-X10 vs

Peterhof-HiSeq4000 (p-value = 0.001045).

Read alignment. In order to compare genomic variation, we first aligned reads to the

human reference genome. Our dataset contained two samples of non-European descent

(Native American and African American). All samples irrespective of ethnicity were aligned to

the same human reference genome, due to the absence of an alternative reference genome, and

Fig 1. Raw read quality control parameters. Raw sequence read QC parameters are shown for three sequencing

centers (colored differently).

https://doi.org/10.1371/journal.pone.0200423.g001

Analytical "bake-off" of whole genome sequencing quality for the Genome Russia project

PLOS ONE | https://doi.org/10.1371/journal.pone.0200423 July 11, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0200423.g001
https://doi.org/10.1371/journal.pone.0200423


presuming this is not likely to substantially bias genotyping in non-repetitive regions [8].

Indeed, the percentage of mapped reads was not substantially different in the non-European

samples.

Overall, alignment rate was similar across the three sequencing centers yielding around

97.5% of reads mapped (Table 2). We first aligned all datasets using the same default parame-

ters of bowtie2 aligner. This resulted in discordant read pairing in 31% of read pairs in Illu-

mina-X10 dataset. After detailed investigation we found that this happened due to a larger

insert size of Illumina-X10 reads (see Table 2) than the default insert size used by bowtie2. To

overcome this we increased the bowtie2 insert size to 800bp, which indeed increased the per-

centage of properly paired reads to 95%. The results obtained for other datasets with the

default settings were acceptable; therefore we did not rerun bowtie2 with an increased insert

size for the other datasets. This resulted in slightly lower percentages of properly paired reads

in Macrogen-X10 and Peterhof-HiSeq4000 as compared to Illumina-X10 (Table 2). Detailed

mapping statistics for all datasets can be found in S2 Table.

Variant calling and genotyping. Alignments were then used for variant calling and geno-

typing. We performed joint genotyping on all sequenced samples separately in each dataset.

Variant calling identified more than 3.5 million SNPs and more than 50,000 short indels

(Table 2). Peterhof-HiSeq4000 data had the lowest number of identified variants partly due

fewer samples (N = 6) compared to Illumina-X10 and Macrogen-X10 datasets (N = 10). This

difference becomes lower when comparing only the 6 shared samples (S3 Table). We also com-

pared the number of Mendelian inheritance errors based on trio genotypes and found a lower

Table 2. Comparison of sequencing results (N = 17 parameters).

Parameter Macrogen-X10 Illumina-X10 Peterhof-HiSeq4000

S
eq

u
en

ci
n

g
st

ra
te

g
y Library preparation kit Illumina TruSeq DNA

PCR-Free

Illumina TruSeq DNA

PCR-Free

Illumina TruSeq DNA

PCR-Free

Insert size 300–400 bp 450 bp 400 bp

Read length 151bp, paired-end 151bp, paired-end 150bp, paired-end

R
aw

re
ad

Q
C Estimated mean coverage 31.685 36 32

Variance coefficient of coverage 0.245 0.28 0.27

Fraction of read pairs with both reads retained after

filtration

0.989 0.986 0.981

Fraction of kmers with errors 0.076 0.068 0.069

Fraction of read pairs without adapters or Ns 0.994 0.994 0.998

M
ap

p
in

g
Q

C Reads before mapping 812,203,657 834,018,799 912,695,503

Percentage of mapped reads 97.85% 97.14% 97.43%

V
ar

ia
n

t
Q

C Number of SNVs 3956042 3971375 3552604

% of novel SNVs 2.01% 2.05% 1.64%

Number of indels 459983 708225 335164

# Multiallelic sites 30180 122066 14031

Mendel errors 0.58% 0.30% 0.27%

Genotype concordance with microarray 96.80% 96.88% 96.67%

Main parameters used for comparison of sequencing centers are presented in this table. These and additional parameters can also be found in S1–S3 Tables. All

sequenced samples were used in this comparison.

https://doi.org/10.1371/journal.pone.0200423.t002
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error rate in Peterhof-HiSeq4000 and inMacrogen-X10 (Table 2, S4 Table). Allele count distri-

butions were similar across datasets (S1 Fig). To assess genotyping quality we used microarray

genotypes of the trio provided by Illumina. It was previously shown that comparison of WGS

with microarrays provides an accurate estimation of variant detection sensitivity [9]. We esti-

mated the percentage of microarray SNPs that were correctly genotyped in sequencing data-

sets. All datasets detected more than 96% of microarray SNPs with the same genotypes, while

