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Abstract

Macrophages are specialized antigen-presenting cells that process and present self-anti-

gens for induction of tolerance, and foreign antigens to initiate T cell-mediated immunity.

Despite this, Leishmania donovani (LD) are able to parasitize the macrophages and persist.

The impact of this parasitizing and persistence on antigen processing and presentation by

macrophages remains poorly defined. To gain insight into this, we analyzed by liquid chro-

matography tandem mass spectrometry (LC-MS/MS) and compared the HLA-I self-pepti-

domes, proteasome compositions, HLA expression and activation states of non-infected

and LD-infected THP1-derived macrophages. We found that, though both HLA-I pepti-

domes were dominated by nonapeptides, they were heterogeneous and individualized, with

differences in HLA binding affinities and anchor residues. Non-infected and LD-infected

THP1-derived macrophages were able to sample peptides from source proteins of almost

all subcellular locations and involved in various cellular functions, but in different propor-

tions. In the infected macrophages, there was increased sampling of plasma membrane

and extracellular proteins, and those involved in immune responses, cell communication/

signal transduction and metabolism/energy pathways, and decreased sampling of nuclear

and cytoplasmic proteins and those involved in protein metabolism, RNA binding and cell

growth and/or maintenance. Though the activation state of infected macrophages was

unchanged, their proteasome composition was altered.

Introduction

Visceral leishmaniasis (VL) is a vector-borne neglected tropical and subtropical disease caused

by Leishmania donovani (LD) and other Leishmania species that are transmitted by infected

female phlebotomine sandflies and obligate intracellular protozoan parasites in vertebrates [1].

It is the second largest parasitic killer disease after malaria, with 200 000 to 400 000 estimated

new cases each year. The infections result in high fatality [1–3] that is prone to worsen with

HIV/VL and other co-infection [4–7].

PLOS ONE | https://doi.org/10.1371/journal.pone.0200297 July 12, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Nyambura LW, Jarmalavicius S, Walden

P (2018) Impact of Leishmania donovani infection

on the HLA I self peptide repertoire of human

macrophages. PLoS ONE 13(7): e0200297. https://

doi.org/10.1371/journal.pone.0200297

Editor: Anna Carla Goldberg, Hospital Israelita

Albert Einstein, BRAZIL

Received: March 7, 2018

Accepted: June 23, 2018

Published: July 12, 2018

Copyright: © 2018 Nyambura et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data are

presented in this paper. Reference data are

available in Nyambura LW, Jarmalavicius S,

Baleeiro RB, Walden P. Diverse HLA-I Peptide

Repertoires of the APC Lines MUTZ3-Derived

Immature and Mature Dendritic Cells and THP1-

Derived Macrophages. J Immunol. 2016;197

(6):2102-9. DOI: 10.4049/jimmunol.1600762.

Funding: This work was supported by Deutscher

Akademischer Austauschdienst (DAAD); German

Research Foundation (DFG) and a Open Access

Publication Fund of Charité – Universitätsmedizin
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When promastigote forms of LD are taken up by the macrophages they are internalized

into phagolysosomes where they transform into non-motile amastigotes. The amastigotes sur-

vive the harsh milieu in the phagolysosome, multiply, and eventually rupture the macrophages

and infect the new macrophages [8]. Survival and replication in the macrophage host is

through subversion of the host immune system and promotion of pro-parasitic host factors

[9]. This is achieved, among other mechanisms, by inhibiting the formation of nitric oxide

that plays a major role in killing intracellular parasites, suppressing apoptosis of the host cell,

and inhibiting production of cytokines thus interfering with cytokine-inducible macrophage

functions such as oxidative bursts [10–14].

Macrophages, as professional antigen-presenting cells, generate MHC class I and MHC

class II (HLA class I and II in humans) peptide complexes through various intracellular path-

ways and mechanisms. For MHC I peptide complexes, endogenous or cross-presented pro-

teins are processed via constitutive or immunoproteosomes. The resulting peptides are

transported into the endoplasmic reticulum by the transporter associated with antigen pro-

cessing (TAP), loaded onto MHC class I molecules (HLA I), and transported via the Golgi

apparatus and exocytic vesicles to the cell surface for presentation to CD8+ T cells [15]. The

collection of peptides presented by MHC molecules at the cell surface are termed HLA pepti-

domes or ligandomes. Though LD is able to parasitize the host macrophages and persist, its

impact on the host HLA-I peptidome remains undefined.

The human monocytic leukemia cell line THP1-derived macrophages (THP1MФ) are simi-

lar to native monocyte-derived macrophages [16–19], and have been used extensively as

model for studying human macrophage immune functions and responses towards intracellu-

lar pathogens [19, 20]. The THP1MФ could therefore serve to study and compare the self-pep-

tidomes of human macrophages infected and non-infected with LD, which would allow to

gain insights into how LD influences antigen processing and presentation.

Material and methods

Parasites

The wild type LD MHOM/IN/02/BHU5 (BHU5) [21] promastigotes were established from

splenic aspirates of an Indian patient and cultured in M199 culture medium (Gibco Invitro-

gen) supplemented with 20% heat-inactivated fetal bovine serum (Biochrom, Germany) at

25˚C. The yellow fluorescent protein (YFP) transfected LD (YFP-BHU5) promastigotes were

cultured in the dark in the same medium with 50μg/ml hygromycin.

Cell lines, differentiation and infection

The HeLa cell line clone 33/2 (HeLa A2+/IP) that stably expresses the three inducible subunits

LMP2, MECL1 and LMP7 [22] was kindly provided by Prof. P. M. Kloetzel (Charité - Univer-

stitätsmedizin Berlin, Germany). It was cultured in Iscove’s Basal medium (Biochrom Ger-

many) supplemented with 10% heat-inactivated fetal calf serum (Biochrom, Germany), 2 μg/

ml puromycin (Roche, Mannheim, Germany) and 300 μg/ml hygromycin (Roche, Mannheim,

Germany) at 37˚C in a humidified atmosphere with 8% CO2. The acute monocytic leukemia-

derived human cell line THP1 (ATCC TIB-202) was cultured in RPMI 1640 medium (Invitro-

gen, Karlsruhe, Germany) supplemented with 10% heat-inactivated fetal calf serum (Bio-

chrom, Germany) and 1% streptomycin-penicillin (Gibco Invitrogen, Germany) at the same

conditions. THP1 is homozygous for HLA-A�02:01, HLA-B�15:11 and HLA-C�03:03 [23]. To

generate the THP1 macrophage phenotype (THP1MФ), THP1 cells were differentiated with

50 ng/ml phorbol-12-myristate-13-acetate (Sigma, Steinheim, Germany) for 48h. To infect

THP1MФ with the BHU5 or YFP-BHU5, parasites were harvested by centrifugation at 500 x g
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for 8 minutes, washed, re-suspended in RPMI 1640 medium (Invitrogen, Karlsruhe, Germany)

and added to the THP1MФ cultures at the ratio parasites: THP1MФ 10:1, and cultured for 48

h at 37˚C under 8% CO2. Subsequently, THP1MФ and YFP-BHU5 infected THP1MФ
(THP1MFiy) were used immediately to access the uptake of YFP-BHU5 by THP1MФ and its

effects on HLA-ABC and HLA-DR expression. THP1MФ and BHU5 infected THP1MФ
(THP1MFi) were used to access viability, HLA-ABC, HLA-A�02:01 and CD83 expression,

and were harvested by 10 min centrifugation at 800 x g, shock-frozen in liquid nitrogen and

stored as pellets at -80˚C for isolation of HLA.

