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Abstract

The reconstruction of the topology of gene regulatory networks (GRNs) using high through-

put genomic data such as microarray gene expression data is an important problem in sys-

tems biology. The main challenge in gene expression data is the high number of genes and

low number of samples; also the data are often impregnated with noise. In this paper, in

dealing with the noisy data, Kalman filter based method that has the ability to use prior

knowledge on learning the network was used. In the proposed method namely (KFLR), in

the first phase by using mutual information, the noisy regulations with low correlations were

removed. The proposed method utilized a new closed form solution to compute the posterior

probabilities of the edges from regulators to the target gene within a hybrid framework of

Bayesian model averaging and linear regression methods. In order to show the efficiency,

the proposed method was compared with several well know methods. The results of the

evaluation indicate that the inference accuracy was improved by the proposed method

which also demonstrated better regulatory relations with the noisy data.

Introduction

The study of gene regulatory networks (GRNs) structure is important in understanding cellu-

lar function. GRNs are typically represented by graphs in which the nodes represent the genes

and the edges show the regulatory or interaction between genes. There are many methods for

inference of GRNS. One of these methods is computational methods. Many computational

methods have been proposed in the literature to model GRNs. These methods can be classified

into the co-expression based methods [1], supervised learning-based methods [2,3], model-

based methods [4,5] and information theory-based methods [6,7]. Co-expression based meth-

ods have low complexity but lack inference direction of interaction. The supervised learning

methods such as GENIES [8] and SIRENE [9] require information about some interactions in

order to learn the models.

Model-based methods can be categorized into ordinary differential equation [10], multiple

linear regression [11], Boolean networks [12] and probabilistic graphical models including

Bayesian Network (BN) and Dynamic Bayesian Network (DBN) [13]. They infer GRNs with
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high accuracy and can identify direction of interaction. However, these methods are time con-

suming and require many parameters to be set up, and thus cannot be used for large-scale net-

works. There are two suggestions for addressing this problem: Searching the optimal graph

from all possible graphs and using decomposition technique in regression based methods for

network structure inference. The inference of regulatory interactions for N genes is decom-

posed into N independent sub-problems, with sub-problems inferring the regulators of a target

gene. Narimani et all proposed a new Bayesian network reverse engineering method using

ordinary differential equations with the ability to include non-linearity. In this method, Expec-

tation Propagation is used for approximate Bayesian inference [14]. Due to Bayesian network

(BN) methods cannot handle large-scale networks in [15] present a novel method, namely

local Bayesian network (LBN), to infer GRNs from gene expression data by using the network

decomposition strategy and false-positive edge elimination scheme.

There are many significant advantages to use Bayesian network model. Bayesian networks

can be easily understood and allow researchers to use their domain expert knowledge for

determine the Bayesian network structure. When sample size is small Bayesian networks are

less influenced and they use the probability theory, which is suitable for dealing with noise in

biological data. Furthermore, Bayesian networks where complete data are not available, can

produce relatively accurate prediction. Although a few disadvantages exist, such as computa-

tional complexity and need to set many parameters, therefore they cannot be used for large-

scale networks.

To address this problem within this context, this paper presents a new method that uses

Bayesian model averaging based on Kalman filter and linear regression to infer GRNs. In this

method, a new solution is applied to calculate the posterior probabilities of the edges from pos-

sible regulators to the target gene, which leads to high prediction accuracy and high computa-

tional efficiency. This method is the best performer among well-known existing methods in

the DREAM4 in silico challenge and IRMA Dataset [16–17].

Another important category of GRN inference methods is based on regression methods,

which are used to predict one target gene based on one or more input genes such as artificial

neural networks (ENFRN) [18], support vector machines (SIRENE)], rotation forest (GEN-

IRF) [19], random forests (GENIE3) [20] and Bayesian Model Averaging for Linear Regression

(BMALR) [21].

Furthermore, information theory-based methods are used for inferencing GNRs, such as

conditional mutual information (CMI) [6] and mutual information (MI) [15]. This method

can be used for large scale networks.

MI measures the dependency between two genes. A higher mutual information value for

two genes shows that one gene is related with the other. However, MI cannot distinguish indi-

rect regulators from direct ones. Consequently, this leads to possible false positives [22].