Illumina-X10 showed the highest number of concordant SNPs (Fig 2A, Table 2). We also

investigated per-sample genotype concordance rate to identify potential outliers, such as sam-

ple ethnicity (S5 Table). Sample ethnicity did not appreciably influence genotype concordance

(S5 Table), likely reflecting that read alignment and subsequent genotyping of common vari-

ants are not dramatically sensitive to common population-specific genetic variation in line

with previous studies [8]. As expected, the number of variants (and the percentage of single-

tons) is higher in African American sample, in line with our knowledge of human ancestry

with maximal variation and private alleles found across African populations.

Variants genotyped in the three datasets show a high overlap, more than 86% of variants

identified in one dataset could be found with the same genotype in another dataset (Fig 2B, S5

Table). Highest overlap was observed between Macrogen-X10 and Peterhof-HiSeq4000 vari-

ants. The overlap is higher for SNPs than for short indels (Fig 2C) probably partly due to

Fig 2. Genotype comparison. (A) Concordance of WGS genotypes with microarray genotypes. The concordance was

estimated based on the trio data as the ratio of microarray SNPs with identical genotypes in WGS results. (B)

Comparison of the three WGS datasets between each other in terms of precision, sensitivity and F-measure for

pairwise comparisons. Color legend is given on the top right. (C) Concordance of genotypes in the three WGS datasets

for all variants, SNPs and indels. Color legend is given on the top right.

https://doi.org/10.1371/journal.pone.0200423.g002
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alignment difficulties at indel borders, contributing to lower indel calling quality and increased

discrepancies

Copy number variation and segmental duplication. The copy number values distribu-

tion is close to normal with expected value around 2, which corresponds to the diploidy of the

genome (S2 Fig).

Segmental duplications (SD) were defined as regions larger than 1Kbp of increased average

copy number value in comparison to the mean copy number value in control regions of the

corresponding individual with correction for dispersion [10–12]. The results for the trio are

shown in S3 Fig. We evaluated the number of segmental duplications present in patients but

absent in the non-diseased individuals in each dataset. Overall, there are eight such shared

duplications in Illumina-X10 dataset, two in Macrogen-X10 dataset, 40 in Peterhof-HiSeq4000

dataset. The fact that there were only 4 AIH patients sequenced in the Peterhof dataset com-

pared to 8 AIH cases in the two other centers (Table 1) likely affected the quantities of com-

mon duplications. The segmental duplications identified in patients, but not present in the

two healthy parents, do not overlap among different datasets.

Long insertions and deletions

We also called long indels (20–100 bp) in the three datasets. Illumina-X10 and Macrogen-X10

yielded around 2,500 long indels, whereas 6 samples from Peterhof-HiSeq4000 had around

1,900 long indels (S6 Table). In each dataset, about 80% of long indels were previously reported

variants, and about 20% were novel.

From Illumina-X10 and Macrogen-X10, we selected 6 samples corresponding to the 6 sam-

ples present in Peterhof-HiSeq4000 and compared the three sets of long indels called in these 6

samples. Illumina-X10, Macrogen-X10, and Peterhof-HiSeq4000 shared approximately 50% of

long indels, whereas about 20% of long indels were unique in each set (S4 Fig). This variation

in long indels may be explained by variation in read mapping affecting the calling process.

Long indel call sets for the 6 samples shared three indels overlapping with exons, and all the

three were previously reported indel variants located in KTI12, BRCA1 and PKD1L2.

HLA genotyping

We investigated how well we can produce HLA genotypes based on sequencing results as com-

pared to molecular HLA typing. We produced HLA genotypes using Athlates software for

HLA-A, HLA-B, HLA-C and HLA-DRB1 genes (S7 Table). All three datasets showed a similar

mismatch rate as compared with molecular typing results: Macrogen-X10 had the lowest num-

ber of mismatches (17) and Illumina-X10 had the highest number of mismatches (21). S7