Parasite uptake, viability, activation and HLA expression

To determine the uptake of LD by THP1MF and effects on hosts viability, CD83, HLA-ABC,

HLA-A�02:01 and HLA-DR expression flow cytometry was used. THP1MФ and THP1MFiy

or THP1MFi were stained with fluorochrome-labeled monoclonal antibodies against CD11b,

CD83, HLA-ABC (BD Bioscience, Heidelberg, Germany), HLA-A�02:01 and HLA-DR (BioLe-

gend, Eching, Germany), Calcein-AM (Invitrogen, Carlsbad, CA, USA) and Propidium Iodide

(PI) (Sigma-Aldrich, Germany). The expression of these markers on the cell surface and of cal-

cein and PI fluorescence was determined with a FACSCalibur flow cytometer (Becton Dickin-

son, Heidelberg, Germany) on 20,000 for forward versus sideward scatter-gated events.

CellQuest (Becton Dickinson, Heidelberg, Germany) and WinMDi 2.9 (Purdue University,

USA) software were used to process and analyze the data, respectively. The uptake was assessed

by CD11b expression against YFP fluorescence, and cell viability assessed using Calcein-AM

(Invitrogen, Carlsbad, CA, USA) and propidium iodide (PI) (Sigma-Aldrich, Germany).

CD83 was used as a marker of macrophage activation.

Constitutive and immunoproteasome expression in THP1MФ and

THP1MФi

The impact of the infection by LD on the constitutive and immunoproteasome expression of

THP1MF was determined by semi-quantitative RT-PCR. Total RNA was extracted from

THP1MФ, THP1MФi, HeLa cell line, and HeLa clone 33/2 (A2+/IP) using Nucleospin RNA II

Purification Kit (Macherey-Nagel, Duren, Germany). cDNAs were prepared from 500ng of

DNase-treated RNA using superscript III reverse transcriptase (Invitrogen, CA, USA).

RT-PCR was carried out with 500ng of cDNA using the following constitutive (β1, β2 and β5)

and immunoproteasome (β1i, β2i and β5i) subunit-, and GADPH- specific forward and

reverse primers [24]. β1: GACTCCAGAACAACCACTG, CTTGGTCATGCCTTCCCG (399bp;

BC000835.2, NM_057099.2); β2: CTGAAGGGATGGTTGTTGC, CTTTCTCACACCTGTACCG
(558bp; D38048.1, NM_053532.1); β5: CCAAACTGCTTGCCAACATG, GAGTAGGCATCTCTG
TAGG (275 bp; D29011.1, XM_341314.3); Hsβ1i: CTACTGTGCACTCTCTGG, GCCTGGCTTA
TATGCTGC (313 bp; U01025); Hsβ2i: GAAGATCCACTTCATCGC, CTCCAGGGTTAGTGGCTTC
(571 bp; Y13640); Hsβ5i: GGAGAAAGGAACGTTCAG, TTGATTGGCTTCCCGGTAC (648 bp;

U17496); GAPDH: CCTTCATTGACCTCAACTAC, CACCACCCTGTTGCTGTAG (869 bp;

NM_002046.2, NM_017008.2). PTC-200 Peltier Thermal Cycler (BIO-RAD, München, Ger-

many) was used. Thermocycling conditions were denaturation at 96˚C for 2 min, 30 cycles of

denaturation at 95˚C for 40 sec, primer annealing at 55˚C to 68˚C for 1 min, primer extension

at 72˚C for 40 sec and a final cycle of extension at 72˚C for 10 min. The amplified DNA frag-

ments were analyzed by electrophoresis using 1.2% agarose gels. HeLa cell line, and HeLa

clone 33/2 (A2+/IP) were used as positive controls for constitutive and immunoproteasome

subunits, respectively. GelAnayzer2010 (http://www.gelanalyzer.com/download.html) was use
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to semi-quantitatively analyze the subunit band intensities. For each subunit, the band inten-

sity was divided by the value for the GAPDH amplified in the same reaction tube.

Isolation, purification and LC-MS/MS analysis of HLA I-presented

peptides

Isolation of MHC I molecules was carried out as previously described [25, 26]. In brief, 2.3 x 109

shock frozen cells were lyzed in 0.3% CHAPS, 0.2% NP-40, 145 mM NaCl, 1 mM EDTA, 1mM

Pefabloc, 20 mM Tris-HCl buffer at pH 7.4 and ultracentrifuged for 1h at 100,000 x g. HLA I

molecules were purified from the supernatants using monoclonal antibody of irrelevant speci-

ficity for preclearing and HLA class I-specific mAb W6/32, respectively, coupled to CNBr-acti-

vated sepharose (Amersham Biosciences, Uppsala, Sweden). The anti-human HLA-I column

with HLA-peptide complexes was washed successively with 20mM Tris, 145 mM NaCl pH 7.4

(TBS), 0.3% CHAPS in TBS, TBS, 0.3% ß-octylglycoside in TBS, TBS and finally ultrapure

water. HLA-peptide complexes were eluted using 0.7% TFA in ultrapure water. Peptides were

isolated from high molecular weight components by ultrafiltration using centrifugal filters with

a 3-kDa molecular weight cut-off (Centricon, Millipore, Schwalbach, Germany). Filtrate frac-

tionates were obtained using an acetonitrile gradient of 5–90% of solvent B (90% acetonitrile,

0.1% TFA in ultrapure water) in solvent A (0.1% TFA in ultrapure water) with a reverse phase

column μRPC C2/C18, SC2.1/10 on a Smart HPLC system (Amersham Biosciences, Freiburg,

Germany). The peptide fractionates were analyzed by reverse phase liquid chromatography

(3000 nano-HPLC system; Dionex, Darmstadt, Germany) coupled on-line with MicroTOF-Q

mass spectrometer (Bruker Daltonics, Bremen, Germany). Peptide fractionates were injected

onto a C18 precolumn at 20 μL/min (2% acetonitrile, 0.05% TFA) for 5 min. Subsequently, pep-

tides were separated at a flow rate of 220nl/min onto a 75-μm × 15 cm PepMap nano-HPLC col-

umn with a gradient of 5–60% acetonitrile over 60 min, then 60–90% acetonitrile over 5 min

and finally 90% acetonitrile for 5 min, all with 0.1% formic acid in ultrapure water. Eluted pep-

tides were nanospray-ionized and fragmented based on the five most intense precursor ions sig-

nals, with a 1 min dynamic exclusion time to avoid repeated fragmentation.