Although CMI-based methods are able to distinguish indirect regulators from direct ones,

they cannot locate the directions of interactions in the network and also in some cases under-

estimate the interactions strength. These network inference methods such as Context Likeli-

hood of Relatedness (CLR) [23], Weighted Gene Co-Expression Network Analysis (WGCNA)

[24], Algorithm for the Reconstruction of Accurate Cellular Network’s (ARACNE) [25], Rele-

vance Networks (RN) [26] and Minimum-Redundancy–Maximum-Relevance Network

(MRNET) [27] assume that correlation between genes expression are indicative of a regulatory

interaction. In [28] for capture coarse-grained dynamics propose a new mutual information

based Boolean network inference (MIBNI) method. In This method, using mutual informa-

tion first selected a set of initial regulatory genes, and then by iteratively swapping a pair of

genes between the selected regulatory genes and the other genes, improves the dynamics pre-

diction accuracy.

Inference gene regulatory network using Kalman filter

PLOS ONE | https://doi.org/10.1371/journal.pone.0200094 July 12, 2018 2 / 17

https://doi.org/10.1371/journal.pone.0200094


The rest of this paper is organized as follows. Details of the Kalman filter are given in section

two. Conditional Mutual Information is given in section three. The proposed method is pre-

sented in section four. In section five, the results of the proposed method are shown on data col-

lection DREAM4 and other datasets. Finally, conclusions are summarized in section six.

Kalman filter

To infer gene regulatory network, one way is to find the Bayesian network structure. This is

normally achieved by maximizing the likelihood of the observed dataset (maximum likeli-

hood) or the posterior probability of the structure given the observed data (maximum a poste-

riori). In this paper, because the data are time series and contain noise, the Kalman filter is

used to find the Bayesian network structure [29].

Kalman filter is an algorithm that uses a series of measurements observed over time, con-

taining statistical noise. Applying the Kalman filter for this purpose, assuming input and out-

put, is given as:

xkþ1 ¼ Fkxk þ Gkwk

yk ¼ Hkxk þ Dkvk ð1Þ

where Fk is the state transition model which is applied to the previous state xk, Gk is the control

matrix which is applied to the wk. wk is the process noise which is assumed to be drawn from a

zero mean multivariate normal distribution with covariance Qk. Hk is the observation model

which maps the true state space into the observed space, Dk is the control matrix which is

applied to the vk, and vk is the observation noise which is assumed to be zero mean Gaussian

white noise with covariance Rk [29]. The details of Kalman filter is shown in Fig 1. First, prior

probability p(xk−1|yk−1) has a random value and is related to prior knowledge as follows:

pðxk� 1jyk� 1Þ � Nðx̂k� 1jk� 1; pk� 1jk� 1Þ ð2Þ

Prediction and updating phases can alternatively be used to calculate the posterior probabil-

ity. In the prediction phase, the value of p(xk|yk−1) is obtained as follows:

pðxkjyk� 1Þ � Nðx̂kjk� 1; pkjk� 1Þ ð3Þ

Instead of predicting this probability, the mean and variance, xk|k−1 and pk|k−1, are predicted

respectively. In the updating phase, the value of p(xk|yk) is obtained as follows. As a matter of,

in this step the parameters of the mean and variance of the posterior probability are updated.

pðxkjykÞ � Nðx̂kjk; pkjkÞ ð4Þ

This probability is achieved over time and periodically until the posterior probability is cal-

culated. By using the following equations, the mean and variance can be obtained as follows:

x̂kjk� 1 ¼ Fk� 1x̂k� 1jk� 1 ð5Þ

pkjk� 1 ¼ Gk� 1Qk� 1Gk� 1
T þ Fk� 1Pk� 1jk� 1Fk� 1

T ð6Þ

x̂kjk ¼ x̂kjk� 1 þ Kkðyk � Hkx̂kjk� 1Þ ð7Þ

pkjk ¼ ðI � KkHkÞpkjk� 1 ð8Þ
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Where Kk is Kalman rate and it is calculated as follows:

Kk ¼ pkjk� 1H
T
k ðHkpkjk� 1H

T
k þ DkRkD

T
k Þ
� 1

ð9Þ

Conditional mutual information

Mutual Information (MI) and Conditional Mutual Information (CMI) have been used to con-

struct GRNs [30] owing to their ability to detect nonlinear dependencies between genes with

Gaussian noise.