Table

II. Autoimmune hepatitis

The cohort used for sequencing results comparisons consisted of eight patients diagnosed with

autoimmune hepatitis (Table 1). Autoimmune hepatitis (AIH) is a rare highly heterogeneous

complex disease of the liver with unknown etiology [13–15]. AIH occurs both in children and

in adults, more often affecting females than males. There are two distinct forms of AIH, type 1

and type 2, which differ by the presence of autoantibodies [16]. Genetic studies have identified

several genetic variants increasing the risk of developing AIH. HLA class II DRB1 alleles were

found to be associated with AIH disease in various populations [17–20]. Variants in several

genes outside of HLA were also associated with AIH susceptibility or progression: CTLA4
[21,22], FAS [23], VDR [24], TBX21 [25], TNF2 [26], SH2B3, CARD10 [27] and FTCD [28].
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The number of patient samples (N = 8) in our data was too low for a robust gene association

analyses, thus we annotated the identified SNPs and indels to produce a list of variants poten-

tially having an impact on AIH disease. In this study we aimed to make use of multiple variant

and genotyping replicates for each individual to filter errors and validate associated variants,

thereby reducing false positive calls. We recovered 897 variants predicted to be high-confidence

loss-of-function (LoF) by LOFTEE tool [29] (398 SNPs and 497 short indels; S8 and S9 Tables

respectively). We further identified variants with reported AIH associations in GWAS catalog

[30] and in HGMD [31], performed pathogenicity annotation by Gavin [32], and investigated

the reported gene expression in liver according to GTEx [33]. S8 and S9 Tables provide an

unabridged detailed description of these annotated SNP and indel variants respectively.

In a filtered gene list (S10 and S11 Tables) we selected rare variant alleles that occurred at

least twice in the eight AIH patients, and excluded those with MAF > 0.01 in 1000G [8],ExAC

[34], or gnomAD [34] databases. We retained SNPs with zero occurrence of alternative allele

in the healthy parents (or up to two alleles when their offspring carried the variant). In order

to provide an additional filtering criterion in variant prioritization, we also processed the same

Illumina dataset using BWA-GATK pipeline to capture pipeline-specific mapping and geno-

typing errors.

We included only SNPs with genotypes that were> 98% concordant in Macrogen, Illu-

mina, Peterhof, and Illumina GATK replication results, and also included those with rare

homozygous cases. In S10 and S11 Tables we list relevant information for each LoF variant: 1)

Chromosome; 2) Coordinates; 3) rs id number; 4) Reference and alternative allele sequence; 5)

Number of gene isoforms (transcripts) this variant falls into; 6) Most severe genetic impact of

the variant (e.g. gained stop codon, frameshift, splice effect etc.); 7) Novelty of the variant; 8)

Mendel transmission error in trio; 9) Liver expression according to GTEx [25]; 10) Gene asso-

ciations from GWAS catalog [30] and in HGMD [31] and 11). Gavin [32] pathogenicity pre-

diction for each variant. After variant filtering according to these aspects (see Methods), we

derived a short list of 54 SNPs and 27 indels, which offer potential for replication in a larger

study (S10 and S11 Tables).

We compared these SNP and indel variants (S10 and S11 Tables) to genes identified in

additional AIH patient exploration studies described in S12 Table. Briefly, we examined gene

candidates derived from three separate AIH gene lists produced by studies on AIH onset: 1) 39

genes with segmental duplications among the 8 cases studied here; 2) 21 genes identified in

two AIH patient trios with elevated incidence of homozygotes for rare alleles; and 3) genes

implicated in AIH by previous studies (HLA-DRB1[17–20], CTLA4 [21,22], FAS [23], VDR
[24], TBX21 [25], TNF2 [26], SH2B3, CARD10 [27] and FTCD [28]).

We observed among the AIH cases two genes that were reported previously in multiple

AIH gene association studies. First, HLA-DRB1 13:01 and 03:01 alleles are known to be associ-

ated with AIH type I and HLA-DRB1 07:01 allele is known to be associated with AIH type II in

the literature[17–20]. Molecular HLA typing in our samples [35] showed these HLA-DRB1
alleles known to be associated with AIH present in our samples (Table 3). Second, a [G>GC]

insertion variant within the FTCD gene on chromosome 21 appeared in one homozygous case

in trio and one heterozygous case while this insertion is absent in the 1000G and ExAC data-

bases and listed with MAF 0.006 in the larger gnomAD database (Table 3, S11 Table). The

FTCD gene encodes formimidoyltransferase cyclodeaminase and is known to play a role in

