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Abstract

Most crop simulation models require the use of Genotype Specific Parameters (GSPs) which

provide the Genotype component of G×E×M interactions. Estimation of GSPs is the most diffi-

cult aspect of most modelling exercises because it requires expensive and time-consuming

field experiments. GSPs could also be estimated using multi-year and multi locational data from

breeder evaluation experiments. This research was set up with the following objectives: i) to

determine GSPs of 10 newly released maize varieties for the Nigerian Savannas using data

from both calibration experiments and by using existing data from breeder varietal evaluation tri-

als; ii) to compare the accuracy of the GSPs generated using experimental and breeder data;

and iii) to evaluate CERES-Maize model to simulate grain and tissue nitrogen contents. For

experimental evaluation, 8 different experiments were conducted during the rainy and dry sea-

sons of 2016 across the Nigerian Savanna. Breeder evaluation data were also collected for 2

years and 7 locations. The calibrated GSPs were evaluated using data from a 4-year experi-

ment conducted under varying nitrogen rates (0, 60 and 120kg N ha-1). For the model calibra-

tion using experimental data, calculated model efficiency (EF) values ranged between 0.88–

0.94 and coefficient of determination (d-index) between 0.93–0.98. Calibration of time-series

data produced nRMSE below 7% while all prediction deviations were below 10% of the mean.

For breeder experiments, EF (0.58–0.88) and d-index (0.56–0.86) ranges were lower. Predic-

tion deviations were below 17% of the means for all measured variables. Model evaluation

using both experimental and breeder trials resulted in good agreement (low RMSE, high EF

and d-index values) between observed and simulated grain yields, and tissue and grain nitro-

gen contents. It is concluded that higher calibration accuracy of CERES-Maize model is

achieved from detailed experiments. If unavailable, data from breeder experimental trials col-

lected from many locations and planting dates can be used with lower but acceptable accuracy.
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1.0 Introduction

Maize has become an important crop in Nigeria in the past decades due to its importance as

food for human consumption; feed for animals and as a source of industrial raw material [1].

Despite its importance, yield of maize has remained quite low in the Savannas mostly due to

biotic and abiotic constraints [2]. In recent years, new early and extra early maturing maize

varieties that are tolerant to most of the biotic and abiotic constraints have been developed for

the Nigerian Savannas by the International Institute for Tropical Agriculture (IITA) and its

partners. Several agronomic technologies have also been developed to increase the productivity

of these varieties with a view to enhancing maize productivity. Before the varieties are released,

they are usually grown under multi-locational yield and crop management evaluation trials

over several years. Dissemination of such varieties and technologies will require setting up of

costly and time-consuming experiments across wide areas. This is needed to adequately evalu-

ate the Genotype × Environment interaction which demonstrates the performance of each

variety across diverse environments. Unless this is done, breeders cannot conclusively recom-

mend genotypes for specific environments.

Crop simulation modeling offers an opportunity to explore the potential of new varieties

and crop management practices in different environments (soil, climate, management) prior

to their release [3]. Recently, use of crop simulation models, particularly DSSAT, is on the

increase in Africa through initiatives such as the Agricultural Models Inter-Comparison Proj-

ect (AgMIP) [4]. In West Africa, the CERES-Maize model has been recently used by McCarthy

et al. [3] to evaluate climate-sensitive farm management practices in the Northern Regions of

Ghana. Adnan et al. [5,6] used the same model to determine the nitrogen fertilization require-

ments of early maturing maize in the Sudan Savanna of Nigeria and the optimum planting

dates of maize in Northern Nigeria. Iyanda et al. [7] used the CERES-Maize model to identify

potential zones for maize production in Nigeria. One of the major requirements for the use of

crop simulations is calibration of Genotype Specific Parameters (GSPs). GSPs are sets of

parameters that enable crop models to simulate the performance of diverse genotypes under

varying soil, weather and management conditions [8]. Like all other parameters in crop simu-

lation models, the GSPs must have a physical or biological meaning [9]. Measuring GSPs

directly from real systems (farm and field level) is very complex and impractical, and results in

highly inaccurate and uncertain values of estimated variables [10,11]. Direct measurement

requires setting up of field or growth chamber studies, collection of many samples, and expo-

sure to different photoperiods where necessary. The most common method for deriving GSPs

is from field experiments designed specifically for their estimation [12,13]. This process is

quite expensive, time consuming and requires regular sampling of growth, phenology and

yield data for each variety following a set of minimum dataset rules [8]. Since the movement of

models from research and policy to adoption by farmers and extension, the need for rapid esti-

mation of GSPs for newly released varieties has become more urgent [14]. Several concerns

have been raised even in locations where abundant and high-quality data for calibration of

GSPs for model uses are available. In a recent publication, Seidel et al. [15] presented various

methods for improving the current methods of calibrating crop models.

Since most models have been developed elsewhere in Europe and USA, their use outside

their domain of development requires a great deal of data for their calibration and validation.

Several approaches for estimating GSPs have been documented. The genetic coefficient calcu-

lator (GENCALC) was used by Anothai et al. [16] to determine variety coefficients for new

peanut lines in Thailand from standard varietal trials. From their experiments, they were able

to successfully calibrate groundnut GSPs using a set of field experiments and yield evaluation

experiments using the GENCALC software. Mavromatis et al. [17] successfully generated
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GSPs of soybean from crop performance trials in Georgia, USA. Bannayan et al. [18] employed

a pattern recognition technique, which is based on similarity measures, to estimate GSPs for

maize. In their experiments, pattern recognition was used as an alternative to GENCALC and

GLUE in estimation of maize GSPs. The generalized likelihood uncertainty estimation

(GLUE) method was used by He et al. [19] to successfully estimate maize GSPs in North Caro-

lina. Welch et al. [14] used data from private-sector variety performance trials to develop soy-

bean GSPs in the soybean belt of the United States of America. Buddhaboon et al. [20] used

GENCALC and GLUE to estimate GSPs of deep water rice using CERES-Rice model. Most

recently Lamsal et al. [21] used the independent component analysis (ICA) and separate factor

approaches to estimate soybean GSPs from large breeding trial datasets in the USA.

