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Abstract

Using GWAS to identify candidate genes associated with cattle morphology traits at a func-

tional level is challenging. The main difficulty of identifying candidate genes and gene inter-

actions associated with such complex traits is the long-range linkage disequilibrium (LD)

phenomenon reported widely in dairy cattle. Systems biology approaches, such as combin-

ing the Association Weight Matrix (AWM) with a Partial Correlation in an Information The-

ory (PCIT) algorithm, can assist in overcoming this LD. Used in a multi-breed and multi-

phenotype context, the AWM-PCIT could aid in identifying udder traits candidate genes

and gene networks with regulatory and functional significance. This study aims to use the

AWM-PCIT algorithm as a post-GWAS analysis tool with the goal of identifying candidate

genes underlying udder morphology. We used data from 78,440 dairy cows from three

breeds and with own phenotypes for five udder morphology traits, five production traits,

somatic cell score and clinical mastitis. Cows were genotyped with medium (50k) or low-

density (7 to 10k) chips and imputed to 50k. We performed a within breed and trait GWAS.

The GWAS showed 9,830 significant SNP across the genome (p < 0.05). Five thousand

and ten SNP did not map a gene, and 4,820 SNP were within 10-kb of a gene. After

accounting for 1SNP:1gene, 3,651 SNP were within 10-kb of a gene (set1), and 2,673 sig-

nificant SNP were further than 10-kb of a gene (set2). The two SNP sets formed 6,324

SNP matrix, which was fitted in an AWM-PCIT considering udder depth/ development as

the key trait resulting in 1,013 genes associated with udder morphology, mastitis and pro-

duction phenotypes. The AWM-PCIT detected ten potential candidate genes for udder

related traits: ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, BTRC, and

TGFBR2.
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Introduction

Genetic architecture of complex phenotypes in cattle includes many loci affecting a given trait

[1]. Most of these loci have small effects, but few segregating loci have moderate-to-large

effects possibly due to epistatic effects, varying selection goals or recent selection for the favor-

able mutant allele. Moreover, markers collectively capture most but not all additive genetic

variance for phenotypes. The incomplete variance capture may be due to causal mutations

with low allele frequencies and therefore in incomplete linkage disequilibrium (LD) with

markers [2]. To reduce this LD, we can either do a between breed analysis with a large sample

of genotyped cows [3] or combine the results of a within breed GWAS in a multi-breed con-

text. This is possible because the cost of genotyping is decreasing thus allowing many breeds,

including those of medium population size, to be genotyped rapidly primarily for genomic

selection purpose. These large populations of genotyped cows with own performances allows

us to: (1) detect QTL for newly recorded traits or traits previously not studied; (2) carry out

large confirmation studies for conventional traits. Previous studies have demonstrated that

polymorphic sites that segregate within and across bovine populations can be studied using

imputed low-to-dense genotypes [4,5]. Such genotypes have been used in model organisms

and dairy cattle leading to the identification of candidate causal variants or closely neighboring

variants that control complex phenotypes [6,7]. These studies have been useful for identifying

QTL regions and probable genes associated with a phenotype. So far, however, there have been

few validation studies of the vast number of putative variants across and between breeds and

amongst multiple phenotypes. This study uses 50k SNP data to validate such variants using

the Association Weight Matrix (AWM) [8] approach as a post GWAS analysis tool. The AWM

is a systems biology approach for the genetic dissection of complex traits based on applying

gene network theory to the results from GWAS. Hence, if the AWM SNP matrix is used in

combination with a Partial Correlation (PC) in an Information Theory (IT) framework, and

for correlated phenotypes, then it is possible to generate gene networks with regulatory and

functional significance for udder related phenotypes.

Despite the limitations of the chip density, previous studies have shown the usefulness of

the AWM to identify candidate genes in cattle, e.g. [9–10] and corroborated across different

species, e.g. [11–12] in independent studies using the 50k marker density.

In this study, we report results based on GWAS analysis for mammary conformation, milk

production and health phenotypes for 78,440 dairy cows. A multi-step validation by combin-

ing the results of single SNP, single phenotype, in a multiple-breed context using the AWM-P-

CIT algorithm was performed. The aim was to identify the genes associated with mammary

conformation and health phenotypes in Holstein, Montbeliarde, and Normande breeds,

accounting for milk production as supportive traits. We further explored gene networks with

the main gene ontology domains including biological processes, cellular component, and

molecular functions.