AIH [28]. Mutations in the FTCD gene on chromosome 21 have been implicated as causal for

glutamate formiminotransferase deficiency, a rare metabolic disorder that affects physical and

mental development[36]. The single FTCD [G>GC] homozygous case was inherited from her

mother but missing in the father suggesting a constitutive spontaneous mutation in this type II

AIH case (Table 3).
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Discussion

We present here the results of a comprehensive analysis of whole genome sequencing (WGS)

of the St. Petersburg State University Sequencing Center at Peterhof as compared with the

same samples sequenced by commercial sequencing centers outside of Russia: Illumina and

Macrogen (Table 1). We compare the sequence quality, efficiency of DNA variant and geno-

type calling with each other and with DNA array chips of the same patients, Mendel allele

transmission errors, the assessment of copy number variation and the speed of WGS through-

put promised. There were slight differences in sequence coverage (Illumina was highest) and

variance (Illumina was highest). For all other parameters measured (~20 in total) Peterhof and

outside vendors provided very good and comparable sequence and data throughput. We must

note here that while our new sequencing center produced high quality results, the time

required for setting up a new sequencing facility and the cost was high as compared to the ser-

vice providers outside Russia (S13 Table).

In this study we were primarily focused on WGS results comparison as the dataset used for

this evaluation, consisting of eight AIH samples and two healthy parents of one case, was too

small for a statistically robust association study. However, we were interested in the opportu-

nity to use the technical replicates sequenced three times in different sequencing centers for

variant prioritization. Using this replication and additional filtering steps (see Results) we

identified a set of loss-of-function SNPs and short indels occurring in some of the AIH samples

(S10 and S11 Tables). One of these was an insertion located in a gene FTCD known to be asso-

ciated with autoimmune hepatitis, for which the trio case was homozygous.

Overall, the findings affirm comparable sequence data and genotyping quality in the compared

centers, however differences in the timing were considerable. The success and speed of the Genome

Russia Project may indeed depend on cost and speed of sequencing as expected. The AIH study

lent credence to the influence of both HLA-DRB1 and the FTCD association with this complex dis-

ease occurring in several patients and in different studies compared here (Table 3, S7 Table).

Methods

Data generation and sequencing

Ten samples from a cohort on autoimmune hepatitis were used in this work. The study was

approved by the Johns Hopkins Institutional Review Board. Parents/caregivers of patients all

Table 3. HLA-DRB1 and FTCD genotypes.

sample id HLA-DRB1 alleles FTCD [G>GC]

trio_case1 07:01:01 12:01:01 2/2

trio_father 10:01:01 12:01:01 1/1

trio_mother 07:01:01 08:01:01 1/2

case2 13:01:01 13:01:01 1/2

case3 13:01:01 15:01:01 1/1

case4 13:01:01 15:01:01 1/1

case5 11:01:02 15:01:01 1/1

case6 04:05:01 15:03:01 1/1

case7 03:01:01 13:01:01 1/1

case8 15:01:01 14:54:01 1/1

HLA-DRB1 and FTCD G>GC insertion genotypes are shown for all samples. HLA-DRB1 are given based on

molecular typing or Illumina-X10 data when molecular typing results were not available. Alleles associated with AIH

are shown in bold.

https://doi.org/10.1371/journal.pone.0200423.t003
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signed informed consent prior to enrolment into the study. Blood (1–5 ml) was drawn from AIH

patients and the parents of one AIH case using EDTA vacutainer tubes. Genomic DNA was iso-

lated from 1–5 ml blood using Puregene Blood Kit chemistry on an Autopure LS automated

DNA purification instrument (Qiagen, Valencia, CA) at the Johns Hopkins University Institute of

Genetic Medicine Biorepository/Shipping Coordinator, GRCF Cell Center and Biorepository.

Detailed description of DNA extraction protocol and chemistry are presented at https://www.

qiagen.com/us/resources/resourcedetail?id=a9e6a609-4600-4b03-afbd-974318590ce5&lang=en

and also https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-

puregene-blood-kit/#productdetails. DNA concentrations were determined by spectrophotome-

try using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington DE).

These ten samples were sent to three sequencing centers including our local Peterhof cen-

ter, Illumina (UK) and Macrogen (South Korea). Quality control during sequencing library

preparation was performed by sequencing centers and was not included in sequencing center

comparison.