With a growing number of researchers using the DSSAT model in the Savannas of Africa,

there is need to evaluate the GSP calibration step as it is the aspect that requires the greatest

amount of data and expertise. Calibration of GSPs can also be done using secondary data from

breeders who routinely conduct multi-location trials. Such datasets are available in Africa

where strong breeding programs are present. Because the conventional method of calibrating

GSPs is quite expensive and laborious, there is need to utilize secondary breeder trial data for

calibrating maize GSPs and to evaluate the accuracy of this approach by comparing it with cali-

brations done using detailed calibration experiments. The present research compares data gen-

erated from conventional experiments and from breeder evaluation trials. This is done to

justify the claim that available data from breeder evaluation experiments can potentially be

used for generating maize GSPs when setting up conventional experiments is unfeasible.

The objectives of this research were: i) to determine GSPs of 10 newly released open polli-

nated (OPV) and hybrid maize varieties for the Nigerian Savannas using data from both field

experiments specifically designed for this purpose (herein called calibration experiments) and

by using data from breeder varietal evaluation trials (herein called breeder evaluation experi-

ments); ii) to compare the accuracy of the GSPs generated using calibration and breeder data;

and iii) to evaluate the ability of the GSPs calibrated using the 2 methods to simulate grain

yield and tissue/grain nitrogen contents of maize.

2.0 Materials and methods

2.1 Model description

The maize model used in this study is the CSM CERES-Maize model of DSSAT version 4.6.

Detailed description of the CERES–maize model of DSSAT can be found in Jones et al [22].

CERES-maize is variety and site specific and operates on a daily time step. It dynamically sim-

ulates the development of roots and shoots, the growth and senescence of leaves and stems,

biomass accumulation, and the growth of maize grain yield as a function of soil and weather

conditions, crop management practices, and variety characteristics. The model uses a stan-

dardized system for model inputs and outputs that have been described elsewhere [23,24]. The

input system enables the user to select crop genotype (variety), weather, soil, and management

data appropriate to experiment being simulated. Required crop genetic inputs for CERES

Maize are given in Table 1.

2.2 Field experiments

Three sets of data were used in this study: calibration experiments, breeder evaluation experi-

ments and model validation experiments.

The calibration experiments were conducted during the rainy and dry season of 2016 in

four locations in northern Nigeria. The experiments were conducted at the Teaching and

Research Farm of the Faculty of Agriculture, Bayero University, Kano (N11.516 E8.516 466m
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asl), at the Teaching and Research Farm of Audu Bako College of Agriculture Dambatta

(N12.333 E8.517 442m asl), at the Irrigation Research Farm of Institute for Agricultural

Research (IAR) Samaru, Zaria (N11.187 E7.147 702m asl) and at the Agricultural Research Sta-

tion of the Kaduna Agricultural Development Project (KADP) in Saminaka, Lere (N10.52

E8.472 786 asl). Eight experiments were used for the calibration spanning over four locations,

two seasons and eight planting dates (Table 2). The calibration experiment consisted of 20

varieties, but we focused on 10 varieties that were common to both the on-station calibration

experiments and breeder varietal evaluation experiments (Table 3). The calibration experi-

ments were conducted near irrigation facilities so as to maintain optimum moisture by irri-

gating when the soil moisture is below field capacity. Moisture conditions were monitored

using a Time Domain Reflectometry (TDR) Meter 6050X1 TRASE SYSTEM (Soilmoisture

Equipment Corp.). Recommended levels of mineral fertilizers for the region were applied

(120N:60P:60K kg ha-1); potassium (K) was applied in form of Muriate of Potash, phosphorus

in the form of Single Super Phosphate, and Nitrogen was applied in the form of Urea. While

all the P and K fertilizers were applied at sowing; only half of the N fertilizer was applied at the

time of sowing and the other half applied 21 days later. In addition, poultry manure (approxi-

mately NPK 1.1:0.8:0.5) was added to the fields at the rate of 5 tons ha-1 to maintain optimum

nutrient status. The calibration experiments were laid down in a Randomized Complete Block

Design (RCBD) with four replications. The gross plot consisted of six ridges, 0.75 m apart and

3 m long (plot area = 13.5 m2). The two innermost ridges were used as the net plot for yield

assessment and for sampling purposes. A space of 0.5 m was used between plots and 1m

between replications. The experimental fields were cleared, harrowed, ridged and thereafter

sprayed with a pre-emergence herbicide, Primextra (Atrazine + Metolachlor) at the rate of

4lha-1 before planting. The maize was sown at intra-row spacing of 0.25m at two seeds per

hole, and later thinned to one plant giving a population of 53, 333 plants ha-1.

For the breeder evaluations, experimental units are one-row plots, each 4 m long with

inter-row spacing of 0.75 m and intra-row spacing of 0.40 m. Three seeds planted and later

thinned to two per hill at 2 weeks after emergence to give a final plant population density of

about 66,666 plants ha-1. Fertilizer is usually applied at the rate of 60 kg ha-1 of NPK 15:15:15

at 2 WAP. An additional 60 kg ha-1 N using urea is top dressed at 5 WAP. The trials are kept

weed free by applying atrazine (1 -chloro-3-ethylamino-5- isopropylamino-2,4,6-triazine) and

gramoxone (1,1-dimethyl-4,4-bipyridinium dichloride) as pre- and post-emergence herbicides

at 5 L in 220 L of water ha-1 and subsequently by hoeing. Grain yield is calculated based on

80% (800 g grain kg-1 ear weight) shelling percentage and adjusted to 150 g kg-1 moisture

content.

For calibration using data from breeder evaluation trials, we collected long-term yield eval-

uation data from breeders at the International Institute for Tropical Agriculture (IITA), Iba-

dan and the Institute for Agricultural Research (IAR), Zaria. Data for the 10 maize varieties

used in this study were selected. The bulk data was subjected to various quality checks. We

Table 1. Definition of DSSAT maize genotype specific parameters.

Coefficient Description

P1 (oC day) Thermal time from seedling emergence to the end of juvenile phase

P2 (days) Delay in development for each hour that day-length is above 12.5 hours

P5 (oC day) Thermal time from silking to time of physiological maturity

G2 (#) Maximum kernel number per plant

G3 (mg day-1) Kernel growth rate during linear grain filling stage under optimum conditions

PHINT (oC day tip-1) Thermal time between successive leaf tip appearance

https://doi.org/10.1371/journal.pone.0200118.t001
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used data for the 2012 and 2013 seasons from seven locations where weather and soil data

were available. Table 2 shows the locations and data used in the calibration with breeder data.