Material and methods

Phenotypes

The cow sample was comprised of 46,732 Holstein, 20,141 Montbeliarde, and 11,965 Nor-

mande all with known parents. Phenotypes were yield deviations as produced by French

national evaluation system [13]. A yield deviation is a performance adjusted for all non-genetic

effects of the model [14]. In case of repeated records, a yield deviation is adjusted for the per-

manent environmental effect and averaged per animal. The 12 traits were: fore udder attach-

ment (FUA), udder depth or development (UDD), udder cleft (UC), udder balance (UB),
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front teat placement (FTP), milk (MY), fat (FAT and FAT%), protein (PROT and PROT%)

clinical mastitis (CM) and somatic cell score (SCS). SCS are derived from Somatic Cell Counts

(SCC). SCC are obtained at each monthly test-day, and SCS are defined as SCS = 3+log2(SCC/

100,000). CM events are declared by the farmer and recorded by the technician at each test-

day. The analysis trait is defined by 1 if the cow has at least one clinical mastitis event in the lac-

tation, and 0 if no there is no event. SCS and CM are repeated over lactations. The model for

obtaining yield deviations was different according to the trait and all models included the

genetic additive effect. The model for SCS and CM (recorded in the first three lactations),

included the effect of herd x year, age at calving x parity x year, month of calving x parity x

year, preceding days dry (for later parities), and a permanent environmental effect. All models

assumed heterogeneous variances depending on herd-year. Each cow had one record for each

trait. UDD can be either udder depth (Holstein and Normande) or udder development (Mon-

tbeliarde), but treated as the same trait because they have similar definitions. Depending on

the trait, the number of animals with phenotypes ranged from 7,671 to 11,965 in Normande,

13,879 to 20,141 in Montbeliarde, and 32,491 to 46,732 in Holstein (Table 1). We estimated

variance components by fitting a multiple trait REML animal model as implemented in the

DMU software [15]. This study is based on already existing data hence we did not require ethi-

cal approval.

Genotyping, quality control, and imputation

All cows were genotyped using Illumina BovineSNP50 BeadChip (50k) or Illumina BovineLD

v.2 BeadChip. We used the UMD3.1 assembly of the bovine genome [16] for SNP chromo-

somal positions. We did not consider mitochondrial, X-chromosomal and Y-chromosomal

SNP, as well as unmapped SNP for further analyses. We examined 43,800 SNP currently used

in French genomic evaluation procedure [13]. Selection criteria was: call rate higher than 99%,

minor allele frequency (MAF) higher than 2% in at least one of the three breeds, lack of

Hardy–Weinberg Equilibrium (P < 10−4), technical quality assessed by their very low rate of

Mendelian mismatch between parents and progeny and known position of genome assembly.

Table 1. Characteristics of udder conformation, production and health traits in three French dairy breeds.

Trait Cows with traits Standard Deviation

MON1 NOR2 HOL3 MON1 NOR2 HOL3

Fore Udder Attachment (FUA) 17,330 7,671 32,491 1.18 1.26 1.19

Udder Depth or Development (UDD) 17,330 7,671 32,491 0.98 0.81 0.84

Udder Cleft (UC) 17,330 7,671 32,491 1.26 1.28 0.85

Udder Balance (UB) 17,330 7,671 32,491 0.79 0.82 1.39

Front Teat Placement (FTP) 17,330 7,671 32,491 1.11 1.14 0.96

Milk Yield (MY) 20,096 11,944 46,732 786 742 991

Fat Yield (FAT) 20,096 11,944 46,732 33.7 34.7 40.2

Protein Yield (PROT) 20,096 11,944 46,732 27.5 25.7 30.1

Fat Percent (FAT %) 20,096 11,944 46,732 1.26 1.28 0.85

Protein Percent (PROT %) 20,096 11,944 46,732 1.28 1.28 0.85

Clinical Mastitis (CM) 13,879 9,013 32,491 0.24 0.26 0.36

Somatic Cell Score (SCS) 20,141 11,965 46,732 0.93 0.90 0.96

1Montbeliarde;
2Normande;
3Holstein

https://doi.org/10.1371/journal.pone.0199931.t001
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We imputed cows genotyped from BovineLD v.2 BeadChip to 50k to obtain a genotype with-

out missing information. This step was performed within breed in the conventional pipeline

for genomic selection [13]. We imputed using FImpute software [17], and reference popula-

tion included all 50k genotyped male and female animals per breed. Imputation error rate,

measured in routine evaluation situation (and not in this study), varied from 0.2 to 2.5%

depending on whether parents were genotyped. Across breeds, best imputation accuracies

were observed in Montbeliarde which has the highest proportion of sires and dams genotyped

with 50k, while accuracies were lower in Holstein, a breed with a smaller portion of genotyped

dams, a lower percentage of 50k genotyped parents, and even a non-zero proportion of non-

genotyped (usually foreign) sires.

Statistical framework

GWAS was done within breed with the Mixed Linear Model Association (MLMA) method as

implemented in GCTA [18]. Because phenotypes were yield deviations already adjusted for

non-genetic effects, we did not consider additional fixed effects. For each phenotype and SNP

i, the model used in each breed was the following

y ¼ 1 mþ Z uþ wi si þ e ð1Þ

where y is a vector of yield deviations, μ is a mean; u is a vector of random additive poly-

genic effects and is� Nð0; G s2
uÞ where G is genomic relationship matrix based on all cows

with phenotypes per breed and all autosomes. Z is incidence matrix relating phenotypes y to

u, wi is a vector of genotypes for SNP i, si is the effect of SNP i, and e is a vector of random

residual effects. We calculated the relationship between two individuals’ j and k as

gjk ¼ 1

W

PW
i ¼ 1

ðxij � 2piÞðxik � 2piÞ
2pið1� piÞ

, xij being the number of alleles for individual j and SNP i and

pi is the observed allelic frequency, and, w was 43,800. We applied a genome-wide Bonfer-

roni correction on all 43,800 tests to account for multiple testing.