The mutual information (MI) is a measure of the mutual dependence between two genes Xi

and Xj. Thus, its value can be used to evaluate the strengths between genes. For measuring the

conditional dependency between two genes Xi and Xj given another gene Xk, CMI can be used,

which can quantify the undirected regulation. For discrete variables X and Y, MI is defined as

[31]:

MIðX;YÞ ¼ �
X

x2X;y2Y

pðx; yÞlog
pðx; yÞ

pðxÞpðyÞ
¼ HðXÞ þ HðYÞ � HðX;YÞ ð10Þ

where p(x) and p(y) are the marginal probability distributions of X and Y, respectively, p (x, y)
is the joint probability distribution of X and Y, H(X,Y) is the joint entropy of X and Y, and H
(X) and H(Y) are the entropies of X and Y, respectively. CMI between two variables X and Y

Fig 1. Kalman filter phases in the proposed method.

https://doi.org/10.1371/journal.pone.0200094.g001
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given variable Z is defined as [31]:

CMIðX;YjZÞ ¼ �
X

x2X;y2Y;z2Z

pðx; y; zÞlog
pðx; yjzÞ

pðxjzÞpðyjzÞ
¼ HðX;ZÞ þHðY;ZÞ � HðX;Y;ZÞð11Þ

where H(X,Z), H(Y,Z) and H(X,Y,Z) are the joint entropies, and p(x,y|z), p(x|z) and p(y|z) are

the conditional probability distributions, respectively.

Proposed method

KFLR constructs GRNs using Bayesian network and linear regression which lead to a directed

graph of regulatory interactions between genes with high accuracy. This method mainly con-

sists of three distinct phases. In the first phase prior knowledge is extracted from the data using

MI, then in the next phase Bayesian network is constructed based on prior knowledge and Kal-

man filter, and in the last phase the network is modified using CMI. The proposed method is

described in Fig 2. In the next subsection, detailed description of each of these phases will be

presented.

Phase 1: Knowledge extraction with MI
In this step, the MI values between all genes are computed and the knowledge matrix is cre-

ated. If MI (i, j) is smaller than a threshold, the cell (i,j) in the knowledge matrix will be zero,

otherwise this cell is one.

Phase 2: Building Bayesian network using Kalman filter. For inferring gene regulatory

network, the proposed idea is based on prior knowledge from the knowledge matrix, and Kal-

man filter is used to construct Bayesian network. The proposed method integrates a Bayesian

model averaging method with a linear regression approach. A new method is used to calculate

the posterior probability edges based on Kalman filter. In the proposed method, linear regres-

sion is used on the target gene and all combinations of other genes. The final score of the edge

between the parent and target genes, is the sum of the all posterior probability of the linear

regression models containing this edge.

Bayesian model averaging

One methods for inference of gene regulatory network is finding the structure N of Bayesian

network that better explains the data. There are many methods for finding Bayesian network

structure such as maximizing the likelihood of the observed data (maximum likelihood, ML)

or the posterior probability of the structure N given the observed data (maximum posteriori,

MAP). This paper makes use of Kalman filter in achieving the posterior probability. There

exist a lot of Bayesian network structures that best describe the data when the number of obser-

vations in gene data are limited. We can find best structure using heuristic search.

But the heuristic search methods have high computational complexity and do not guarantee

global optimal. Thus, Bayesian model averaging can be used instead of searching for the best

structure among the existing Bayesian structures. In other words, the probability of an edge (f)
given the observed dataset (D) between node i and j in a structure (N) can be calculated with

the posterior probability of f:

Pðf jDÞ ¼
P

Nf ðNÞPðNjDÞ ð12Þ

This probability shows the posterior probability of f given the observed dataset (D). In this

equation, if the Bayesian network N contains edge f, f (N) equals to 1, otherwise it is 0. There-

fore, 100 Bayesian networks are built with different structures using Kalman filter and then the

Inference gene regulatory network using Kalman filter
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Fig 2. Schematic diagram of proposed method.