For model validation, field experiments were conducted at the Research Farm (11o59’N,

8o25’E 466m above sea level) of the Faculty of Agriculture, Bayero University, Kano in the

rainy seasons between 2013 to 2016 (four seasons). The treatments consisted of three rates of

nitrogen (0, 60 and 120 kg N ha-1) and ten maize varieties used in the calibration experiments

(Table 2). Treatments were laid out in a split-plot design with three replications. Nitrogen

rates were assigned to the main plots while the varieties were assigned to the sub-plot.

Although the experiments were conducted in the rainy season, moisture contents were moni-

tored, and supplementary irrigation was provided to ensure no moisture stress. All conven-

tional agronomic cultural practices were followed. The data collected for model evaluation

includes grain yield (kg ha-1), total grain nitrogen (kg ha-1), total tissue nitrogen (kg ha-1) and

nitrogen harvest index (percentage). Total grain and tissue nitrogen were determined using

the Micro Kjeldahl method.

Table 2. Description of sites for field experiments and breeder evaluation data.

Site and Environment Code Sowing Date Ecology� Dominant Soil Type Cumulative Rainfall + Irrigation (mm)

On-station Experiments for calibration

Bayero Uni. Farm Dry Season BUK DS 16-03-2016 SS Typic Kandiustalf 843

Bayero Uni. Farm Dry Season BUK RS 25-07-2016 SS Typic Kandiustalf 705

Dambatta Dry Season DBT DS 19-03-2016 SS Typic Kanhaplustalf 976

Dambatta Rainy Season DBT RS 26-07-2016 SS Typic Kanhaplustalf 690

Samaru Dry Season SMR DS 22-03-2016 NGS Plinthic Haplustult 840

Samaru Rainy Season SMR RS 29-07-2016 NGS Plinthic Haplustult 850

Lere Dry Season LER DS 17-03-2016 NGS Plinthic Kandihumult 964

Lere Rainy Season LER RS 31-07-2016 NGS Plinthic Kandihumult 1054

Breeder Varietal Evaluation experiments

Zaria 2012 ZRA 12 12-06-2012 NGS Typic Kandiustalf 1123

Zaria 2013 ZRA 13 10-06-2013 NGS Typic Kandiustalf 1222

Mokwa 2012 MKW 12 08-06-2012 SGS Oxic Haplustult 1346

Mokwa 2013 MKW 13 28-05-2013 SGS Oxic Haplustult 1402

Bagauda 2012 BGD 12 13-06-2012 SS Typic Kandiustalf 882

Bagauda 2013 BGD 13 21-06-2013 SS Typic Kandiustalf 941

Batsari 2012 BTR 12 22-06-2012 SS Ustoxic Dystropept 806

Batsari 2013 BTR 13 21-06-2013 SS Ustoxic Dystropept 854

Samaru 2012 SMR 12 11-06-2012 NGS Typic Plinthiustalfs 1118

Samaru 2013 SMR 13 14-06-2013 NGS Typic Plinthiustalfs 1241

Minjibir 2012 MJB 12 21-06-2012 SS Typic Kandiustalfs 791

Minjibir 2013 MJB 13 18-06-2013 SS Typic Kandiustalfs 824

Kadawa 2012 KDW 12 23-06-2012 SS Typic Plinthiustalfs 891

Kadawa 2013 KDW 13 19-06-2013 SS Typic Plinthiustalfs 913

Experiments for Model Evaluation

BUK 2013 BUK 13 10-06-2013 SS Typic Kandiustalfs 892

BUK 2014 BUK 14 21-06-2014 SS Typic Kandiustalfs 967

BUK 2015 BUK 15 29-05-2015 SS Typic Kandiustalfs 1021

BUK 2016 BUK 16 09-06-2016 SS Typic Kandiustalfs 972

� SS = Sudan Savanna, NGS = Northern Guinea Savanna, SGS = Southern Guinea Savanna

https://doi.org/10.1371/journal.pone.0200118.t002
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2.3 Plant measurements

Evaluation of crop development was done by observing the phenology of the different maize

varieties and recording the length of time (days) it takes to attain each phenological phase. The

measurements were then converted to growing degree days (GDD) using a base temperature

of 8˚C and adopting the relationship:

GDD ¼
Pn

i¼1

Tmaxiþ Tmini
2

� �

� Tbase ð1Þ

Ten plants were tagged from the center of each plot in each replication for phenological

observations. The end of the juvenile stage (i.e. panicle initiation) was determined through

destructive sampling and dissection of three plants, followed by observation of apical meristem

to check for floral bud development at 2 d intervals starting from 14d after emergence. The

end of juvenile stage was recorded when the male flower primordial were visible in 50% of

plants examined. Days to 50% tasseling was recorded when tassels were observed on 50% of

the tagged plants. Physiological maturity observations were conducted as follows: kernels were

removed from the base, middle and distal end of each sampled ear daily, starting when husks

begin to show signs of drying. Days to physiological maturity was recorded when 50% of the

kernels in each tagged ear had formed a black layer, indicating physiological maturity.

Plant biomass was taken at four different stages: vegetative, anthesis, grain filling and physi-

ological maturity. Five plants within a one-meter strip in a row were cut at the ground level as

suggested by Ogoshi et al.[11]. Leaves were separated from the stem, chopped and dried in the

shade for three days. Both stems and leaves were oven dried at 70˚C for 36–48 hours until the

sample had attained constant weight. Yield and yield component measurements were taken at

harvest maturity. Plant height was measured from five randomly tagged plants within the net

plot using a standard field meter rule. Other variables measured included: the number of seeds

per unit area (seed # m-2), dry seed weight (g m-2), dry cob weight (g m-2), dry husks weight (g

m-2), grain yield (kg ha-1) and stover weight at harvest (kg ha-1). All yield and yield component

measurements were done using procedures and formulae described by Ogoshi et al. [11]. Total

grain and tissue nitrogen (measured for the evaluation experiments only) were determined

using the Micro–Kjeldahl method.

Table 3. Characteristics of maize varieties used in the study.