Macrogen-X10. Genomic DNA libraries were prepared using TruSeq DNA PCR-Free

Library Preparation Kit in accordance with TruSeq DNA PCR-free library preparation guide, pro-

ducing a PCR-free library with 300–400 bp average insert size. 1 μg of each DNA sample was frag-

mented by Covaris system. Pairs of 151bp reads were sequenced on Illumina HiSeq X10 sequencer.

Illumina-X10. Illumina TruSeq PCR free sample preparation kit was used to make librar-

ies for all 10 samples from 600ng of DNA for each sample selecting fragments with 450 bp

insert size. Fragmentation was performed using Covaris system; fragments with 450 bp insert

size were selected. Pairs of 151bp reads were sequenced on Illumina HiSeq X10 sequencer.

Illumina microarray. For validation purposes Illumina genotyped the trio using Huma-

nOmni2.5–8 v1.2 genotyping chip.

Peterhof-HiSeq4000. Genomic DNA libraries were prepared using TruSeq DNA PCR-Free

Library Preparation Kit (Illumina, USA). All procedures were conducted in accordance with the

protocol TruSeq DNA PCR-Free Library Prep Reference Guide (2015). 1 μg of each DNA sample

was used for library preparation. Clusterization of 2 nM libraries was conducted on a cBot using

HiSeq 3000/4000 PE Cluster Kit (Illumina, USA). 2x150 paired-end sequencing was done by Illu-

mina HiSeq 4000 using HiSeq 3000/4000 SBS Kit (Illumina, USA) at Peterhof, St. Petersburg State

University in accordance with Illumina HiSeq 4000 System Guide (2016).

Data quality control

Quality control (QC) was carried at the following levels:

1. Raw sequence read QC

2. QC after alignment of raw reads to human reference genome

3. Variant calling and genotyping QC

1. Raw read quality control

The initial quality control was performed using FastQC [37]. The distribution of 23-mer cover-

age was calculated and drawn by KrATER [https://pypi.python.org/pypi/KrATER/0.1] tool

based on Jellyfish [38] k-mer counter. Adapter occurrence was estimated using Cookiecutter

[39]. As adapter occurrence was low (less than 3% of reads, see Table 2 and S1 Table) and had

little impact on the genome alignment, we skipped the adapter removal stage. Finally, only

reads with mean quality equal or higher than 20 were retained. In addition, the fraction of

pairs with both reads retained was estimated and examined as a QC parameter.
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Five explicit parameters were measured to assess and compare the quality of sequencing

data between sequencing centers (see below):

1. Estimated mean coverage (calculated only for the non-repetitive regions of genome using

23-mer distribution);

2. Variance coefficient of coverage (estimation of uniformity of coverage);

3. Fraction of read pairs with both reads retained after filtration (estimation of sequencing

quality);

4. Fraction of 23-mers with errors (estimation of sequencing error rate);

5. Fraction of read pairs without adapters or "N"s (estimation of library preparation and

sequencing quality).

To assess the significance of detected differences, Kruskal-Wallis and ANOVA tests (where

the sequencing center was considered a fixed factor and individual sample as a random factor)

were performed where applicable (for parameters No 1,2,3,4). Pairwise comparisons of esti-

mated mean coverage (plus 95% confidence intervals) were also done between sequencing cen-

ters. All tests were performed using Stats and Lme4 R packages.

Based on raw read QC we determine whether a sample can be used in further analyses. To

that aim we set the minimum or maximum value for several parameters:

1. Fraction of read pairs without adapters or Ns: F� 0.95

2. Fraction of read pairs with both reads retained after filtration: F� 0.95

3. Fraction of kmers with errors: F� 0.15

4. Mode of coverage: C� 27

If a sample fails one or more criteria, we required additional sequencing done for this sample.

2. Read alignment QC

We mapped raw reads that passed quality control to the GRCh38 human reference genome

using bowtie2 2.2.8 [40] with the "—very-sensitive" option and obtained one BAM file per

sample. Due to large insert sizes in Illumina-X10 dataset (larger than the default 500bp for

bowtie2), we aligned Illumina-X10 reads with an increased insert size parameter (-X 800).