Candidate variant discovery

We used the Association Weight Matrix (AWM) procedure to identify candidate genes per

breed [8]. The AWM is a multiple trait approach that considers the genetic contribution of

correlated traits allowing selection of pleiotropic SNP associated with numerous traits rather

than a single trait. We classified trait information as either key or supportive trait, and the key

trait in this study was udder depth or development (UDD) which is the most important type

trait with the strongest relationship with mammary health and longevity. In addition, UDD is

an aggregate trait, combining size, attachments, balance and strength of support. Populating

the AWM starts with the selection of significant SNP from a GWAS [19]. The SNP additive

effects are z-scored normalized by deviating the allele substitution effects from their mean and

dividing by their standard deviation. We then created two matrices: (a) A z-scored additive

values matrix (b) The GWAS p-values matrix. In both cases, rows represent SNP and columns

represent traits. We then processed these matrices using the AWM algorithm, which includes

five steps: (1) Primary SNP Selection: We select SNP associated with key trait using a P-value

threshold (P < 0.05). (2): Exploring the dependency among traits: For the SNP selected in step

(1), and, for the same threshold (P< 0.05), we register the average number of non-key traits to

which the SNP are associated. In this study, that number was five traits. (3): Secondary SNP

Selection: We select SNP from step (1) associated with at least five other traits including at

least two udder traits. This step depends on correlation amongst traits and allows capturing

most SNP associated with remaining traits. (4): Exploiting the genome map: We annotated the

Genetic determinism of udder conformation and health
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SNP captured in step (1), and step (3) using the UMD3.1 Genome assembly [16]. We classified

the SNP that (i) mapped a gene, (ii) <10-kb to known genes, and, (iii) >10-kb to any coding

region. For genes represented by more than one SNP, we select the SNP associated with the

highest number of traits and has the lowest P-value average across all traits as representative

for that gene. (5): Populating the AWM: Each {i,t} cell value in the AWM matrix corresponds

to the z-score normalized additive effect of the ith SNP on the tth trait. This allows exploration

of trait correlations column-wise, and gene/SNP interactions row-wise. We then calculate the

SNP-based correlations and compare the SNP-based and genetic correlations, the latter being

calculated as pedigree-based restricted maximum likelihood (REML), established in the same

cows’ populations. We then use the AWM SNP matrix as the input for the PCIT algorithm

[20] and for any trio of SNP; we estimate the first order partial correlation coefficients to iden-

tify meaningful gene-gene interactions. We annotated and clustered gene ontology (GO)

annotations for significant PCIT gene-gene interactions using Cytoscape [21]. Finally, we

compare the gene clusters amongst the three breeds and plot the most significant cluster.

Results

GWAS for all traits

Collectively for 78,440 cows, imputation resulted in a genotype density of 43,800 SNP. Of

these, 38,827, 38,109, and 40,810 SNP had a MAF greater than 0.1 in Montbeliarde, Nor-

mande, and Holstein. Distribution of allele frequencies (MAF) of imputed genotypes was

almost uniformly distributed across the MAF classes (Fig 1).

We performed GWAS for real and imputed SNP and yield deviations (YD) for 12 traits:

five udder conformation traits, five milk production phenotypes, somatic cell score and clinical

mastitis (Table 2). Fig 2 presents Manhattan plots for the key trait (Udder depth or develop-

ment) for three breeds and S1 Fig for other traits. As expected, the number of significant SNP

increased with breeds sample size. Holstein had 7,029 associated SNP, Montbeliarde had 1,762

Fig 1. SNP variants as expressed in MAF in three French dairy breeds. The minor allele frequency of SNP variants in three French dairy breeds.

https://doi.org/10.1371/journal.pone.0199931.g001
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associated SNP, and, Normande had 1,039 associated SNP (Table 2). There was an overlap of

significant SNP across the breeds. Some 483 SNP were common between Holstein and Mon-

tbeliarde, 356 SNP were common between Holstein and Normande, 233 SNP were common

between Montbeliarde and Normande, and 206 SNP were common among three breeds (Fig

3). We observed overlap of significant SNP between udder and milk production traits. Irre-

spective of the breed, 15 SNP overlapped in udder related traits, and 205 SNP overlapped in

milk production phenotypes. When considering 1SNP:1Gene, 3,651 significant SNP were

close to genes (<10-Kb) across three breeds. Of these, 1,017 were highly associated with udder

conformation traits, 2,502 with production traits and 132 with somatic cell score and clinical

mastitis. The 2,673 additional SNP satisfying step 4 of the AWM algorithm (as described in

M&M) was augmented with the 3,651 significant SNP from GWAS forming the AWM matrix

with 6,324 SNP (S1 Table). Of these, 1,309 SNP were common across three breeds, and they

mapped 1013 genes for 12 traits.