S/N Name Common Name Type Maturity Tolerance

1 2011TZEWDTSTRSYN Early White OPV¶ Early Drought/Striga

2 2013TZEEWPOPDTSTR E.E White OPV Extra Early Drought/Striga

3 EVDT-W-99STR Sammaz 32 OPV Early Drought

4 EVDT-Y-2000-STR Sammaz 34 OPV Early Drought/Striga

5 OBA SUPER 9 Oba 9 Hybrid Late -

6 M0926-8 Seedco White Hybrid Late MSV�

7 TZE124 x TZE125 Sammaz 41 Hybrid Early MSV

8 TZEEI29 x TZEEI21 Ife hybrid 5 Hybrid Extra Early Drought

9 TZEE-WPOPSTRC5 x TZEEEI6 Ife hybrid 6 Hybrid Extra Early Drought/Striga

10 TZEYPOPDTSTRC4 x TZEEI13 Sammaz 42 Hybrid Extra Early Drought/Striga

¶ Open pollinated variety

� Maize Streak Virus

https://doi.org/10.1371/journal.pone.0200118.t003
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2.4 Soil and weather data

Detailed soil studies were conducted for each experimental location before planting. Soil pits

were dug in each location, and soil samples were taken from each layer. The collected samples

were then analyzed for pH, texture, moisture, bulk density, exchangeable potassium (K),

organic matter, phosphorus (P), total nitrogen and CEC. For the detailed calibration and vali-

dation experiments, daily weather data were collected from weather stations (Watchdog 2000

Series, Spectrum Technologies) adjacent to all experimental sites. All weather stations were

less than 5 km away from the experimental sites.

2.5 Initialization of soil and weather parameters

Daily records of minimum and maximum temperature, total solar radiation, and total rainfall

are required for the CERES-Maize model weather initialization. The Weatherman utility in

DSSAT was used to input the weather data to create the weather file used by the CERES- Maize

model. The Weatherman utility also requires information on name of weather station, latitude,

longitude and altitude. Soil data tool (SBuild) was used to create the soil database which was

used for the general simulation purposes. Name of the country, name of experimental site, site

code, site coordinates, soil series and classification were among the data entered in this utility.

Initial soil water was set to field capacity for all locations for the calibration experiments, while

for the breeder evaluation this condition was not set, leaving the inputted moisture properties

of the soils in each location. Measured soil characteristics taken from each profile were used

to calculate the soil physical and chemical parameters that are needed to run the model. For

calibration experiments, we assumed that N was not limiting while for the breeder evaluation

nitrogen was simulated although N stress was not recorded in any of the locations. For the eval-

uation experiments however, Nitrogen was simulated, and application was done according to

treatments. For other simulation options, initial conditions were as reported for each year and

location, the Priestly-Taylor/Ritchie method was selected for simulation of evapotranspiration

while the Soil Conservation Service (SCS) method was selected for simulation of infiltration.

Photosynthesis was simulated using the radiation use efficiency method, while hydrology and

soil evaporation were simulated using the Ritchie Water Balance and Suleiman-Ritchie methods

respectively. Phosphorus and Potassium were not simulated in all trials and locations.

2.6 Estimating genotype specific parameters

The GENCALC program of the DSSAT (Version 4.6) was used to calibrate the GSPs of the

maize varieties. GENCALC is a software package that facilitates the calculation of variety coef-

ficients for use in existing crop models including the CSM-CERES-Maize Model [25]. The

CSM–CERES–Maize model has GSPs that define growth and development characteristics or

traits of a maize variety (Table 1). Three parameters (P1, P2 and P5) define the life cycle devel-

opment characteristics, two coefficients (G2 and G3) define growth and yield characteristics

and one coefficient, PHINT, defines leaf tip appearances [10]. All the candidate genetic coeffi-

cients were selected and calculated using GENCALC except P2 because all the varieties used

were day-neutral. Conventionally day-neutral varieties should have constant P2 value, ideally

the value should be zero which means that the variety does not generate delays when photope-

riods exceed 12.5 hours. In our calibration procedure, a small positive number (0.01) was used

as P2 for all varieties so that computer arithmetic problems like division by zero are prevented.

The varieties used in the trials were representative of all the maturity groups, i.e. extra early

to late maturity. The default values in DSSAT were therefore used as initial coefficients for the

extra-early, early and late maturity classes. Variety coefficient values for each variety are then

varied, relative to each simulated and observed measurement. The model algorithm then
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searches the output file and uses the difference between simulated and observed variables to

decide whether to increase or decrease the value of the coefficient that is being estimated.

When GENCALC finds a good fit for each observation, it averages the coefficients and calcu-

lates the root mean square error (RMSE) [26]. According to each genetic parameter, the pro-

cess is repeated until the best fit is selected. An interactive procedure is used by GENCALC

where the user changes the variety coefficient step to minimize the errors and speed-up the

convergence of the algorithm. The search finishes when the user accepts the parameters pro-

viding the lowest RMSE for a single target trait.

For calibration of maize genotypes using the experimental data, four variables connected to

four out of the six coefficients were directly measured (P1, P5, G2 and PHINT), while P2 was

not estimated because all the varieties used in the experiments were day-neutral. G3 of the ini-

tial genotypes were first selected and later adjusted using a set of truncated rules in the GEN-

CALC2.rul file until a good fit is observed. For calibration using the breeder data, five out of

the six coefficients (except P2) were estimated following an optimization procedure (Fig 1)

similar to that used by Anothai et al. [16]. This approach has not been reported for maize, espe-

cially in Sub-Saharan Africa. At each step of the calibration process in GENCALC, measured

number of days from emergence to flowering was compared with days to anthesis (ADAP),

measured number of days from emergence to physiological maturity was compared to days to

physiological maturity (MDAP), measured grain yield at harvest was compared with harvest

weight at maturity (HWAM), measured overall biomass at maturity was compared with tops

weight at maturity (CWAM), measured maximum leaf area index was compared with maxi-

mum leaf area index (LAIX), while measured harvest index was compared with harvest index

at maturity (HIAM).The generated coefficients were then used to run sensitivity analysis,

using various iterations (not less than 6000 for each coefficient) to confirm the accuracy of the

sequential approach. The adjustment for each target coefficient was done while all other non-

target coefficients were kept constant. Despite the sensitivity analysis conducted, there is a pos-

sibility that pathologies associated with staged optimizations like GENCALC will occur

thereby influencing the goodness of fit [27].