Processing and analysis of data

MS and MS/MS spectra were processed using Data Analysis 3.4 and Biotools 3.1 (Bruker Dal-

tonics). Peptides were identified against Swissprot human protein sequence database version

56.3 (20,408 reviewed non-redundant protein sequences) integrated in a local MASCOT server

(version 2.2). Precursor and fragment mass tolerances of 100 ppm and 0.5 Da were used

respectively, oxidation of methionine was allowed as a possible modification. Peptide-spec-

trum matches were validated using a statistical evaluation -10logP, where logP is the logarithm

to the base 10 of P (P<0.05). De novo sequencing using Sequit software [27] and manual

inspection were used to further validate the identified peptides. Peptides source proteins were

annotated using Uniprot [28] and classified according to subcellular locations and biological

functions using human protein reference database [29]. Peptides were assigned to their respec-

tive HLA using netMHCpan in the Immune Epitope Database IEDB [30, 31] and SYFPEITHI

[32], and their predicted HLA binding affinities were determined using netMHCpan in IEDB

with a binding affinity IC50 threshold of 500nM. Binding motifs for the nonapeptides were

visualized using sequence logos [33, 34].

Statistical analyses

Macrophage activation, HLA expression and proteasome subunit expression between

THP1MФ and THP1MФi/or THP1MФiy were compared by paired 1-tailed Student’s t-test
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and differences indicated as significant when �p< 0.05. Data are presented as the

mean ± standard deviation from three independent experiments.

Results

Parasite uptake and effects on viability, activation and HLA expression

To assess the uptake of LD by THP1MF and to determine its effects on viability and expres-

sion of HLA-ABC, HLA-A�02:01, HLA-DR and CD83 by the host, flow cytometry was used as

detailed in Materials and Methods. The uptake of YFP-BHU5 by THP1MФ based on CD11b

expression versus the YFP fluorescence was 70.25±5.59%. The viability of THP1MФi was

slightly lower compared to THP1MФ based on calcein and PI fluorescence (Fig 1A). The levels

of HLA-ABC (�p<0.05), HLA-DR and HLA-A�02:01 were lower on the infected compared to

the non-infected cells, while those of the macrophage activation marker CD83 were

unchanged (Fig 1B and 1C). The decrease in MHC class I and II expression on infected cells

has also been observed previously, albeit in murine studies [14].

Impact of parasite uptake on constitutive and immunoproteasome mRNA

expression

To determine the impact of LD on the hosts constitutive and immunoproteasome subunit

expression by THP1MF, semi-quantitative RT-PCR was carried out as detailed in Materials

and Methods. THP1MФ and THP1MФi expressed both the constitutive proteasome subunits

(β1, β2 and β5) and the immunoproteasome subunits (βi1, βi2 and βi5) (Fig 2A). Semi-quanti-

tative analysis of the RT-PCR bands showed a reduction of the mRNA (subunit/GADPH) of β1

(�p<0.05), β2 (�p<0.05), and no significant change for the β2i (p = 0.28) and β5i (p = 0.15) sub-

units in THP1MФi compared to THP1MФ with 14%, 25%, 9% and 25%, respectively (Fig 2B).

Fig 1. Uptake of Leishmania donovani by THP1MФ: effects on viability, and HLA-ABC, HLA-A�02:01, HLA-DR

and CD83 expression. A) Flow cytometric analysis of the uptake of YFP-BHU5 by THP1MF assessed by the YFP

fluorescence in CD11b expressing THP1MFi compared to THP1MF, and viability of THP1MФ and THP1MФi

analyzed by calcein and PI staining. B) Expression levels of HLA-ABC, HLA-A�02:01, HLA-DR and CD83 on

THP1MF and THP1MФi or THP1MФiy. C) Representation of the expression levels of HLA-ABC, HLA-A�02:01,

HLA-DR and CD83 as fold change of MFI in THP1Mɸi or THP1Mɸiy below/above that of THP1Mɸ. Error bars

represent ±SD of the mean of three independent experiments; �p< 0.05 comparing THP1MF vs THP1MФi or

THP1MФiy. Fig 1A and 1B are representatives of three independent experiments.

https://doi.org/10.1371/journal.pone.0200297.g001
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Self-ligands presented by HLA I of THP1MФ and THP1MFi

2.3 x 109 THP1MFi cells were lysed, and affinity chromatography and LC-MS/MS was used to

isolate the HLA class I molecules and analyze the HLA-bound peptides. A total of 86 non-

redundant HLA class I self-ligands were identified from 82 source proteins of THP1MФi (S1

Table) compared to 347 non-redundant HLA-I self-ligands derived from 282 source proteins

identified for 2.8 x 109 THP1MF cells at the same time and reported earlier [26]. Only 17

HLA-I self-peptide sequences and 18 source proteins were found to be shared between

THP1MФ and THP1MФi.

HLA I-bound peptide lengths

The HLA I-bound peptides were nonapeptides (55%, 59%), decapeptides (12%, 13%), octapep-

tides (7%, 8%), undecapetides (7%, 3%) and duodecapeptides (3%, 5%) in THP1MФ and

THP1MФi, respectively (Fig 3A). Thus, in both THP1MФ and THP1MФi the HLA I-bound

peptides were dominated by nonapeptides, though the percentage in THP1MФi was slightly

higher by 4%. Nonapeptides are the optimum lengths of HLA I-bound peptides [25, 26, 35–

37]. The slight increase of nonapeptides in THP1MФi compared to THP1MФ could suggest a

shift in antigen processing towards the more optimum peptide lengths for MHC I binding.

With 82%, nonapeptides were also the most dominant among the peptides shared between

THP1MФ and THP1MФi.