Significant SNP associated with the key trait were evident for Holstein and Montbeliarde,

and the most significant SNP that mapped a gene for the key trait is presented per chromo-

some in Table 3. In total, 17 SNP were most significant per chromosome SNP and mapped to

a gene in Holstein and Montbeliarde. This included eight for Montbeliarde, nine for Holstein.

Two lead SNP in Montbeliarde were rs41640614 (BTA16, SOAT1 gene, p = 3.47x10-15, Effect

size = -0.185(0.02), MAF = 0.08) and rs108972236 (BTA19, ABCA5 gene, p = 2.20x10-11, Effect

size = -0.112(0.01), MAF = 0.20). The two lead SNP in Holstein were rs41641987 (BTA19,

PAFAH1B1 gene, p = 1.51x10-13, Effect size = -0.128(0.02), MAF = 0.04) and rs110651226

(BTA29, FOXRED1 gene, p = 2.30x10-12, Effect size = 0.059(0.01), MAF = 0.45).

We observed SNP associated with FUA and FTP in all breeds. The most significant of these

signals were in Holstein and Montbeliarde and they include: BTA17 (rs41609100, FGF2 gene,

Effect size = -0.12(0.01), p = 4.95x10-12, MAF = 0.073, Holstein), BTA20 (rs109428015, PRLR

Table 2. Summary of GWAS for udder related traits in three French dairy cattle breeds.

Trait2 Significant SNP1 Significant SNP close3 to gene

MON4 NOR5 HOL6 MON4 NOR5 HOL6

Fore Udder Attachment 45 29 558 32 20 235

Udder Depth or Development 204 38 57 84 13 47

Udder Cleft 37 24 402 29 22 237

Udder Balance 100 17 199 58 16 98

Front Teat Placement 125 37 45 64 29 33

Milk Yield 70 53 684 30 42 182

Fat Yield 68 47 515 31 41 112

Protein Yield 5 10 362 2 6 137

Fat Percent 481 390 1,498 136 105 480

Protein Percent 613 382 2,362 214 168 816

Clinical Mastitis 14 12 336 5 6 113

Somatic Cell Score 11 8

1Significant SNP = A SNP that has satisfied the Bonferroni threshold for a trait;
2Trait = A yield; deviation: phenotype corrected for environmental variances;
3Significant SNP within 10-kb of gene;
4Montbeliarde;
5Normande;
6Holstein

https://doi.org/10.1371/journal.pone.0199931.t002
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gene, Effect size = -0.22(0.03), p = 3.16x10-16, MAF = 0.033, Holstein), and, BTA26

(rs42088948, BTRC gene, Effect size = -0.10(0.01), p = 6.89x10-4, MAF = 0.068, Montbeliarde).

Genetic parameters and genomic AWM-based correlations

Heritability coefficients (diagonal), pedigree-based genetic correlations (upper diagonal), and

SNP correlations (lower diagonal) are presented in Table 4. Heritability values are close to

reported values for type traits [22], Fore udder attachment, (FUA) is 0.34, 0.26, 0.33 for Mon-

tbeliarde, Normande, and Holstein and higher for the other traits. For example, for Milk yield

(MY), they reached 0.50, 0.61, and 0.54 in Montbeliarde, Normande and Holstein, respec-

tively. These high values reflect the nature of the yield deviations (YD), which is a mean of rec-

ords for repeated traits. YD is adjusted for permanent environment effect and thereby has a

reduced non-genetic variability. As an example, assuming additive genetic variance of milk

Fig 2. Manhattan plots for the key trait: Udder depth (Holstein and Normande) or development (Montbeliarde breed).

https://doi.org/10.1371/journal.pone.0199931.g002
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yield is 0.3, permanent environment variance is 0.2, and residual variance is 0.5 (we divide the

residual variance by 2.5 records on average for production), the heritability of the correspond-

ing YD is 0.3 / (0.3 + 0.5/2.5) = 0.6. These high values are very favorable for GWAS detection

power.

Mammary morphology genetic correlations to production traits ranged from positive for

fore udder attachment (FUA) and milk yield (MY) in Montbeliarde (0.42) and Normande

(0.28) to medium negative for udder depth or development (UDD) and protein yield (PROT)

in Normande (-0.56) and front teat placement (FTP) and fat yield (FAT) in Holstein (-0.33).