2.7 Model evaluation

The model was calibrated using data from conventional experiments or breeder evaluation tri-

als. Model evaluation was done using data from the nitrogen trials (Table 2). The data sets

used for model evaluation were of two types; single measured data and time series data. For

single measured data, we used r2 and root mean squared error (RMSE) (Eq 1) to evaluate the

agreements between simulated and observed values. Normalized Root Mean Squared Error

(nRMSE, Eq 2) and the index of agreement (d, Eq 3) [28] were used to evaluate the time series

data. We used nRMSE for time series data because RMSE varies with growth over time as the

magnitude of the growth variables increase. The d-statistic was used because it gives a single

index of model performance, which covers bias and variability; it also indicates 1:1 prediction

better than R2. A low value for nRMSE (expressed in percent) is desired to define a good fit.

The d statistic has values between zero and one, with one being the best fit. The modeling effi-

ciency, EF [29] was employed to test modeling efficiency (Eq 4). EF has no dimension and an

EF = 1 corresponds to a perfect match between observed and simulated data. When EF< 0,

the simulated values are worse than simply using the observed mean. R2, RMSE, RMSEn, d-

index and EF are shown in Eqs 1, 2, 3 and 4 respectively.

R2 ¼ 1 �

Pn
i¼1
ðmi � SiÞ2

Pn
i¼1
ðmi � �mÞ2

ð2Þ
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðmi � siÞ

2

n

s

ð3Þ

RMSEn ¼
RMSE� 100

�m
ð4Þ

d ¼ 1 �

Pn
i¼1
ðmi � SiÞ

2

Pn
i¼1
ðjSij þ jmijÞ

2
ð5Þ

Fig 1. Order sequence of optimizations for calibrating the cultivar coefficients using GENCALC.

https://doi.org/10.1371/journal.pone.0200118.g001
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EF ¼
Pn

i¼1
ðmi � �mÞ2 �

Pn
i¼1
ðsi � miÞ

2

Pn
i¼1
ðmi � �mÞ2

ð6Þ

Where n is the number of observations, Si is the simulated data, mi is the measured data,

and �m is the mean of the measured data.

3.0 Results

3.1 Calibration and breeder evaluation experiments

3.1.1 Genotype specific parameters. The values of GSPs generated using data from cali-

bration experiments and breeder evaluation data are shown in Table 4. The highest degree

days from emergence to end of Juvenile stage (P1) was recorded for OBA 9 in both experimen-

tal and breeder data. For number of days from silking to end of physiological maturity (P5),

the highest values were recorded for Seedco white in both the experimental and breeder data.

The lowest P1 values were recorded for IITA EE white using both experimental and breeder

data. The variety Seedco white produced the largest number of maximum possible kernels

(G2) for experimental data while OBA 9 had the highest values for breeder data. The value of

G3 (kernel filling rate) ranged between 6.55 and 8.42 for the experimental data, and between

6.39 and 8.51 for the breeder data. Phyllochron interval (PHINT) values ranged from 36.9 and

45.5˚Cd for the experimental data and between 35.7 and 50.2˚ Cd for the breeder data. The

results show that about half of the GENCALC estimates are near to or beyond two SEMs away

from measured values. Majority of these estimates are for the phenology parameters P1, P5

and PHINT.

3.1.2 Phenology and growth. Evaluation of CERES-Maize for grain yield, number of days

to anthesis, number of days to physiological maturity and plant height and using both calibra-

tion experiments and breeder evaluation is shown in Fig 2 for two varieties. Calibration of

number of days to anthesis, and plant height, were more accurate when experimental data

were used compared with breeder data for both varieties. Calibration of both variables using

experimental data resulted in d-index values in the range of 0.85–0.96 for the trial data. For the

breeder data however, d-index values ranged from 0.49 to 0.89. Days to anthesis was calibrated

with higher accuracy than plant height for all varieties. Number of leaves per plant and plant

Table 4. Generated genotype specific parameters (GSPs) using experimental and breeder data.

Variety P1 P2 P5 G2 G3 PHINT

Experiment Breeder Expt. Breeder Experiment Breeder Experiment Breeder Expt. Breeder Experiment Breeder

Ife hybrid 6 223.6 (11.16)� 247.4 0.01 0.01 520.7 (6.77) 518.3 706.7 (13.89) 663.7 7.09 6.98 36.90 (0.18) 35.70

Sammaz 41 233.6 (9.77) 263.2 0.01 0.01 550.7 (9.12) 540.4 806.9 (16.33) 782.1 7.76 7.59 37.00 (0.19) 39.66

Ife hybrid 5 213.7 (10.83) 221.6 0.01 0.01 511.6 (6.31) 502.7 518.7 (9.17) 533.7 7.47 6.99 40.00 (0.21) 39.03

Sammaz 42 230.0 (5.75) 244.3 0.01 0.01 683.4 (5.16) 679.2 786.7 (16.44) 806.4 7.59 7.72 45.50 (0.23) 39.98

OBA 9 293.1 (8.33) 288.6 0.01 0.01 768.1 (7.11) 772.9 828.7 (12.88) 830.7 7.83 7.80 45.00 (0.25) 45.00

Seedco White 289.8 (6.98) 284.1 0.01 0.01 781.8 (7.32) 778.8 834.1 (11.13) 829.6 8.42 8.51 41.20 (0.19) 42.90

Sammaz 34 287.0 (8.11) 283.7 0.01 0.01 596.0 (5.12) 589.7 827.0 (9.22) 822.6 6.77 6.39 40.00 (0.21) 40.00

Sammaz 32 282.0 (7.29) 233.9 0.01 0.01 601.0 (4.61) 692.7 822.0 (8.76) 788.1 6.55 6.62 45.04 (0.27) 43.21

IITA E White 270.0 (8.91) 221.6 0.01 0.01 614.3 (5.33) 622.2 713.4 (12.13) 759.7 6.58 7.07 45.00 (0.26) 50.20

IITA EE White 183.6 (9.51) 192.3 0.01 0.01 601.0 (6.19) 627.8 523.3 (10.16) 614.3 6.91 7.32 42.10 (0.21) 44.35

�Numbers in parenthesis are Standard Errors (SEM) for the measured experiment values

https://doi.org/10.1371/journal.pone.0200118.t004
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height were measured for the experimental data at different time intervals. The simulated val-

ues for both plant height and number of leaves were accurate at all sampling periods (Fig 3).