HLA assignment and binding affinities

The HLA restriction of the peptides was assigned using the netMHCpan in the immune epi-

tope database and the canonical peptide-binding motifs in the SYFPEITHI database [32]. In

THP1MF the percentage of the peptides identified were in the order

HLA-A�02:01> HLA-B�15:11> HLA-C�03:03> unassigned with 35%, 33%, 19% and 13%

Fig 2. mRNA expression levels of constitutive proteasome subunits β1, β2 and β5 and the immunoproteasome

subunits βi1, βi2 and βi5 in THP1MФ and THP1MФi. A) Agarose gel electrophoresis of RT-PCR of the proteasome

subunits β1 (399bp), β2 (558bp) and β5 (275bp) and the immunoproteasome subunits βi1 (313bp), βi2 (571bp) and βi5

(648bp) in THP1MФ and THP1MФi, HeLa (positive control for constitutive proteasome subunits) and HeLa clone 33/

2 (positive control for immunoproteasome subunits), and GADPH as internal control. B) Shows mean ± SD of three

independent experiments of semi-quantified mRNA expression of proteasome subunits normalized to GADPH

mRNA expression in the same reaction using GelAnalyser 2010. �p< 0.05 comparing THP1MF vs THP1MФi.

https://doi.org/10.1371/journal.pone.0200297.g002
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while in THP1MФi were in the order

HLA-B�15:11 > HLA-C�03:03> HLA-A�02:01> unassigned with 52%, 20%, 17% and 10%,

respectively (Fig 3B). Thus, post infection the percentages of HLA-A�02:01-bound peptides

decreased by 18% while those of HLA-B�15:11 increased by 19%; those of HLA-C�03:03 were

unaffected. For the HLA-I peptides shared between THP1MF and THP1MФi the percentages

were in the order HLA-B�15:11> HLA-A�02:01> HLA-C�03:03 with 71%, 18% and 12%,

respectively. Binding affinity IC50 threshold of 500nM has been correlated to immunogenicity

[38]. We applied this threshold using the netMHCpan to determine the percentage HLA I pep-

tides (8-14mers) that could stimulate CD8 T cells. The percentages of peptides within this

threshold were HLA-A�02:01 (52%, 53%), HLA-B�15:11 (26%, 27%) and HLA-C�03:03 (29%,

47%) in THP1MF and THP1MFi, respectively (Fig 3C). The percentage of HLA-B�15:11 and

HLA-A�02:01 peptides that had immune relevance in THP1MF and THP1MFi was approxi-

mately the same, despite 19% increase in HLA-B�15:11- and 18% decrease in HLA-A�02:01-

bound peptides identified in the infected cells. For HLA-C�03:03, the percentage of peptides

that had immune relevance was higher in THP1MFi (47%) compared to THP1MF (29%),

though the total percentage of HLA-C�03:03 peptides identified in THP1MFi and THP1MF

was about the same.

The binding motifs for HLA I in THP1MF and THP1MFi

To determine whether there was a difference in binding motifs of the nonapeptides in

THP1MF and THP1MFi, we used sequence logos [33, 34]. In these sequence logos, the height

of each column of amino acids is equal to the number of peptide sequences (in bits), and the

relative height of each amino acid within each column is proportional to the frequency of the

amino acid at that position. The most frequent primary anchor amino acids at position 2 of

infected and non-infected THP1MФ HLA-A�02:01-bound peptides were L, and with about

equal but lower representation I, Y and M; for the C-terminus these were L and V. For

HLA-B�15:11-bound peptides from infected and non-infected cells, P was most prominent at

position 2, and Y and F at the C-terminus followed by M in case of the infected cells. For

Fig 3. HLA class I self-peptide lengths, HLA restriction and binding affinities. A) HLA Class I peptide lengths in

THP1MF and THP1MFi. B) MHC restriction of HLA I-bound self-peptides from THP1MF and THP1MFi assigned

to HLA I alleles using the canonical binding motifs according to netMHCpan in the Immune Epitope Database (IEDB)

and SYFPEITHI. C) Cumulative percentage of THP1MF and THP1MFi HLA self-peptides within an IC50 threshold

of 500nM.

https://doi.org/10.1371/journal.pone.0200297.g003
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HLA-C�03:03, A and Y were dominant at position 2 of peptides derived from non-infected

cells whereas no prominence was found at this position for peptides from infected cells. At the

C-terminus of HLA-C�03:03-bound peptides, L was most frequent followed by F in non-

infected and M in infected THP1MФ (Fig 4).

Subcellular locations and biological functions of source proteins

The source proteins of the HLA I-bound peptides from THP1MF and THP1MFi were

assigned to the respective subcellular locations and biological functions using the human pro-

tein reference database [29]. The subcellular location of the source proteins from THP1MF

and THP1MFi were nucleus (34%, 21%), cytoplasm (23%, 16%), plasma membrane (9%,

21%), membrane (8%, 9%), endoplasmic reticulum (6%, 3%), mitochondrion (3%, 2%), extra-

cellular (1%, 8%), endosomes (1%, 1%), and Golgi apparatus (1%, 2%), respectively. For 5%

and 14% the subcellular locations were unknown (Fig 5A). In the infected cells, there was thus

Fig 4. Binding motifs for HLA I-bound self-peptides in THP1MF and THP1MFi. Sequence logos displaying the

amino acid preferences for HLA-A�02:01-, HLA-B�15:11- and HLA-C�03:03-bound nonapeptides from THP1MF and

THP1MFi.

https://doi.org/10.1371/journal.pone.0200297.g004

Fig 5. Subcellular locations, biological and molecular functions of the source proteins of the HLA ligands. The

subcellular locations, biological and molecular functions of the source proteins of the HLA class I-bound peptides

identified by mass spectrometry from THP1MF and THP1MFi were assigned using the Human Protein Reference

Database. A) The subcellular locations. B) The biological and molecular functions.

https://doi.org/10.1371/journal.pone.0200297.g005
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an increase of source proteins from plasma membrane and extracellular proteins by 12% and

7%, and a decrease in source proteins from nucleus and cytoplasm by 13% and 7%, respec-

tively. In addition, no peptides were identified from source proteins from ribosomes, cytoskel-

eton and centrosome. The source proteins shared between THP1MФ and THP1MФi were

23% of the total source proteins in THP1MФi and 6% of the total source in THP1MФ and

were from almost all subcellular locations in the cell.

The biological functions of the source proteins in THP1MF and THP1MFi were cell com-

munication/signal transduction (16%, 20%), protein metabolism (21%, 8%), transcription/

transcription regulation (10%, 9%), transport (7%, 8%), metabolism/energy pathways (5%,

8%), cell growth and/or maintenance (10%, 8%), RNA binding (7%, 2%), immune response

(3%, 9%), and DNA binding (3%, 3%), respectively. 7% and 16% of the source proteins had no

known biological functions (Fig 5B). Post infection the percentage of source proteins involved

in immune response, cell communication/signal transduction and metabolism/energy path-

ways increased by 6%, 4% and 3%, while those involved in protein metabolism, RNA binding,

cell growth and/or maintenance decreased by 13%, 5% and 2%, respectively. The source pro-

teins shared between THP1MФ and THP1MФi were mostly involved in cell communications/

signal transduction (25%) and protein metabolism (15%).

Discussion

The total number of HLA class I-restricted self-peptides and source proteins identified from

THP1MFi was four-fold lower compared to those identified in THP1MF, and were heteroge-

neous and individualized. Only a few peptides were found to be shared between the two

despite expressing the same HLA alleles.