https://doi.org/10.1371/journal.pone.0200094.g002
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final score edge from node i to node j, can be obtained based on Bayesian structures posterior

probability of this edge. In other words, in the construction of Bayesian networks using Kal-

man filter theory, each node Xi, has a probability distribution P(Xi|Parents(Xi)), that shows the

effect of parent nodes on this node to be numerical. In this step, the parent sets which are

obtained with prior knowledge of the first phase, are checked and genes having smaller MI
degree than a threshold are not selected with gene Xi. In order to have an accurate estimate for

posterior probability of the edge, with k-nearest neighbor (kNN) method, the network is

decomposed into a set of smaller sub networks according to the relationship among genes in

the network. In the graph structure, according to their shortest path distance the k nearest

neighbors of each gene are selected. In this paper, the k-nearest neighbors with k = 2 contain-

ing the Markova blanket of the gene are applied for each gene in order to decompose a global

network to a set of sub networks.

Xi ¼
P

i6¼jwjiXj þ ei ð13Þ

where Xi is the expression level of gene i, wji is a weight between gene i and j and showing the

effect of gene j on gene i. If wji is zero, then in the gene regulatory network there is no edge

from j to i. If wji is non-zero, j is one of the i’s candidate regulators (parents) and εi denotes the

noise. The posterior probability for each edge calculate base on the sum of the posterior proba-

bilities of all the sub structures containing the edge [19]. Using the following equation, the pos-

terior probability of an edge feature f is calculated:

Pðf jDÞ �
P

Pa2Si
f ðNPaÞPðNPajDPa;xi

Þ ð14Þ

where Si is the set of all possible parent sets of Xi. Xi is the target of the edge feature f. DPa;xi

denotes the data restricted to Xi and the genes in Pa. NPa is a sub structure that is composed of

the edges from the genes in Pa, a parent set of gene Xi. If the sub structure NPa contains f, f
(NPa) is equal to 1, otherwise it is 0.

Phase 3: Modifying the network

After gene regulatory network inference, the network is modified to achieve better results. MI
method commonly cannot estimate the regulation degrees between genes. Because it does not

consider the joint regulations into two or more genes, the rate of false positive edges is high. In

this phase, by computing the first-order CMI (i, j|k) and second-order CMI (i, j|k, l), false posi-

tive edges are removed. By so doing, if CMI (i, j|k) (or CMI (i, j|k, l)) is smaller than a threshold

α, the edge between genes i and j is removed from the network.

Experimental result

Data set

The DREAM (for ‘‘Dialogue for Reverse Engineering Assessments and Methods”) initiative

organizes an annual reverse engineering competition called the DREAM challenge [27]. The

goal of the DREAM4 In silico network challenge is to reverse engineer gene regulation net-

works from simulated steady state and time series data. There are three sub-challenges consists

of five networks called in silico Size 10, In silico Size 100, and In silico Size 100 Multifactorial.

In the time series data, for networks of size 10, there is 5 different time series, for networks of

size 100, there is 10 different time series. Each time series has 21 time points [28]. All networks

and data were generated with Gene Net Weaver (GNW) version 2.0 [32]. Network topologies

were obtained by extracting sub networks from transcriptional regulatory networks of E. coli

and S. cerevisiae (see S1 Data).
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Another dataset we have used is the IRM dataset. IRMA network is a subnetwork embedded

in Saccharomyces cerevisiae which consist of 5 genes: CBF1, GAL4, SWI5, GAL80, and ASH1.

Gene expression data are time-series and include switch-off data and switch-on data. The

switch-off data is taken from 4 experiments and the switch-on data is taken from 5 experi-

ments, with a total of 142 samples measured (see S1 Data) [33].

Performance metrics

The proposed method is evaluated using the area under the precision versus recall curve and

receiver operating characteristic (ROC) curve for the whole set of link predictions for a

network.

A precision-recall (PR) curve plots fraction of retrieved instances that are relevant (Preci-

sion) versus the fraction of relevant instances that are retrieved (Recall), whereas a ROC curve

plots the true positive rate versus the false positive rate [34]. To summarize these curves, the

DREAM organizers proposed different statistics. AUPR and AUROC are respectively the area

under the PR and ROC curve. AUPR p-value and AUROC p-value are the probability that ran-

dom ordering of the potential links is given or larger of AUPR and AUROC.