3.1.3 Biomass and leaf area index. Biomass and LAI were measured at juvenile stage, at

anthesis, and at physiological maturity for the calibration data only. Fig 4 shows the result of

simulation of above-ground biomass and LAI for Sammaz 32 across the trial locations. Good

agreements were found between simulated and observed variables for all other varieties. Bio-

mass was simulated with higher accuracy than LAI across all locations. Simulation of both bio-

mass and LAI were most accurate using data from Samaru (d-index = 0.96, RMSE = 547.3 for

biomass and d-index 0.92, RMSE 0.022 for LAI). Calibration of both variables had the lowest

accuracy at Dambatta. Agreements between observed and simulated LAI were closer for the

earliest measurement (juvenile stage), followed by measurement at anthesis, and physiological

maturity in all locations except at Samaru where the reverse was observed. For biomass how-

ever, measurement at physiological maturity produced the closest agreements between

observed and simulated values, while measurement at anthesis produced the lowest agreement

between observed and simulated variables.

3.1.4 Yield and yield attributes. Yield and yield attributes were well calibrated for all vari-

eties in both calibration and breeder datasets. Table 5 shows the result of comparisons between

Fig 2. Comparisons between simulated and observed grain yield, days to anthesis, days to maturity and plant height at

harvest for SAMMAZ 32 using experiment (A, B, C, D) and breeder (E, F, G, H) data. Solid lines = 1:1 lines; dashed

lines = regression lines. Error bars denote Standard Error of Mean (SEM).

https://doi.org/10.1371/journal.pone.0200118.g002

Fig 3. Simulated (lines) vs Observed (symbols) plant heights and number of leaves of SAMMAZ 32 using

experiment data. Error bars denote Standard Error of Mean (SEM).

https://doi.org/10.1371/journal.pone.0200118.g003
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observed and simulated mean grain yields of all varieties across different locations. Calibration

of grain yield using experimental data was more accurate, as evidenced by low percentage pre-

diction deviations (3.1 to 12.9). Values for model statistics were also good for the experimental

data (RMSE = 264.6 kg ha-1, nRMSE = 11.1%, and d-index = 0.97). For the breeder data how-

ever, prediction deviations of up to 24.7% were observed, with higher RMSE (510.1 kg ha-1)

and nRMSE (16.1%). Negative prediction deviation which indicate under simulation was only

observed in one location (BGD 13) for the breeder evaluation data, while in all instances posi-

tive prediction deviations were observed.

3.2 Model validation experiments

Grain and tissue nitrogen, as well as grain yield, at harvest were simulated using independent

datasets from trials conducted at BUK during the rainy seasons between 2013 and 2016. Simu-

lations were done using GSPs generated from both experimental and breeder data. Table 6

shows the comparison between observed and simulated grain yields with accompanying

model statistics for the two datasets taking SAMMAZ 32 and EE-White as examples. Grain

yield was well simulated for both varieties using both datasets, although better fits were

observed for GSPs from the calibration data. Nonetheless, low values of RMSE (below 2% of

mean for experimental and 4.5% for breeder), high values of d index (0.99 for experimental

and 0.96 for breeder) and good EF values (slightly less than 1 for both datasets) were observed.

Tables 7 and 8 shows comparisons of simulated grain and stover nitrogen using GSPs gener-

ated from calibration and breeder evaluation experiments. Better agreements between

observed and simulated grain and stover Nitrogen were observed at high Nitrogen (120 and 60

Fig 4. Simulated (lines) vs Observed (figures) Biomass and LAI of SAMMAZ 32 using experimental data. Error

bars denote Standard Error of Mean (SEM).

https://doi.org/10.1371/journal.pone.0200118.g004
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Kg N) for both calibration and breeder evaluation experiments. At zero nitrogen application

however, the agreements between observed and simulated values where low as evidenced by

higher RMSE and lower d-index values.

4.0 Discussion

Calibrated GSPs from the on-station experiments and breeder evaluation experiments were

similar to GSPs reported for related varieties in West and Southern Africa [30–32] with respect

to yield and yield attributes. For growth and phenology however, data from our experiments

produced better calibration of growth and phenology than earlier reported experiments in the

Nigerian Savannas. For calibration using both experimental and breeder data, we set the values

of P2 to 0.01 to simulate the day-neutral characteristics of all the varieties used. Recent

Table 5. Observed and simulated mean grain yields (kg ha-1) of all varieties across different locations.

Data Type Observed� Simulated PD%#

Experiment Data

BUK_DS 3828 4080 6.6

BUK_RS 3209 3489 8.7

DBT_DS 2758 2866 3.9

DBT_RS 2628 2709 3.1

SMR_DS 5030 5259 4.6

SMR_RS 3536 3887 9.9

LERE_DS 4561 4723 3.6

LERE_RS 3452 3896 12.9

RMSE (kg/ha) 264.6

nRMSE (%) 11.4

EF 0.91

d-index 0.97

Breeder Data

ZRA 12 2958 3345 5.4

ZRA 13 2969 3625 24.7

MKW 12 3214 3866 15.0

MKW 13 3042 3213 2.5

BGD 12 3812 3913 5.5

BGD 13 2782 2885 -3.3

BTR 12 3226 3110 8.9

BTR 13 3112 3487 13.1

SMR 12 3214 3863 18.0

SMR 13 3779 4329 6.3

MJB 12 3612 3746 7.5

MJB 13 2831 2470 5.7

KDW 12 2711 2779 7.5

KDW 13 3017 3956 22.2

RMSE (kg/ha) 510.1

nRMSE (%) 16.1

EF 0.52

d-index 0.78

� Mean for all varieties
# Percentage prediction deviation

https://doi.org/10.1371/journal.pone.0200118.t005
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Table 6. Simulated vs Observed grain yields of Sammaz 32 and EE White in the model validation experiments, under different nitrogen levels using GSPs derived

from calibration experiment and breeder evaluation experiment.