SNP correlations were numerically different compared to genetic correlations; however, the

correlation was generally in the same direction. For instance, the genetic correlation between

fore udder attachment (FUA) and udder balance (UB) was 0.40, 0.63 and 0.39, whereas, SNP

correlations for these two traits was 0.59, 0.16 and 0.16 for Montbeliarde, Normande and

Fig 3. Summary of GWAS significant SNP and breed overlap for 12 traits in three French dairy breeds.

https://doi.org/10.1371/journal.pone.0199931.g003
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Holstein breeds, respectively. There were moderate to zero genetic correlations between milk

yield (MY) and FUA for Montbeliarde (0.42), Normande (0.28), and Holstein (0), and low

SNP correlation (Montbeliarde (0.10), Normande (0.16) and Holstein (0.16)) between MY and

udder depth or development (UDD). Holstein breed had a highly positive genetic (0.49) and

SNP correlation (0.59) between front teat placement (FTP) and clinical mastitis (CM), a trend

that was not evident in other two breeds. However, Montbeliarde breed showed a strong SNP

correlation between FTP and CM (0.33) and between UDD and CM (0.18). Other trends evi-

dent from genetic correlations were between FUA and PROT for Montbeliarde (0.39) and

Normande (0.26), FUA and CM for Montbeliarde (0.19) and a moderate genetic correlation

between FTP and CM for Holstein (0.49). Genetic and SNP correlations were also comparable

between FTP and PROT for all breeds, with genetic/SNP correlation being from medium in

Montbeliarde (0.21 / 0.12) and Holstein (-0.34 / -0.1) to low in Normande (-0.12 / -0.1). How-

ever, the trend deviated between udder balance (UB) and fat percent (FAT %) with minimal

genetic correlation in Normande (0.22) and no genetic correlation in Montbeliarde and Hol-

stein but with moderate SNP correlations in Montbeliarde (-0.41), Normande (0.38) and

Holstein (0.38). In general, genetic correlations are in the range of usual values, with high cor-

relations between milk, fat and protein, a moderately negative correlation between production

and type traits, moderately positive correlations between conformation traits, and low correla-

tions otherwise. However, though there were deviations between genetic and SNP correlations

in some of the traits, most traits correlations were in the same direction thus drawing plausibil-

ity of SNP correlated traits.

Table 3. Most significant SNP per chromosome associated with udder depth/development and mapping a gene.

Breed SNP1 BTA2 Pos3 (bp) Effect allele MAF4 Effect size SE Effect size p5 Gene6

Montbeliarde rs43293677 2 20760409 G 0.451 0.084 0.01 2.60X10-08 HOXD1

Montbeliarde rs29019267 3 34184021 A 0.367 -0.092 0.01 3.67X10-11 SORT1

Montbeliarde rs43704946 12 69648659 G 0.226 -0.095 0.01 1.97X10-08 GPR180

Montbeliarde rs109080985 13 40031719 A 0.46 0.075 0.01 2.63X10-07 CFAP61

Montbeliarde rs110761656 15 82317986 A 0.364 0.066 0.01 3.15X10-04 CTNND1

Montbeliarde rs41640614 16 62100110 A 0.08 -0.185 0.02 3.47X10-15 SOAT1

Montbeliarde rs108972236 19 61919633 C 0.201 0.112 0.01 2.20X10-11 ABCA5

Montbeliarde rs41256881 22 21326038 G 0.315 0.078 0.01 1.49X10-06 ARL8B

Montbeliarde rs42049077 24 31765644 T 0.105 0.127 0.02 1.00X10-07 ZNF521

Holstein rs109049511 13 67557015 T 0.272 -0.051 0.01 1.07X10-06 TTI1

Holstein rs41808096 16 51621826 C 0.199 0.059 0.01 1.39X10-06 PLCH2

Holstein rs110859130 17 45680965 T 0.035 -0.128 0.02 5.57X10-07 FBRSL1

Holstein rs41641987 19 24136906 A 0.13 -0.088 0.01 1.51X10-13 PAFAH1B1

Holstein rs42067431 25 28003780 C 0.413 -0.055 0.01 2.08X10-10 PHKG1

Holstein rs41565991 27 27804403 A 0.194 -0.059 0.01 2.66X10-06 GGFBPP5

Holstein rs42147106 28 42881677 T 0.438 -0.047 0.01 1.94X10-06 PTPN20

Holstein rs110651226 29 30003729 A 0.45 0.059 0.01 2.30X10-12 FOXRED1

1SNP = Reference SNP ID as assigned by NCBI;
2BTA = Bos taurus autosome;
3Position = base pair position in BTA (UMD3);
4MAF = minor allele frequency;
5p = Bonferroni corrected P-value;
6Gene = SNP annotation mapping a gene

https://doi.org/10.1371/journal.pone.0199931.t003
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Gene ontology (GO) for AWM selected genes

We considered main ontology domains including, biological processes, cellular component,

and molecular functions. We observed 39 gene clusters (S2 Table) and Table 5 presents the

Table 4. Heritability (diagonal), genetic1 (upper-diagonal), and SNP2 (lower-diagonal) correlations of udder conformation, milk production and health traits in

three French dairy breeds.