The overall p-values: paupr and pauroc of the five networks constituting each DREAM4 sub

challenge were defined as the geometric mean of the individual p-values, as shown in Eq 15

[35]:

�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � p2 � p3 � p4 � p5

5
p

ð15Þ

The overall score for each method was the log-transformed geometric mean of the overall

AUROC p-value and the overall AUPR p-value, as shown in Eq 16 [35]:

Overall ¼ �
1

2
� log10ð

�Paupr �
�PaurocÞ ð16Þ

Performance comparison on the DREAM4 dataset

In this section, evaluation of five inferred sub network using the proposed method before and

after adding noise into data has been studied and to demonstrate the performance, the

Table 1. AUPR and AUROC values of common GRN methods without noise.

Method NET1 NET2 NET3 NET4 NET5
AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

BMALR 0.173 0.745 0.155 0.722 0.201 0.745 0.186 0.768 0.198 0.758
GINIE3 0.228 0.789 0.096 0.614 0.230 0.775 0.157 0.721 0.168 0.712
MRNET 0.143 0.584 0.075 0.579 0.124 0.683 0.128 0.708 0.095 0.611
ARACNE 0.165 0.634 0.108 0.611 0.174 0.679 0.143 0.709 0.154 0.621
BGRMI 0.245 0.804 0.118 0.71 0.185 0.696 0.213 0.784 0.154 0.643

CLR 0.179 0.782 0.109 0.635 0.238 0.787 0.154 0.712 0.163 0.705
G1DBN 0.089 0.589 0.055 0.612 0.155 0.678 0.153 0.705 0.117 0.631

NARROMI 0.122 0.713 0.105 0.665 0.192 0.706 0.167 0.713 0.186 0.727
TIGRESS 0.157 0.738 0.144 0.68 0.172 0.759 0.199 0.764 0.198 0.747
GENIRF 0.174 0.763 0.156 0.731 0.212 0.763 0.191 0.772 0.202 0.781
MIBNI 0.162 0.637 0.126 0.711 0.182 0.683 0.173 0.742 0.173 0.725
FBISC 0.167 0.635 0.173 0.598 0.263 0.65 0.228 0.664 0.206 0.685

CMI2NI 0.057 0.737 0.048 0.616 0.102 0.69 0.063 0.657 0.066 0.691
KFLR 0.194 0.812 0.195 0.823 0.235 0.803 0.236 0.813 0.221 0.797

https://doi.org/10.1371/journal.pone.0200094.t001
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proposed method has been compared with thirteen common methods in the field of gene reg-

ulatory networks construction. Methods used for comparison are as follows:

GENIE3, is an algorithm for inferring regulatory networks from expression data using tree-

based methods. The implementation of matlab codes by its authors and with default parame-

ters and protocols are used [18]. BMALR is an algorithm for inferring cellular regulatory net-

works with Bayesian model averaging for linear regression algorithm. The author’s system

code is used [19]. CLR [21], ARACNE [23] and MRNET [25] algorithms: These three algo-

rithms have been implemented by the minet package into R Language. BGRMI, Bayesian

Gene Regulation Model Inference, a model-based method for inferring GRNs from time-

course gene expression data. BGRMI uses a Bayesian framework to calculate the probability of

different models of GRNs and a heuristic search strategy to scan the model space efficiently

[36]. G1DBN is a method based on dynamic Bayesian network [37]. NARROMI is a noise and

Table 2. AUPR and AUROC values of common GRN methods with noise.

Method NET1 NET2 NET3 NET4 NET5
AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

BMALR 0.155 0.721 0.125 0.689 0.185 0.724 0.162 0.692 0.173 0.678
GINIE3 0.192 0.718 0.058 0.537 0.201 0.788 0.135 0.642 0.143 0.612
MRNET 0.065 0.582 0.072 0.573 0.108 0.589 0.11 0.645 0.098 0.598
ARACNE 0.142 0.602 0.089 0.601 0.122 0.621 0.123 0.656 0.133 0.623
BGRMI 0.208 0.785 0.102 0.636 0.154 0.633 0.196 0.721 0.123 0.578

CLR 0.139 0.724 0.065 0.578 0.183 0.714 0.121 0.672 0.132 0.678
G1DBN 0.054 0.521 0.043 0.578 0.12 0.602 0.118 0.654 0.092 0.586