The strong decrease in the number of HLA class I-restricted peptides from LD-infected

THP1MФ has been reproduced in independent experiments and thus not a technical issue,

but may rather be due to the following. Firstly, the overall MHC-I expression at the cell surface

of THP1MФi was lower compared to THP1MФ including, though not significantly, that of

HLA-A�02:01 (Fig 1B and 1C). Reduction of MHC I-restricted antigen presentation upon

infection with LD parasites through reduction of MHC I present at the cell surface has also

been observed in murine studies albeit no comparative peptidome studies had been done [14,

39]. Though our focus was on HLA I-restricted self-peptides, we also observed lower expres-

sion of HLA II by THP1MФi compared to THP1MФ. This observation concurred with murine

studies on MHC II, and showed that Leishmania inhibits antigen presentation by repressing

MHC II expression [14, 39, 40]. Secondly, the infection of THP1MФ by LD resulted in a slight

decrease in host cell viability (Fig 1A), which might be due to the fact that naturally Leish-
mania promastigotes, upon uptake by macrophages, transform to amastigotes and multiply to

eventually rupture the macrophages [2]. Thirdly, although CD83 expression, a marker of mac-

rophage activation, was unchanged in THP1MФi compared to THP1MФ indicating a lack of

activation, LD infection resulted in decreased expression of β1 and β2 constitutive proteasome

subunits, which could translate into decreased antigen processing efficiency. The impact of

proteasome on the quality and quantity of MHC class I ligands had been studied using wild

type and proteasome subunits deficient murine dendritic cells [41, 42]: expression of protea-

some subunits correlated with increased generation of peptides that are suitable for binding to

MHC I molecules.

The heterogeneity and individuality in the HLA I self-peptides and source proteins identi-

fied in THP1MФ and THP1MФi depicts differences in protein expression, processing and pre-

sentation, as was in other cells and tumor samples [25, 26, 35, 36]. The nonapeptides are the

optimum lengths for MHC class I binding [26] and though the infection of THP1MФ by LD
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PLOS ONE | https://doi.org/10.1371/journal.pone.0200297 July 12, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0200297


did not change the nonapeptides dominance in the identified HLA I-bound peptides, pro-

found differences in antigen processing and presentation were evident, firstly, in the HLA

restriction of identified peptides. For THP1MF the percentage of the peptides identified for

the different HLA-restrictions ranked in the order

HLA-A�02:01> HLA-B�15:11> HLA-C�03:03 while in THP1MФi they were in the order

HLA-B�15:11 > HLA-C�03:03> HLA-A�02:01. Though HLA-B�15:11 peptides were domi-

nant after infection with LD, only 26% of them were within the IC50 threshold of 500nM. In

general, after infection there was a shift of peptides towards lower affinity binders. A previous

systematic mapping and characterizing of peptide ligands derived from B�1508, B�1501,

B�1503, and B�1510 showed endogenous peptide loaded into B15 to be flexible both in the

location of and amino acids at the N-proximal anchors [43]. In addition to this, additional

preference of aliphatic amino acids was observed at the C-Terminus after infection, which

would, though unconfirmed in Prilliman et al. [43], result in lower binding affinity of the pep-

tides. The differences in antigen processing and presentation were evident in the peptide

anchor motifs. For the HLA-A�02:01-bound peptides there were no dominant accessory

anchor amino acids at position 6 in THP1MФi compared to the dominant hydrophobic

anchor in THP1MФ. For HLA-C�03:03 there was no anchor motifs at position 2 in THP1MФi

but a strong preference for A and Y in THP1MФ but a higher percentage of peptides within

the IC50 threshold of 500nM in THP1MФi compared to THP1MФ.

In both THP1MF and THP1MFi the peptide source proteins were derived from almost all

subcellular locations and were involved in almost all molecular functions of the cells. But dif-

ferences were observed. Firstly, in THP1MFi compared to THP1MF, there was an increase of

source proteins from plasma membrane and extracellular proteins and a decrease in source

proteins from nucleus and cytoplasm (Fig 5A), and no peptides were identified from ribo-

somes, cytoskeleton and centrosomes unlike in THP1MF. Secondly, in THP1MFi compared

to THP1MF, there was an increase of source proteins involved in immune responses, cell

communication/signal transduction and metabolism/energy pathways and a decrease in those

involved in protein metabolism, RNA binding, cell growth and/or maintenance (Fig 5B). The

differences in source protein peptide sampling in THP1MF and THP1MFi, would imply dif-

ferences in protein turnover, as protein turnover correlates with source protein presentation

[44, 45]. LD has been shown previously in proteomic studies to globally alter protein expres-

sion in THP1 cells [46].

In summary, the infection of macrophages with LD has profound effects on the self-peptide

repertoire presented by MHC I molecules, which in parts can be explained with changes in

antigen processing including the composition of the proteasomes, and altered protein expres-

sion and turn-over in different cellular compartments. In conclusion, the self-displayed by

infected macrophages is very different from the self of uninfected cells. This difference may

relate to T cell-mediated autoimmune reactions which may explain some of the immune

pathology observed in LD patients, as changes in self-peptidome have been shown previously

to impact T cell-mediated immune responses [47, 48]. Furthermore, though our focus was on

the self-antigens, also the processing of LD antigens may be affected but likely not in the same

manner as the self-antigens. LD antigens as exogenous antigensare processed via the MHC

class I cross-presentation pathway whereas the self-antigens as endogenous antigens are pro-

cessed via the classical MHC class I antigen processing and presentation pathway [49, 50]. To

check for alterations, a comparison of LD MHC I peptidomes from THP1 derived macro-

phages incubated with dead LD versus infected with live LD would be required. The results of

such studies would however be difficult to compare because dead parasite are expected to be

processed through the MHC class II antigen-processing pathway in endolysosomes and the

epitopes primarily be presented by MHC class II molecules. Lastly, LD and HIV infect the
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same host cells, macrophages, but differently, and persist in different subcellular compart-

ments and use different survival mechanisms that affect different key players in the MHC class

I antigen processing and presentation pathways [8, 14, 39, 51–54]. LD/HIV co-infection is

expected to result in mutual impact on processing and presentation of antigens of both agents.

Given the increased fatality of HIV/VL co-infection cases, determination of the effect of LD/

HIV co-infection on the self-peptidomes as well as HLA peptidomes of the pathogens, which

are yet to be determined, would be vital.

Supporting information

S1 Table. HLA I ligands and source proteins identified from THP1MФi.

(PDF)

Acknowledgments

We thank Prof. P. M. Kloetzel for the gift of HeLa cell line clone 33/2 (HeLa A2+/IP).

Author Contributions

Conceptualization: Lydon Wainaina Nyambura, Peter Walden.

Data curation: Lydon Wainaina Nyambura, Saulius Jarmalavicius, Peter Walden.

Formal analysis: Lydon Wainaina Nyambura, Peter Walden.