Breed Trait3 FUA UDD FTP UB UC MY FAT PROT FAT% PROT% CM SCS

Montbeliarde FUA 0.34 -0.11 -0.28 0.40 0.37 0.42 0.43 0.39 0.03 -0.05 0.19 -0.05

UDD 0.54 0.37 -0.39 -0.38 0.37 0.33 0.32 0.31 -0.02 -0.08 0.09 0.03

FTP 0.04 -0.01 0.43 -0.24 -0.15 0.20 0.22 0.21 0.06 0.04 0.06 0.02

UB 0.59 0.66 -0.21 0.36 -0.03 0.02 0.01 0.00 0.00 -0.03 -0.09 -0.02

UC 0.65 0.61 -0.05 0.4 0.30 -0.01 -0.01 -0.01 -0.05 -0.06 0.00 -0.05

MY 0.33 0.1 -0.05 0.03 0.17 0.50 0.88 0.94 -0.22 -0.13 0.02 0.02

FAT -0.02 -0.07 0.08 -0.1 -0.06 0.31 0.44 0.90 0.26 0.09 -0.01 0.02

PROT -0.01 -0.09 0.12 -0.05 -0.08 0.42 0.15 0.44 -0.06 0.20 0.01 0.05

FAT% -0.32 -0.35 0.09 -0.41 -0.32 -0.26 0.25 0.11 0.68 0.46 -0.03 -0.02

PROT% 0.01 0.09 0.19 0.09 0.02 -0.23 0.29 0.15 0.15 0.66 -0.03 0.00

CM 0.25 0.18 0.33 0.08 0.18 0.75 -0.1 -0.01 -0.17 0.18 0.03 0.20

SCS 0.54 0.75 -0.08 0.55 0.7 0.03 -0.11 -0.05 -0.26 0.01 0.04 0.39

Normande FUA 0.26 0.42 0.39 0.63 0.15 0.28 0.27 0.26 -0.01 -0.03 -0.07 -0.04

UDD 0.21 0.33 0.27 0.51 0.64 -0.53 -0.54 -0.56 -0.07 -0.23 0.00 -0.01

FTP -0.04 0.03 0.39 0.38 0.49 -0.13 -0.10 -0.12 0.06 0.02 -0.02 -0.02

UB 0.16 0.11 -0.19 0.30 0.35 0.01 0.10 0.06 0.22 0.23 -0.01 -0.02

UC 0.2 0.21 -0.08 0.72 0.33 0.03 0.00 0.02 -0.04 -0.31 0.00 -0.01

MY -0.53 0.16 0.06 0.1 0.06 0.61 0.90 0.95 -0.16 0.04 0.00 -0.10

FAT 0.08 0.12 0.09 0.18 0.15 0.78 0.60 0.93 0.28 0.25 0.00 0.00

PROT 0.01 0.37 -0.1 0.4 0.38 0.27 0.37 0.62 -0.01 0.33 0.02 -0.05

FAT% 0.28 0.29 -0.21 0.38 0.44 0.21 0.31 0.43 0.63 0.50 -0.03 0.06

PROT% 0.19 0.19 0.02 -0.09 0.01 0.12 0.12 0.09 0.16 0.61 -0.03 0.03

CM 0.07 0.37 0.09 -0.01 0.05 0.01 -0.01 -0.06 0.04 0.30 0.03 0.37

SCS -0.01 0.06 0.00 -0.27 -0.25 0.00 -0.1 -0.18 -0.11 0.33 0.10 0.40

Holstein FUA 0.33 0.49 -0.33 0.39 0.09 0.00 -0.02 -0.01 -0.04 -0.05 -0.07 -0.02

UDD 0.21 0.46 -0.16 0.42 0.19 -0.07 -0.09 -0.09 -0.02 -0.06 -0.01 0.01

FTP -0.04 0.03 0.48 -0.29 -0.35 -0.34 -0.33 -0.34 0.06 -0.05 0.49 -0.04

UB 0.16 0.11 -0.19 0.23 0.27 0.05 0.05 0.07 -0.01 0.09 0.12 -0.02

UC 0.2 0.21 -0.08 0.72 0.33 -0.02 -0.01 0.00 -0.05 0.02 -0.05 0.01

MY 0.09 0.16 0.06 0.1 0.06 0.54 0.85 0.96 -0.43 -0.03 -0.01 0.13

FAT 0.08 0.12 0.09 0.18 0.15 0.78 0.49 0.90 0.10 0.26 0.00 -0.03

PROT 0.01 0.37 -0.1 0.4 0.38 0.27 0.37 0.48 -0.27 0.25 -0.03 0.07

FAT% 0.28 0.29 -0.21 0.38 0.44 0.21 0.31 0.43 0.65 0.51 0.01 -0.10

PROT% 0.19 0.19 0.02 -0.09 0.01 0.12 0.12 0.09 0.16 0.58 -0.01 -0.10

CM 0.07 0.37 0.59 -0.01 0.05 0.01 -0.01 -0.06 0.12 -0.03 0.02 -0.07

SCS -0.01 0.06 0.00 -0.27 -0.25 0.00 -0.1 -0.18 -0.04 0.04 0.33 0.38

1Genetic correlation = correlations based on phenotypic data as estimated using a pedigree based REML;
2SNP correlation = correlations estimated from AWM matrix;
3Trait = A yield deviation: phenotype corrected for environmental variances: FUA: fore udder attachment, UDD: udder depth development, FTP: front teat placement,