NARROMI 0.102 0.703 0.087 0.68 0.182 0.688 0.159 0.696 0.172 0.709
TIGRESS 0.146 0.722 0.132 0.671 0.163 0.741 0.187 0.748 0.186 0.736
GENIRF 0.162 0.712 0.136 0.682 0.189 0.743 0.173 0.711 0.168 0.691
MIBNI 0.143 0.609 0.094 0.682 0.157 0.609 0.153 0.692 0.146 0.674
FBISC 0.154 0.612 0.161 0.502 0.263 0.613 0.215 0.609 0.189 0.621

CMI2NI 0.042 0.702 0.044 0.583 0.094 0.598 0.061 0.611 0.061 0.626
KFLR 0.189 0.81 0.193 0.821 0.232 0.795 0.232 0.807 0.213 0.772

https://doi.org/10.1371/journal.pone.0200094.t002

Table 3. AUPR and AUROC p-values for DREAM4 challenge.

Method NET1 NET2 NET3 NET4 NET5
P-AUPR P- AUROC P-AUPR P- AUROC P-AUPR P- AUROC P-AUPR P- AUROC P-AUPR P- AUROC

BMALR 3.20E-28 3.30E-15 3.10E-34 2.10E-22 3.52E-47 8.40E-32 4.21E-41 4.36E-30 3.20E-43 3.67E-33
GINIE3 3.40E-36 3.20E-19 8.40E-21 2.10E-16 2.76E-54 8.70E-34 2.73E-34 5.42E-28 7.41E-37 3.79E-29
MRNET 2.31E-11 1.98E-09 6.23E-22 6.11E-19 4.54E-33 4.21E-22 3.46E-30 5.02E-25 2.73E-28 9.93E-19
ARACNE 6.32E-21 4.11E-20 1.25E-22 1.23E-20 5.03E-37 4.05E-25 5.99E-32 8.15E-27 5.31E-37 7.22E-28
BGRMI 4.10E-37 2.50E-21 6.33E-28 5.43E-21 5.23E-39 5.86E-25 4.51E-48 6.31E-34 4.46E-33 4.52E-20

CLR 4.50E-31 3.20E-18 2.32E-24 4.52E-18 5.72E-55 6.85E-36 3.11E-31 4.26E-27 3.72E-36 5.31E-28
G1DBN 8.24E-10 8.23E-06 1.35E-15 2.23E-15 3.43E-36 1.10E-25 1.27E-31 4.32E-26 7.02E-27 8.76E-18

NARROMI 9.13E-20 5.42E-18 1.76E-23 4.09E-20 1.32E-40 7.63E-28 2.21E-37 5.72E-27 3.25E-40 4.81E-31
TIGRESS 4.30E-22 1.27E-20 7.18E-32 3.56E-20 3.86E-38 1.65E-32 4.20E-43 3.28E-29 7.26E-42 5.68E-33
GENIRF 3.31E-29 3.51E-18 5.41E-35 2.32E-23 2.60E-48 4.27E-31 3.17E-42 4.82E-32 2.62E-44 2.46E-32
MIBNI 6.51E-23 3.19E-22 3.18E-27 4.31E-21 4.27E-41 2.82E-28 2.21E-36 3.17E-28 1.93E-37 3.37E-30
FBISC 1.41E-27 1.60E-17 6.31E-36 4.12E-19 2.43E-37 4.22E-21 1.81E-32 6.32E-23 4.81E-36 2.17E-27

CMI2NI 1.28E-10 1.58E-17 2.61E-08 3.62E-09 5.09E-22 8.09E-18 2.44E-11 2.21E-12 2.55E-12 3.08E-16
KFLR 1.63E-33 1.21E-27 7.43E-46 4.12E-32 4.43E-58 3.22E-39 2.81E-53 7.63E-35 3.61E-51 1.35E-37

https://doi.org/10.1371/journal.pone.0200094.t003
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redundancy reduction technique improves accuracy of gene regulatory network inference [5].

TIGRESS, this method solves the network inference problem by using a feature selection

Table 4. Score of common GRN methods and our method for DREAM4.