Funding acquisition: Lydon Wainaina Nyambura, Peter Walden.

Investigation: Lydon Wainaina Nyambura, Saulius Jarmalavicius, Peter Walden.

Methodology: Lydon Wainaina Nyambura, Saulius Jarmalavicius, Peter Walden.

Project administration: Lydon Wainaina Nyambura, Peter Walden.

Resources: Lydon Wainaina Nyambura, Peter Walden.

Supervision: Peter Walden.

Validation: Lydon Wainaina Nyambura.

Visualization: Lydon Wainaina Nyambura.

Writing – original draft: Lydon Wainaina Nyambura.

Writing – review & editing: Peter Walden.

References

1. Herwaldt BL. Leishmaniasis. Lancet. 1999; 354(9185):1191–9. https://doi.org/10.1016/S0140-6736(98)

10178-2 PMID: 10513726

2. Das A, Karthick M, Dwivedi S, Banerjee I, Mahapatra T, Srikantiah S, et al. Epidemiologic Correlates of

Mortality among Symptomatic Visceral Leishmaniasis Cases: Findings from Situation Assessment in

High Endemic Foci in India. PLoS Negl Trop Dis. 2016; 10(11):e0005150. https://doi.org/10.1371/

journal.pntd.0005150 PMID: 27870870

3. Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg. 2001;

95(3):239–43. PMID: 11490989

4. Monge-Maillo B, Norman FF, Cruz I, Alvar J, Lopez-Velez R. Visceral leishmaniasis and HIV coinfection

in the Mediterranean region. PLoS Negl Trop Dis. 2014; 8(8):e3021. https://doi.org/10.1371/journal.

pntd.0003021 PMID: 25144380

5. Diro E, Lynen L, Ritmeijer K, Boelaert M, Hailu A, van Griensven J. Visceral Leishmaniasis and HIV

coinfection in East Africa. PLoS Negl Trop Dis. 2014; 8(6):e2869. https://doi.org/10.1371/journal.pntd.

0002869 PMID: 24968313

HLA self-peptide repertoire of Leishmania-infected and non-infected human macrophages

PLOS ONE | https://doi.org/10.1371/journal.pone.0200297 July 12, 2018 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200297.s001
https://doi.org/10.1016/S0140-6736(98)10178-2
https://doi.org/10.1016/S0140-6736(98)10178-2
http://www.ncbi.nlm.nih.gov/pubmed/10513726
https://doi.org/10.1371/journal.pntd.0005150
https://doi.org/10.1371/journal.pntd.0005150
http://www.ncbi.nlm.nih.gov/pubmed/27870870
http://www.ncbi.nlm.nih.gov/pubmed/11490989
https://doi.org/10.1371/journal.pntd.0003021
https://doi.org/10.1371/journal.pntd.0003021
http://www.ncbi.nlm.nih.gov/pubmed/25144380
https://doi.org/10.1371/journal.pntd.0002869
https://doi.org/10.1371/journal.pntd.0002869
http://www.ncbi.nlm.nih.gov/pubmed/24968313
https://doi.org/10.1371/journal.pone.0200297


6. Singh S. Changing trends in the epidemiology, clinical presentation, and diagnosis of Leishmania-HIV

co-infection in India. Int J Infect Dis. 2014; 29:103–12. https://doi.org/10.1016/j.ijid.2014.07.011 PMID:

25449244

7. Lindoso JA, Cota GF, da Cruz AM, Goto H, Maia-Elkhoury AN, Romero GA, et al. Visceral leishmania-

sis and HIV coinfection in Latin America. PLoS Negl Trop Dis. 2014; 8(9):e3136. https://doi.org/10.

1371/journal.pntd.0003136 PMID: 25233461

8. Bogdan C, Rollinghoff M. How do protozoan parasites survive inside macrophages? Parasitol Today.

1999; 15(1):22–8. PMID: 10234174

9. Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape

the host immune response: a signaling point of view. Clin Microbiol Rev. 2005; 18(2):293–305. https://

doi.org/10.1128/CMR.18.2.293-305.2005 PMID: 15831826

10. Proudfoot L, O’Donnell CA, Liew FY. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide

synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol. 1995; 25(3):745–

50. https://doi.org/10.1002/eji.1830250318 PMID: 7705404

11. Forget G, Siminovitch KA, Brochu S, Rivest S, Radzioch D, Olivier M. Role of host phosphotyrosine

phosphatase SHP-1 in the development of murine leishmaniasis. Eur J Immunol. 2001; 31(11):3185–

96. https://doi.org/10.1002/1521-4141(200111)31:11&#60;3185::AID-IMMU3185&#62;3.0.CO;2-J

PMID: 11745335

12. Moore KJ, Matlashewski G. Intracellular infection by Leishmania donovani inhibits macrophage apopto-

sis. Journal of immunology (Baltimore, Md: 1950). 1994; 152(6):2930–7.

13. Carrera L, Gazzinelli RT, Badolato R, Hieny S, Muller W, Kuhn R, et al. Leishmania promastigotes

selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and

resistant mice. J Exp Med. 1996; 183(2):515–26. PMID: 8627163

14. Reiner NE. Parasite accessory cell interactions in murine leishmaniasis. I. Evasion and stimulus-depen-

dent suppression of the macrophage interleukin 1 response by Leishmania donovani. Journal of immu-

nology (Baltimore, Md: 1950). 1987; 138(6):1919–25.

15. Saric T, Beninga J, Graef CI, Akopian TN, Rock KL, Goldberg AL. Major histocompatibility complex

class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopepti-

dase. J Biol Chem. 2001; 276(39):36474–81. https://doi.org/10.1074/jbc.M105517200 PMID:

11479311

16. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characteri-

zation of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980; 26(2):171–6. PMID:

6970727

17. Schwende H, Fitzke E, Ambs P, Dieter P. Differences in the state of differentiation of THP-1 cells

induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol. 1996; 59(4):555–61. PMID:

8613704

18. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The identification of markers of macro-

phage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PloS one.

2010; 5(1):e8668. https://doi.org/10.1371/journal.pone.0008668 PMID: 20084270

19. Rose SJ, Bermudez LE. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by

triggering hyperstimulation and apoptosis during early infection. Infection and immunity. 2014; 82

(1):405–12. https://doi.org/10.1128/IAI.00820-13 PMID: 24191301

20. Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA. ATP-induced autophagy is asso-

ciated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC

Immunol. 2008; 9:35. https://doi.org/10.1186/1471-2172-9-35 PMID: 18627610

21. Forgber M, Basu R, Roychoudhury K, Theinert S, Roy S, Sundar S, et al. Mapping the antigenicity of

the parasites in Leishmania donovani infection by proteome serology. PloS one. 2006; 1:e40. https://

doi.org/10.1371/journal.pone.0000040 PMID: 17183669

22. Ebstein F, Textoris-Taube K, Keller C, Golnik R, Vigneron N, Van den Eynde BJ, et al. Proteasomes

generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes. Sci-

entific reports. 2016; 6:24032. https://doi.org/10.1038/srep24032 PMID: 27049119

23. Wu L, Martin TD, Carrington M, KewalRamani VN. Raji B cells, misidentified as THP-1 cells, stimulate

DC-SIGN-mediated HIV transmission. Virology. 2004; 318(1):17–23. https://doi.org/10.1016/j.virol.