UB: udder balance, UC: udder cleft, MY: milk yield, FAT and FAT%: fat yield and content, PROT and PROT%: protein yield and content, CM: clinical mastitis, SCS:

Somatic cell score

https://doi.org/10.1371/journal.pone.0199931.t004
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Table 5. Top five clusters of transcription factors/genes and associated GO terms associated with udder morphology in three French dairy breeds.

Transcription factor1/genes GO2 Term Gene

count

p Top Associated Genes3

cluster1 Enrichment Score4: 9.17

mammary gland epithelium development 134 4.64 x10-16 [BTRC, ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, TGFBR2]

regulation of response to stimulus 3653 7.14 x10-6 [BMP7, GCH1]

gland development 429 6.50 x10−12 [ROR2, RORA, SYCP2, TCF7L2]

epithelium development 1057 6.64 x10-9 [FGFR2, HHIP, RDH10, RSPO2, TNC]

tissue development 1714 2.10 x10-7 [AKT3, CTNNA2, CTNNA3, GNAI3, INADL, MAGI3, PARD3, PPP2R2B, PRKCB,

PRKCE, PRKCH, PTEN, RAB3B]

animal organ development 3022 2.66 x10-7 [ADGRB1, ADGRB3, ANGPT1, BMPER, CALCRL, COL8A1, CSPG4,

EPAS1, FGF2, FGFR2, FN1, GJA5, HDAC9, HSPG2, LOXL2, MAP2K5,

MTDH, NOV, NRP2, NRXN3, PDCL3, PRKCB, PTEN, PTK2, ROCK2,

RORA, SH2D2A, SHB, SPI1, STAB1, TGFBR2, THSD7A, TIE1, VAV3]

system development 4309 5.38 x10-5 [HMGCLL1, HMGCS2, OXCT1]

multicellular organism development 4855 2.00 x10-4 [GALNT13, GALNT14, GALNT18, GALNTL6, GCNT3]

cluster2 Enrichment Score4: 8.92

mammary gland alveolus development 68 5.16 x10-16 [ESR1, PRLR]

intracellular signal transduction 2681 6.97 x10-5 [ABCA1, SYCP2]

regulation of intracellular signal transduction 1632 4 x10-4 [ANXA4, CD58]

cluster3 Enrichment Score4: 8.41

positive regulation of macromolecule

metabolic process

2863 2.77 x10-9 [CHRNB2, GPAM, IL7, PELI1, SPTA1, STAT5B, VAV3, VTCN1]

positive regulation of cellular metabolic

process

2899 2.62 x10-9 [ARPC2, AXIN2, BAIAP2, CDH4, CUX1, CUX2, EPB41L5, EPHA4, FBXW8, FN1, FYCO1,

LPAR3,

LRP8, LRRC16A, MAP2K2, NTRK2, PTPRD, RREB1, RUFY3, SEMA4D, TCF7L2, TGFB3,

TGFBR2]

positive regulation of metabolic process 3563 1.46 x10-7 [PIWIL2, PLCB1]

negative regulation of biological process 4579 8.50 x10-6 [DAB1, FYCO1, PTEN, PTK2, RTN4, RUFY3, SEMA3B, SEMA4D, SYNGAP1]

cluster4 Enrichment Score4: 8.26

branching morphogenesis of an epithelial

tube

146 5.32 x10-9 [CD44, EYA1, FAT4, FGF2]

morphogenesis of a branching epithelium 178 1.29 x10-8 [ADORA1, ARRB1, CACNA1A, CACNA1B, GABBR2, GABRA1, GNAI3,

GNB5, GNG7, GNGT2, PDE11A, PDE1A, PDE2A, PRKACB, PRKCB]

epithelial tube morphogenesis 305 1.65 x10-7 [FGFR2, HHIP, RDH10, RSPO2, TNC]

tube morphogenesis and development 341 2.28 x10-7 [AARS2, ALKBH8, CDK5RAP1, CDKAL1, NDC1, NUP210, NUP93, SARS, TSEN54]

organ morphogenesis 905 2.63 x10-5 [CHRNB2, KCNA2]

cluster5 Enrichment Score4: 7.99

cellular response to organic substance 2352 2.89 x10-9 [LBP, NDUFA2]

cellular response to chemical stimulus 2845 1.28 x10-7 [ABCC9, AKAP6, CACNA1D, CASQ2, HCN1, KCNA2, KCNAB2, KCNB2, KCNC1,

KCND3, KCNH1,

KCNK2, KCNMA1, KCNMB1, KCNN2, KCNN3, KCNT1, KCNT2, KCNV2, STK39,

YWHAE]

response to organic substance 2981 2.47 x10-7 [ASS1, SMYD3, SRD5A1, TRIM63]

response to chemical 4373 6.51 x10-5 [MCM3, POLD1, POLE3, PRIM2, SMARCAL1]

1Transcription factor = a protein that controls rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence.