Treatment Observed Simulated

(GSPs < Calibration experiment)

Simulated

(GSPs < Breeder evaluation trials)

Sammaz 32

0 kg N 1245 1291 1177

60 kg N 2648 2573 2592

120 kg N 3255 3308 2983

SE± 57.3

RMSE 36.3 101.1

D-Index 0.99 0.97

EF 0.92 0.91

EE White

0 kg N 979 953 1024

60 kg N 2177 2062 2333

120 kg N 3092 3129 3291

SE± 60.6

RMSE 43.6 90.8

D-Index 0.99 0.98

EF 0.96 0.91

https://doi.org/10.1371/journal.pone.0200118.t006

Table 7. Comparison of simulated and observed grain nitrogen (kg N ha-1) of SAMMAZ 32 for GSPs generated

using calibration experiments and breeder evaluation experiments.

SIM (Calibration Experiments) SIM (Breeder Evaluation Expts.) OBS

120 kg N ha-1

BUK 13 42.9 44.8 42.1

BUK 14 45.8 46.9 44.3

BUK 15 44.4 45.3 42.2

BUK 16 42.3 45.1 43.3

SE± 0.81

RMSE 1.48 2.59

d-index 0.67 0.47

60 kg N ha-1

BUK 13 44.0 45.2 43.2

BUK 14 44.9 42.4 43.3

BUK 15 40.6 42.3 41.0

BUK 16 42.7 46.8 43.6

SE± 0.79

RMSE 1.02 2.05

d-index 0.87 0.59

0 kg N ha-1

BUK 13 12.9 10.7 14.3

BUK 14 20.1 22.3 21.8

BUK 15 21.4 26.8 20.6

BUK 16 7.8 11.6 10.2

SE± 0.94

RMSE 1.68 3.66

d-index 0.98 0.88

https://doi.org/10.1371/journal.pone.0200118.t007
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publications by Lamsal et al. [21,33] highlighted the need to test for possible pathologies while

estimating GSPs in crop simulation models. Pathologies like expressivity failure (occur when a

model cannot reproduce some observations for any combination of GSP values due to how the

models’ mathematical structure is set up), equifinality (multiple GSP combinations producing

exactly same model predictions), and environmental hypersensitivity (GSP estimates depend

on the environments used in generating them) should be checked especially if GSPs generated

are to be used for genetic mapping. The presence of equifinality in our results is suggested by

the closeness of the predictions generated from the two sets of GSPs even though 50% of the

estimates differ by close to two SEMs or more. However, while more detailed testing for this

phenomenon might be useful future work, our goal was to assess the degree of alignment

between model predictions and observations given different sources of calibration data and

this has been shown to be adequate.

A high percentage (75%) of the GENCALC estimates that are near to or beyond two SEMs

of the measured values were recorded for coefficients that determine phenology and therefore

dependent on accurate measurement of developmental events (in observed days) and subse-

quent conversion to degree days. This high percentage shows that phenological events like

number of days to flowering and number of days to maturity were not accurately measured in

the breeder experiments due to small sample sizes and because they are not the traits of interest

in the breeding program. This is evidenced for example by the under-simulation of days to

flowering by 2.2 days and over simulation of days to maturity by 1.8 days for SAMMAZ 32

Table 8. Comparison of simulated and observed stover nitrogen (kg N ha-1) of SAMMAZ 32 for GSPs generated

using data from calibration experiments and breeder evaluation experiments.

SIM (Calibration Experiments) SIM (Breeder Evaluation Expts.) OBS

120 kg N ha-1

BUK 13 79.6 83.2 78.7

BUK 14 74.7 89.2 76.5

BUK 15 74.6 80.5 72.6

BUK 16 80.4 92.6 76.3

SE± 17.8

RMSE 2.49 11.3

d-index 0.88 0.31

60 kg N ha-1

BUK 13 64.9 73.8 67.8

BUK 14 81.4 88.5 77.4

BUK 15 86.7 81.3 78.8

BUK 16 70.8 70.0 62.6

SE± 4.6

RMSE 6.2 7.4

d-index 0.89 0.80

0 kg N ha-1

BUK 13 21.7 27.3 23.2

BUK 14 26.2 32.2 27.4

BUK 15 32.3 40.1 30.6

BUK 16 15.7 16.6 14.3

SE± 2.47

RMSE 1.46 5.8

d-index 0.97 0.81

https://doi.org/10.1371/journal.pone.0200118.t008
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shown in Fig 2. The implication of poor phenology measurements is seen by a slight over-esti-

mation of yield and yield attributes thereby confirming assertions made by Kumudini et al.

[34] who suggested that accurate prediction of phenology is fundamental to determining crop

adaptation and yield potential.

Calibration of the GSPs using the on-station experiment datasets produced better model

fits than the breeder evaluation data as expected. The closeness of fit observed for the on-sta-

tion data could be attributed to better experimental sites (soils with higher fertility and better

moisture retention), better crop management (timely weeding, fertilizer application etc.) and

higher experimental precision. This is evidenced by the breeder data having higher experimen-

tal errors for all measured variables when compared to the evaluation experiments. The evalua-

tion experiments were also done on larger plot sizes and no missing plants were recorded at

harvest, while in the breeder data smaller plots were used and there were no considerations for

missing plants during yield calculations. In addition, for the experimental datasets more plant-

related variables were measured compared to the breeder evaluation experiment data where

only grain yield, days to flowering, plant height and days to physiological maturity were mea-

sured. For the breeder evaluation experiment, the closeness between observed and simulated

plant heights was low. This could be attributed to the fact that most breeder trials are con-

ducted under water limited conditions, thus rainfall variability may affect crop performance

and data quality. Although the model can properly simulate water stress, no stress was

observed in any of the breeder evaluation sites and years. Grain yield and days to anthesis were

simulated more accurately than plant height for the breeder evaluation experiment. This can

be attributed to the high number of datasets used (7 locations and 2 seasons). Anothai et al.

[23] suggested that more accurate predictions of yield and phenology are observed when data

is collected from many locations and seasons. For the on-station experiment, plant height,

number of leaves, leaf area index, biomass, number of grains per meter square and grain yields

were well calibrated as the differences between observed and simulated values were very

minimal.