Method NET1 NET2 NET3 NET4 NET5 Total Score
BMALR 2.10E+01 2.76E+01 3.88E+01 3.49E+01 3.75E+01 1.60E+02
GINIE3 2.70E+01 1.79E+01 4.33E+01 3.04E+01 3.23E+01 1.51E+02
MRNET 9.67E+00 1.97E+01 2.69E+01 2.69E+01 2.28E+01 1.06E+02
ARACNE 1.98E+01 2.09E+01 3.03E+01 2.87E+01 3.17E+01 1.31E+02
BGRMI 2.85E+01 2.37E+01 3.13E+01 4.03E+01 2.58E+01 1.50E+02

CLR 2.39E+01 2.05E+01 4.47E+01 2.84E+01 3.14E+01 1.49E+02
G1DBN 7.08E+00 1.48E+01 3.02E+01 2.81E+01 2.16E+01 1.02E+02

NARROMI 1.82E+01 2.11E+01 3.35E+01 3.14E+01 3.49E+01 1.39E+02
TIGRESS 2.06E+01 2.53E+01 3.46E+01 3.54E+01 3.67E+01 1.53E+02
GENIRF 2.30E+01 2.85E+01 3.90E+01 3.64E+01 3.76E+01 1.64E+02
MIBNI 2.18E+01 2.34E+01 3.40E+01 3.16E+01 3.31E+01 1.44E+02
FBISC 2.18E+01 2.68E+01 2.85E+01 2.70E+01 3.10E+01 1.35E+02

CMI2NI 1.33E+01 8.01E+00 1.92E+01 1.11E+01 1.36E+01 6.52E+01
KFLR 2.99E+01 3.83E+01 4.79E+01 4.33E+01 4.37E+01 2.03E+02

https://doi.org/10.1371/journal.pone.0200094.t004

Fig 3. ROC curves for different methods in sub network1.

https://doi.org/10.1371/journal.pone.0200094.g003
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technique (LARS) combined with stability selection. In the method Web-based platform is

performed [38]. GENIRF, this method decomposes the prediction of a gene regulatory net-

work between p genes into p different regression problems. Each regression problem is con-

structed with singular value decomposition and rotation forest [17]. MIBNI, in this method,

first selected a set of initial regulatory genes using mutual information, and then, improves the

dynamics prediction accuracy by iteratively swapping a pair of genes between the selected reg-

ulatory genes and the other genes [26]. The implementation of java codes by its authors and

with default parameters and protocols are used. FBISC, in this method, expectation propaga-

tion is used for approximate Bayesian inference [14]. The implementation of C# codes by its

authors and with default parameters and protocols are used. CMI2NI, CMI2 is used to quantify

the mutual information between two genes given a third one through calculating the Kull-

back–Leibler divergence between the postulated distributions of including and excluding the

edge between the two genes [6]. The implementation of matlab codes by its authors and with

default parameters and protocols are used.

In the following, the results in the form of AUPR and AUROC values, ROC and PR curves

are examined and an overall score is calculated for each method. As earlier mentioned, 5 sub

networks in DREAM4 dataset were used for evaluation. The goal of each 5 sub network is find-

ing the rank for edges and directional regulatory relations. Table 1 shows the AUPR and

AUROC values for different methods in 5 sub networks without noise. Comparing stability

Fig 4. ROC curves for different methods in sub network2.

https://doi.org/10.1371/journal.pone.0200094.g004
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against noise, Table 2 shows AUPR and AUROC values for different methods in noisy data. It

should be noted that 10% Gaussian noise with mean = 0 and standard deviation = 1 was added

to the data. From the results, the proposed method is robust against noise than the other meth-

ods. The results show that the proposed method has higher accuracy, because of the use of the

knowledge extraction phase in network constructions and removal of many false positives

edges. Also, the use of Kalman filter probability theory can thus deal with noise data in which

the Kalman filter removes noisy regulations.