We obtained alignment statistics from BAM files using a combination of SAMtools-1.3

[41], BEDTools2-2.25.0 [42] and custom scripts written in Python 2.7. Genotype statistics was

collected using BCFtools 1.3 [41]. Genotype comparison was performed using vcfeval utility

from RTG Tools 3.7.1 [43].

In general we found two parameters useful for assessing differences between sequencing

centers:

1. Number of reads before mapping;

2. Percentage of reads mapped.

3. Variant calling and genotyping QC

We sorted and indexed the individual BAM files using Sambamba 0.6.1 [44]. We used SAM-

tools 1.3 mpileup utility with options -q 37 -Q 30 -t AD,INFO/AD,ADF,INFO/ADF,ADR,

INFO/ADR,DP,SP and BCFtools 1.3 call utility [41] with options -v -m -f GQ,GP for joint
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genotyping of all samples on the basis of the sorted and indexed BAM files. From the resulting

VCF file we selected only SNVs that passed the following filters: (1) QUAL > 40, (2) FOR-

MAT/GQ > 20, (3) FORMAT/DP > 10, and (4) FORMAT/SP < 20 using BCFtools view util-

ity. We removed variants in repeated regions (as defined by RepeatMasker 4.0.5 based on

Repbase Update 20140131).

We used the following main parameters to assess the quality of genotyping:

1. Number of SNVs;

2. Percentage of novel SNVs;

3. Number of indels;

4. Number of multiallelic sites;

5. Rate of Mendel inheritance errors;

6. Concordance with microarray genotypes.

Variant annotation and prioritization. Variant annotation was performed by Ensembl

Variant Effect Predictor (VEP) release 84 [45]. Using only canonical transcripts we annotated

the variants with PolyPhen [46], SIFT [47] and Condel [48] pathogenicity scores; PhyloP [49]

conservation score; loss-of-function (LoF) predictions by Loss-Of-Function Transcript Effect

Estimator (LOFTEE) [29]; and minor allele frequencies from 1000G [8], ExAC [34] and gno-

mAD [34] data. We checked the reported associations in GWAS catalog [30] and HGMD [31],

performed pathogenic annotation by Gavin [32] and annotated the genes with their expression

levels in liver according to GTEx [33].

To filter the LoF SNPs, we excluded variants whose genotypes failed to replicate >98% of

the time in all ten individuals by three platforms (Macrogen, Illumina and Peterhof). SNPs

that could not be found in databases (or had a MAF<0.01 in 1000G, ExAC, and gnomAD

databases; S6 Table, S7 Table), which had>2 alternative alleles among the eight AIH cases

were included. We ranked high those variants, which had a zero incidence in two healthy

parents (except when the offspring case carried the allele).

In order to exclude wrong genotyping due to bowtie2 + BCFtools pipeline errors, we also ran

BWA alignment followed by GATK genotyping on Illumina-X10 samples as described in GATK

best practices guide [50]. We used the concordance of genotypes produced by our default pipeline

as compared to the GATK pipeline to further reduce the number of false positive variants.

CNV and SD identification

We searched for segmental duplications in the genomes sequenced with each of the three

sequencing centers using the human genome assembly hg38 as reference.

The reference assembly was hard-masked from the repetitive regions using Repeat Masker

and Tandem Repeat Finder software. Some other potential repeats were identified using kmer

approach. The overrepresented kmers were masked out from the assembly using mapping of

chromosome subregions of fixed length k = 36 onto the genome using mrFast [10] software.

The copy number (CN) values were evaluated along the chromosomes using mrCanavar

[10] software in non-overlapping windows of 1Kbp of unmasked sequence. From each read of

length 100 we selected two non-overlapping kmers. The flanking regions of potentially lower

quality of length 9bps were excluded from the analysis.

According to the definition used in our analysis segmental duplications (SDs) are regions

that span at least 10Kbp in genomic coordinates of increased average copy number value in
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comparison to the mean copy number value in control (non-repetitive) regions of the corre-

sponding individual with correction for dispersion [10–12]. An SD can be considered as an

aggregated segment of increased variation and as other types of polymorphism can be inher-

ited from a common ancestor distant enough to reveal such an imprint of variation in individ-

uals not related in three or more generations and considered unrelated in our study. The goal

of SD comparison is to estimate the total level of duplications in a genome and probably iden-

tify common and unique genes and other genomic signatures affected by SDs. Segmental

duplication in two or more individuals are called not overlapping if their genomic coordinates

do not overlap.