2003.09.028 PMID: 14972530

24. Faria LO, Lima BD, de Sa CM. Trypanosoma cruzi: effect of the infection on the 20S proteasome in

non-immune cells. Exp Parasitol. 2008; 120(3):261–8. https://doi.org/10.1016/j.exppara.2008.08.003

PMID: 18789322

HLA self-peptide repertoire of Leishmania-infected and non-infected human macrophages

PLOS ONE | https://doi.org/10.1371/journal.pone.0200297 July 12, 2018 12 / 14

https://doi.org/10.1016/j.ijid.2014.07.011
http://www.ncbi.nlm.nih.gov/pubmed/25449244
https://doi.org/10.1371/journal.pntd.0003136
https://doi.org/10.1371/journal.pntd.0003136
http://www.ncbi.nlm.nih.gov/pubmed/25233461
http://www.ncbi.nlm.nih.gov/pubmed/10234174
https://doi.org/10.1128/CMR.18.2.293-305.2005
https://doi.org/10.1128/CMR.18.2.293-305.2005
http://www.ncbi.nlm.nih.gov/pubmed/15831826
https://doi.org/10.1002/eji.1830250318
http://www.ncbi.nlm.nih.gov/pubmed/7705404
https://doi.org/10.1002/1521-4141(200111)31:11&#60;3185::AID-IMMU3185&#62;3.0.CO;2-J
http://www.ncbi.nlm.nih.gov/pubmed/11745335
http://www.ncbi.nlm.nih.gov/pubmed/8627163
https://doi.org/10.1074/jbc.M105517200
http://www.ncbi.nlm.nih.gov/pubmed/11479311
http://www.ncbi.nlm.nih.gov/pubmed/6970727
http://www.ncbi.nlm.nih.gov/pubmed/8613704
https://doi.org/10.1371/journal.pone.0008668
http://www.ncbi.nlm.nih.gov/pubmed/20084270
https://doi.org/10.1128/IAI.00820-13
http://www.ncbi.nlm.nih.gov/pubmed/24191301
https://doi.org/10.1186/1471-2172-9-35
http://www.ncbi.nlm.nih.gov/pubmed/18627610
https://doi.org/10.1371/journal.pone.0000040
https://doi.org/10.1371/journal.pone.0000040
http://www.ncbi.nlm.nih.gov/pubmed/17183669
https://doi.org/10.1038/srep24032
http://www.ncbi.nlm.nih.gov/pubmed/27049119
https://doi.org/10.1016/j.virol.2003.09.028
https://doi.org/10.1016/j.virol.2003.09.028
http://www.ncbi.nlm.nih.gov/pubmed/14972530
https://doi.org/10.1016/j.exppara.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/18789322
https://doi.org/10.1371/journal.pone.0200297


25. Jarmalavicius S, Welte Y, Walden P. High immunogenicity of the human leukocyte antigen peptidomes

of melanoma tumor cells. J Biol Chem. 2012; 287(40):33401–11. https://doi.org/10.1074/jbc.M112.

358903 PMID: 22869377

26. Nyambura LW, Jarmalavicius S, Baleeiro RB, Walden P. Diverse HLA-I Peptide Repertoires of the APC

Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages. Journal

of immunology (Baltimore, Md: 1950). 2016; 197(6):2102–9.

27. Demine R, Walden P. Sequit: software for de novo peptide sequencing by matrix-assisted laser desorp-

tion/ionization post-source decay mass spectrometry. Rapid Commun Mass Spectrom. 2004; 18

(8):907–13. https://doi.org/10.1002/rcm.1420 PMID: 15095361

28. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(Database issue):D204–12. https://

doi.org/10.1093/nar/gku989 PMID: 25348405

29. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, et al. Human protein reference

database—2006 update. Nucleic Acids Res. 2006; 34(Database issue):D411–4. https://doi.org/10.

1093/nar/gkj141 PMID: 16381900

30. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al. Reliable prediction of

T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003; 12

(5):1007–17. https://doi.org/10.1110/ps.0239403 PMID: 12717023

31. Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC affini-

ties for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics. 2008; 24

(11):1397–8. https://doi.org/10.1093/bioinformatics/btn128 PMID: 18413329

32. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for

MHC ligands and peptide motifs. Immunogenetics. 1999; 50(3–4):213–9. PMID: 10602881

33. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res.

2004; 14(6):1188–90. https://doi.org/10.1101/gr.849004 PMID: 15173120

34. Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic

Acids Res. 1990; 18(20):6097–100. PMID: 2172928

35. Pritchard AL, Hastie ML, Neller M, Gorman JJ, Schmidt CW, Hayward NK. Exploration of peptides

bound to MHC class I molecules in melanoma. Pigment Cell Melanoma Res. 2015; 28(3):281–94.

https://doi.org/10.1111/pcmr.12357 PMID: 25645385

36. Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, et al. Naturally presented

peptides on major histocompatibility complex I and II molecules eluted from central nervous system of

multiple sclerosis patients. Mol Cell Proteomics. 2009; 8(9):2090–101. https://doi.org/10.1074/mcp.

M900001-MCP200 PMID: 19531498

37. Schellens IM, Hoof I, Meiring HD, Spijkers SN, Poelen MC, van Gaans-van den Brink JA, et al. Compre-

hensive Analysis of the Naturally Processed Peptide Repertoire: Differences between HLA-A and B in

the Immunopeptidome. PloS one. 2015; 10(9):e0136417. https://doi.org/10.1371/journal.pone.0136417

PMID: 26375851

38. Adamopoulou E, Tenzer S, Hillen N, Klug P, Rota IA, Tietz S, et al. Exploring the MHC-peptide matrix of

central tolerance in the human thymus. Nature communications. 2013; 4:2039. https://doi.org/10.1038/

ncomms3039 PMID: 23783831

39. De Almeida MC, Cardoso SA, Barral-Netto M. Leishmania (Leishmania) chagasi infection alters the

expression of cell adhesion and costimulatory molecules on human monocyte and macrophage. Inter-

national journal for parasitology. 2003; 33(2):153–62. PMID: 12633653

40. Reiner NE, Ng W, Ma T, McMaster WR. Kinetics of gamma interferon binding and induction of major

histocompatibility complex class II mRNA in Leishmania-infected macrophages. Proceedings of the

National Academy of Sciences of the United States of America. 1988; 85(12):4330–4. PMID: 2967971

41. de Verteuil D, Muratore-Schroeder TL, Granados DP, Fortier MH, Hardy MP, Bramoulle A, et al. Dele-

tion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides

presented by major histocompatibility complex I molecules. Mol Cell Proteomics. 2010; 9(9):2034–47.

https://doi.org/10.1074/mcp.M900566-MCP200 PMID: 20484733

42. Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E, Delgado JC, et al. Mice completely lacking

immunoproteasomes show major changes in antigen presentation. Nat Immunol. 2011; 13(2):129–35.

https://doi.org/10.1038/ni.2203 PMID: 22197977

43. Prilliman KR, Jackson KW, Lindsey M, Wang J, Crawford D, Hildebrand WH. HLA-B15 peptide ligands

are preferentially anchored at their C termini. Journal of immunology (Baltimore, Md: 1950). 1999; 162

(12):7277–84.

44. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leuko-

cyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen

HLA self-peptide repertoire of Leishmania-infected and non-infected human macrophages

PLOS ONE | https://doi.org/10.1371/journal.pone.0200297 July 12, 2018 13 / 14

https://doi.org/10.1074/jbc.M112.358903
https://doi.org/10.1074/jbc.M112.358903
http://www.ncbi.nlm.nih.gov/pubmed/22869377
https://doi.org/10.1002/rcm.1420
http://www.ncbi.nlm.nih.gov/pubmed/15095361
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pubmed/25348405
https://doi.org/10.1093/nar/gkj141
https://doi.org/10.1093/nar/gkj141
http://www.ncbi.nlm.nih.gov/pubmed/16381900
https://doi.org/10.1110/ps.0239403
http://www.ncbi.nlm.nih.gov/pubmed/12717023
https://doi.org/10.1093/bioinformatics/btn128
http://www.ncbi.nlm.nih.gov/pubmed/18413329
http://www.ncbi.nlm.nih.gov/pubmed/10602881
https://doi.org/10.1101/gr.849004
http://www.ncbi.nlm.nih.gov/pubmed/15173120
http://www.ncbi.nlm.nih.gov/pubmed/2172928
https://doi.org/10.1111/pcmr.12357
http://www.ncbi.nlm.nih.gov/pubmed/25645385
https://doi.org/10.1074/mcp.M900001-MCP200
https://doi.org/10.1074/mcp.M900001-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/19531498
https://doi.org/10.1371/journal.pone.0136417
http://www.ncbi.nlm.nih.gov/pubmed/26375851
https://doi.org/10.1038/ncomms3039
https://doi.org/10.1038/ncomms3039
http://www.ncbi.nlm.nih.gov/pubmed/23783831
http://www.ncbi.nlm.nih.gov/pubmed/12633653
http://www.ncbi.nlm.nih.gov/pubmed/2967971
https://doi.org/10.1074/mcp.M900566-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/20484733
https://doi.org/10.1038/ni.2203
http://www.ncbi.nlm.nih.gov/pubmed/22197977
https://doi.org/10.1371/journal.pone.0200297


presentation. Mol Cell Proteomics. 2015; 14(3):658–73. https://doi.org/10.1074/mcp.M114.042812

PMID: 25576301

45. Rock KL, Farfan-Arribas DJ, Colbert JD, Goldberg AL. Re-examining class-I presentation and the DRiP

hypothesis. Trends Immunol. 2014; 35(4):144–52. https://doi.org/10.1016/j.it.2014.01.002 PMID:

24566257

46. Singh AK, Pandey RK, Siqueira-Neto JL, Kwon YJ, Freitas-Junior LH, Shaha C, et al. Proteomic-based

approach to gain insight into reprogramming of THP-1 cells exposed to Leishmania donovani over an

early temporal window. Infection and immunity. 2015; 83(5):1853–68. https://doi.org/10.1128/IAI.

02833-14 PMID: 25690103

47. Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple

Sclerosis and Other Autoimmune Diseases. Frontiers in immunology. 2015; 6:322. https://doi.org/10.

3389/fimmu.2015.00322 PMID: 26136751

48. Deng L, Mariuzza RA. Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors.

Trends in biochemical sciences. 2007; 32(11):500–8. https://doi.org/10.1016/j.tibs.2007.08.007 PMID:

17950605

49. Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen pre-

sentation. Current opinion in immunology. 2004; 16(1):76–81. PMID: 14734113

50. Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J, et al. The proteolytic fragments

generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class

I binding peptides. Proceedings of the National Academy of Sciences of the United States of America.

1996; 93(16):8572–7. PMID: 8710912

51. Liew FY, Millott S, Parkinson C, Palmer RM, Moncada S. Macrophage killing of Leishmania parasite in

vivo is mediated by nitric oxide from L-arginine. Journal of immunology (Baltimore, Md: 1950). 1990;

144(12):4794–7.

52. Muleme HM, Reguera RM, Berard A, Azinwi R, Jia P, Okwor IB, et al. Infection with arginase-deficient

Leishmania major reveals a parasite number-dependent and cytokine-independent regulation of host

cellular arginase activity and disease pathogenesis. Journal of immunology (Baltimore, Md: 1950).

2009; 183(12):8068–76.

53. Lodge R, Diallo TO, Descoteaux A. Leishmania donovani lipophosphoglycan blocks NADPH oxidase

assembly at the phagosome membrane. Cellular microbiology. 2006; 8(12):1922–31. https://doi.org/10.

1111/j.1462-5822.2006.00758.x PMID: 16848789

54. Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Molecular immunology.

2018.

HLA self-peptide repertoire of Leishmania-infected and non-infected human macrophages

PLOS ONE | https://doi.org/10.1371/journal.pone.0200297 July 12, 2018 14 / 14

https://doi.org/10.1074/mcp.M114.042812
http://www.ncbi.nlm.nih.gov/pubmed/25576301
https://doi.org/10.1016/j.it.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24566257
https://doi.org/10.1128/IAI.02833-14
https://doi.org/10.1128/IAI.02833-14
http://www.ncbi.nlm.nih.gov/pubmed/25690103
https://doi.org/10.3389/fimmu.2015.00322
https://doi.org/10.3389/fimmu.2015.00322
http://www.ncbi.nlm.nih.gov/pubmed/26136751
https://doi.org/10.1016/j.tibs.2007.08.007
http://www.ncbi.nlm.nih.gov/pubmed/17950605
http://www.ncbi.nlm.nih.gov/pubmed/14734113
http://www.ncbi.nlm.nih.gov/pubmed/8710912
https://doi.org/10.1111/j.1462-5822.2006.00758.x
https://doi.org/10.1111/j.1462-5822.2006.00758.x
http://www.ncbi.nlm.nih.gov/pubmed/16848789
https://doi.org/10.1371/journal.pone.0200297