According to Tables 1 and 2, the rate of improvement of the KFLR in sub network 1 is also

less, while the rate of improvement is higher in sub network 2,3, 4 and 5, because of extracting

more false positive edges. Therefore, with the more accurate obtained knowledge in the first

phase, KFLR results to better network. In fact, in the Bayesian network construction phase

using the Kalman filter, each node Xi have one conditional probability distribution P(Xi|

Parents(Xi)) which shows the effect of parents on this node numerically. In this phase, parents

are selected with obtained knowledge from first phase and not allowed to select genes which

are very similar to each other. So this work changes the value of relationships between one

gene and its parents in comparison with inferred network by other algorithm. When the num-

ber of extracted knowledge increases, more improvement is achieved compared with other

algorithm. In KFLR, the refining network using CMI coefficient is done. This phase will

Fig 5. ROC curves for different methods in sub network3.

https://doi.org/10.1371/journal.pone.0200094.g005
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improve the amounts of regulatory relations between pairs of genes using biology significant

relationships between them and this work improves the results of each sub network slightly.

Table 3 shows p-values of AUROC and AUPR for different methods and each subnet sepa-

rately. This shows that the predictions of this method is significantly better than a random guess

compared to other methods. The overall scores of each method in the whole network are shown

in Table 4. The results indicate that the proposed method performs better than the other methods.

Recall and precision are the ratios of the numbers of correctly inferred interactions vs all

interactions in the gold standard networks and the reconstructed networks respectively The

Area under the PR curve (AUPR) provides an unbiased scalar estimate of the accuracies of the

reconstructed GRNs. ROC curves (AUROC) is a measure of the overall performance of a model.

Therefore, for better compression, ROC curves in noise data are drawn for three subnets

and some methods is presented in Fig 3–5. According to all the figures, the KFLR method gen-

erally has a better result. Also, the PR curves in noise data are shown in Fig 6–8 for some meth-

ods and three subnets individually. According to all the PR figures, the KFLR approach in

general has better and more accurate results.

Performance comparison on the IRMA dataset

The different GRN inference methods were applied to reconstruct the IRMA (In vivo Reverse-

engineering and Modeling Assessment) network. Table 5 shows the AUPRs of the GRNs

Fig 6. PR curves for different methods in sub network1.

https://doi.org/10.1371/journal.pone.0200094.g006
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inferenced in the noise data and in the main data. In the main data, KFLR is competitive with

BGRMI method when inferring the network from the switch-on data. In the case of the switch-

off data, KFLR had the highest accuracy. But in the noise data KFLR outperform other method.

These results show that KFLR performs well on in-silico datasets and on in-vivo experimental

data.

Conclusion

In this paper, a new method was proposed to improve the accuracy of reconstructed GRN from

time series gene expression data by using two approachs, i.e, the false-positive interactions dele-

tion and the inference using model averaging. In this paper, by using CMI and MI, false-positive

interactions were deleted and in the model averaging approach, Kalman filter was proposed to

compute the posterior probabilities of the edges from possible regulators to the target gene with

the combination of Bayesian model averaging and linear regression methods. The Kalman filter

is a linear state-space model that operates recursively on noisy and time series input gene

expression data to produce a statistically optimal estimate of the gene regulatory network. The

results on the benchmark gene regulatory networks from the DREAM4 challenge and in Vivo

IRMA Network showed that the proposed method significantly outperforms other state-of-the-

art methods. Also, it was established that this method is more robust to the noisy data.

Fig 7. PR curves for different methods in sub network2.

https://doi.org/10.1371/journal.pone.0200094.g007
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Fig 8. PR curves for different methods in sub network3.

https://doi.org/10.1371/journal.pone.0200094.g008

Table 5. AUPRs of the In Vivo IRMA network.

Data Without noise With noise
Method switch-onDataset switch-off Dataset switch-on Dataset switch-off Dataset
BMALR 0.634 0.336 0.586 0.308

GINIE3 0.62 0.347 0.543 0.289

MRNET 0.417 0.324 0.358 0.217

ARACNE 0.472 0.358 0.412 0.271

BGRMI 0.904 0.574 0.762 0.354

CLR 0.423 0.372 0.353 0.254

G1DBN 0.6 0.313 0.521 0.211

NARROMI 0.518 0.472 0.328 0.352

TIGRESS 0.714 0.452 0.592 0.376

GENIRF 0.672 0.327 0.581 0.312

MIBNI 0.656 0.348 0.582 0.354

FBISC 0.478 0.372 0.434 0.292

CMI2NI 0.721 0.456 0.589 0.371

KFLR 0.896 0.721 0.834 0.709

https://doi.org/10.1371/journal.pone.0200094.t005
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