Identification of longer indels

We called genomic variants in each of Illumina-X10, Macrogen-X10 and Peterhof-HiSeq4000

samples using Platypus [51] with default options except for—assemble = 1. We filtered the

obtained variants in the following series of steps: (1) indels called by Platypus (with "PASS" tag

in "FILTER" field); (2) indels successfully normalized; (3) long indels (20 to 100 bp); (4) indels

with quality score (QUAL) greater than 40; (5) indels with minimal genotype quality (GQ)

greater than 20; (6) indels outside of low-complexity and low-mappability regions defined

below. For steps (1), (2), (4), (5) we used BCFtools utilities. In step (2) we normalized indels

using BCFtools norm utility with the following options:—check-ref x -m-.

In step (3) we selected long indels (20 to 100 bp) using a custom script. An indel was con-

sidered to have length of 20 to 100 bp if the difference between the lengths of the reference

allele and the alternative allele was greater or equal to 20 bp and less or equal to 100 bp. In step

(6) we filtered out indels located in low-complexity and low-mappability genomic regions

using BEDtools intersect utility.

The regions of low mappability were identified in the following way: for each position in

the genome, all 151-mers covering it were mapped back to the reference human genome using

the bowtie2 aligner with the same options as used for the read alignment and the ratio of the

uniquely mapped 151-mers was calculated. If the ratio was less than 0.5, then the position was

considered to belong to a low-mappability region. The low-complexity genomic regions were

obtained by merging three sets of regions: homopolymers of 7 bp or longer, DustMasker-iden-

tified low-complexity regions, and RepeatMasker-annotated low-complexity and microsatel-

lite regions, and adding 10 bp to their flanks.

HLA typing

We performed HLA genotyping using Athlates software [52] with default parameters. For that

we extracted the reads mapped to HLA region and the unmapped reads and aligned them

using bowtie2 [40] to the HLA database provided by Athlates. We confirmed the HLA geno-

types of each individual using molecular HLA genotyping as described previously [35].

Supporting information

S1 Fig. Distribution of alternative allele counts in called genotypes. Three datasets of geno-

types for 10 individuals (Illumina and Macrogen) and one dataset of genotypes for 6 individu-

als (Peterhof) were considered. For each variant, the number of alternative alleles was

obtained; the variants were classified according to this number. Multiallelic variants were

excluded from this analysis.

(PDF)
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S2 Fig. Distribution of copy numbers in non-duplicated (control) regions. The distributions

are plotted for each sample from (A) Illumina, (B) Macrogen, (C) Peterhof.

(PDF)

S3 Fig. Segmental duplications identified in trio in three datasets. "Common" bar corre-

sponds to segmental duplications present in all three datasets.

(PDF)

S4 Fig. Overlap of long indels across three sequencing centers. The Venn diagram shows the

number of shared long indels in the three datasets.

(PDF)

S1 Table. Comparison of various QC parameters for raw reads. Raw read quality control

parameters assessed for all sequenced samples for each sequencing center.

(XLSX)

S2 Table. Alignment statistics. Various parameters of alignment results are averaged over all

samples in each dataset.

(DOCX)

S3 Table. Statistics on called variants. Statistics on variant calling and genotyping were calcu-

lated on the 6 samples shared in the three datasets. The variants were classified as known or

novel according to their presence or absence in the NCBI dbSNP database build 147.

(XLSX)

S4 Table. Mendel inheritance errors. Variants violating the Mendel inheritance law were

counted in the trio genotype data.

(DOCX)

S5 Table. Per-sample genotype comparison between datasets.

(XLSX)

S6 Table. Long indel counts. The number of identified long indels is given for each sequenc-

ing center to illustrate the effect of filtering (described in the first column).

(DOCX)

S7 Table. HLA genotyping and concordance of WGS-based and molecular typing.

(XLSX)

S8 Table. All identified LoF SNP list with annotation.

(XLSX)

S9 Table. All identified LoF short indel list with annotation.

(XLSX)

S10 Table. Filtered list of LoF SNPs.

(XLSX)

S11 Table. Filtered list of LoF indels.

(XLSX)

S12 Table. List of candidate AIH-related genes obtained from separate studies.

(XLSX)

S13 Table. Time estimates for 30X coverage from sequencing centers per person.

(DOCX)
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