According to literature [23,35] when many years and locations are available, GSPs cali-

brated using breeder evaluation experiments produced very accurate comparisons between

observed and simulated growth, yield and phenology of maize. As suggested by Fensterseifer

et al. [35], uncertainties exist in the reliability of model based simulations of growth, yield and

phenology when calibrations are done using data from trials conducted under few environ-

mental conditions. Also, several researchers [36,37] reported that the major factors determin-

ing the success of a model calibration process, which determines the applicability of the model

on a larger scale is dependent on the wide variability of data used during the calibration pro-

cess. Thorp et al. [38] suggested that for accurate calibration of crop models, integration of

time variation using different planting dates and seasons, and spatial differences using differ-

ent locations of datasets should be adopted for calibration of crop models using datasets from

yield/breeder evaluation trials. To further verify these claims, we re-ran a couple of contrasting

varieties under both on-station experiments and breeder evaluation experiments using differ-

ent number of trials and data sets. For the on-station experiments, we first reduced the number

of experiments by subtracting 2 stations concurrently (i.e. reducing from 8–6, 6–4 and 4–2).

With every decrease in number of experiments, a subsequent decrease in model efficiency and

increase in prediction error were recorded. The higher the number of trials the better the

model fitted the observations, also reducing the number of experiments to 4 led to EF and d-

index values below 0.4, while further reduction to 2 reduced the model efficiency to 0.25 and

increased the prediction error to 55%. Using 4 experiments and all measured data produced

the lowest level of acceptable model statistics (d-index� 0.50, nRMSE� 16% and EF�0.4).

For the breeder evaluation experiments, every reduction in number of experiments led to a
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decrease in model efficiency and an increase in prediction error. We also reduced the number

of datasets from the evaluation experiments to the same that was used in the breeder evalua-

tion experiments. This resulted in decrease in model efficiency (0.89 to 0.81 for Sammaz 32

and from 0.94 to 0.88 for Seedco white). This shows that the number of experimental sites is

more important than amount of calibration data if the minimum data sets (MDS) are collected

as shown in Table 9. This view is supported by [35] and [31]. When many locations and plant-

ing dates are available, data from breeder evaluation experiments in the SSA can be used to

make good calibration of calibrations with lower RMSE & nRMSE and higher d-index & EF

values.

Although the calibration experiments provided more accurate GSPs, they are still very

expensive and laborious and thus are nearly impossible to carry out especially in Sub-Saharan

Africa where expertise and resources are limiting. Breeder evaluation data could also be used

for calibration of GSPs where such data is available. As shown earlier, very accurate GSPs

could be generated if large amount of data from many years (also planting dates) and various

locations are available. This will go a long way in providing model users with cheap and easy

ways of calibrating GSPs of existing and newly released varieties to their locations.

Evaluating the generated GSPs for simulation of grain yield, tissue nitrogen and grain nitro-

gen using independent datasets resulted in good agreements between observed and simulated

values. For grain yield, comparisons of measured and simulated values using both GSPs gener-

ated from experimental and breeder data showed very close agreements under medium and

high nitrogen applications. For comparisons under nitrogen stressed conditions however,

poor agreements existed between observed and simulated grain yields for both GSPs. This is a

common occurrence with simulations of grain yield and yield attributes under low nitrogen

fertilizer applications. Gungula et al. [39], reported that the CERES-Maize model poorly pre-

dicts performance of maize under low nitrogen conditions in the tropics. The agreements

between observed and simulated grain and stover nitrogen for both GSPs under high fertilizer

applications is an indication that CERES-model still performs best under high nitrogen appli-

cations especially on tropical soils.

The CERES-Maize model has been shown over the years to be an important tool in evaluat-

ing crop management [3], climate change impacts [40], fertilizer recommendations [5,39] and

yield forecasting [41]. Calibrating the newly released maize varieties currently recommended

for the Nigerian maize belts will provide an important input requirement for using crop mod-

els to evaluate major production constraints including optimum stand density (OSD), appro-

priate varietal selection (targeting/stability analysis), choice of major partner crop (in case of

mixed cropping) and fertilizer (especially N and P) managements. The availability of accurate

GSPs for all major varieties will also increase the applicability of the model on a wider scale

and for broader applications.

Table 9. Model statistics values for reduction in number of experimental sites for both calibration experiments

and breeder evaluation experiments.

No. Sites Calibration Experiments Breeder Evaluation Expts

8 EF = 0.93 EF = 0.88

nRMSE = 6.9% nRMSE = 8.9%

6 (8–2) EF = 0.79 EF = 0.67

nRMSE = 10.4% nRMSE = 12.6%

4 (6–2) EF = 0.51 EF = 0.44

nRMSE = 16.4% nRMSE = 18.9%

2 (4–2) EF = 0.44 EF = 0.41

https://doi.org/10.1371/journal.pone.0200118.t009
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5.0 Conclusion

Financial as well as time constraints coupled with frequent release of new varieties makes it dif-

ficult for model users to conveniently calibrate GSPs of crop models using detailed calibration

experiments. Large numbers of evaluation trials are conducted across multiple locations under

diverse planting dates by breeders and other growers prior to varietal release. Availability of

such datasets, especially from evaluation trials conducted under minimal stress (moisture and

nutrient) conditions provides an opportunity for efficient and rapid means of generating GSPs

of newly released maize varieties. A systematic approach (as proposed in this study) as well as

availability of large datasets from different locations and planting dates provide opportunities

for estimation of accurate GSPs. Although it is possible to generate GSPs from breeder evalua-

tion data, care must be taken to collect data from trials conducted under optimal conditions

and not too far away from weather stations. Also, breeder data to be used for calibration of

crop models must be collected from sites where detailed soil data is available. Additionally,

appropriate tests must be conducted to ensure that pathologies such as equifinality, expressiv-

ity failures and environmental hypersensitivity are minimized especially when the objective is

to generate GSPs for genetic mapping or for application under many environments where the

estimation was not conducted. Availability of GSPs of new varieties as soon as they are released

will help farmers and growers to make improved site-specific decision support tools (DST).

Also, researchers will be provided with new ways to making variety groupings as well as study-

ing complex Genotype, Environment, Management (G×E×M) interactions. Model users

should endeavor to join breeding units/teams to ensure collection of robust data needed for

model calibrations that are not traditionally collected by breeders.
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