Sometimes its homonymous to gene;
2GO = Gene Ontology as expressed in main domains: Biological, Cellular and Molecular;
3Top Associated Genes = most probable associated candidate gene of interest for udder morphology;
4Enrichment Score = measure of over-represented (or under-represented) GO terms using AWM gene annotations

https://doi.org/10.1371/journal.pone.0199931.t005
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top five biological processes that are relevant for udder morphology and health traits (S3

Table contains complete gene ontology list for this study). Top cluster had eight GO terms

with the most significant GO term being “mammary gland epithelium development”

(p = 4.64x10-16). Among the AWM-PCIT, genes ten were transcription factors (TF)

directly associated with the terms “mammary gland development”, “mammary gland

duct morphogenesis", mammary gland alveolus development”, “tissue development”, and,

“epithelial tube morphogenesis”. These ten TF include GLI2 (BTA2:72.98Mb), IQGAP3
(BTA3:14.31Mb), PGR (BTA4:62.53Mb), ESR1 (BTA9:89.97Mb), FGF2 (BTA17:35.23Mb),

PRLR (BTA20:39.13Mb), TGFBR2 (BTA22:5.14Mb), RREB1 (BTA23:47.90Mb), BTRC
(BTA26:22.06Mb), and, FGFR2 (BTA26:41.82Mb). Fig 4 presents their GO term interactions

with percentage association. Other GO terms in the top cluster included “gland develop-

ment” (p = 6.50x10-12) and “system development” (p = 5.38x10-5). Top GO term for the

second cluster was “mammary gland epithelium development” (p = 5.16x10-16) while “regu-

lation of intracellular signal transduction” was the least significant term in this cluster

(p = 4x10-4). There was an enrichment for “neuropathic pain-signaling in dorsal horn neu-

rons pathway” (p = 2.57x10-8), “G-protein coupled receptor signaling” (p = 1.07x10-7) as well

as the “CREB signaling in neurons” (p = 7.24x10-7). Other pathways detected were “cAMP-

mediated signaling” (p = 2.88x10-5), “synaptic long-term depression (p = 8.71x10-7), “axonal

guidance signaling” (p = 1.15x10-6), and “synaptic long-term potentiation” (p = 1.58 x10-5).

Pathway enrichments detected (S3 File) included “Calcium: cation antiporter activity”

and the “Calcium-activated Potassium channel activity” for molecular functions (p<10−3),

whereas, for biological processes, “dendrite development” and “putrescine biosynthetic” pro-

cess were most represented (P<10−3) while “postsynaptic density” and “presynaptic mem-

brane” were top GO terms for cellular components.

Discussion

Previously, Fortes et al. [8] and Ramayo-Caldas et al. [23] suggested the Association Weight

Matrix’s (AWM) as an alternative tool to identify genes that would otherwise be missed by tra-

ditional single-trait GWAS. This study further supports that suggestion by focusing on GWAS

for other kinds of traits, such as udder morphology and health traits common across three

French dairy breeds. Though single-trait-single-SNP GWAS focus is on most significant SNP,

they can, aid in identifying lead SNP for QTL associated with a given trait. Our study identified

three lead SNP associated with front teat placement (FTP) and fore udder attachment (FUA).

Fig 4. Ten candidate gene-GO term interactions with percentage association in three French dairy breeds.

https://doi.org/10.1371/journal.pone.0199931.g004
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These SNP mapped FGF2, PRLR, and BTRC genes. PRLR gene (prolactin receptor) was previ-

ously associated with milk production traits in Finnish Ayrshire dairy cows [24]. Wang et al.

[25] reported the association of FGF2 gene (Fibroblast growth factor 2) to fat yield and per-

centage and somatic cell score in US Holstein. Coleman-Krnacik et al. [26] reported the

expression of FGF2 gene in the bovine mammary gland and uterine endometrium (UE). In the

mammary gland, the FGF2 gene may play a role in development and reorganization of the

mammary gland, while in UE, FGF2 gene is mainly expressed throughout estrous cycle and

early pregnancy. BTRC gene (Beta-Transducing Repeat Containing E3 Ubiquitin Protein

Ligase) is an F-box protein involved in Wnt/β-Catenin signaling pathway and indirectly acti-

vates nuclear factor kappa-B (NF-kB)[27]. Raven et al. reported these pathways to be highly

relevant during mammary development and pregnancy, and as such, could have a major func-

tional role in lactation [27]. The AWM-PCIT algorithm identified interacting candidate genes

for udder conformation traits by first establishing SNP based correlation and fixing udder

depth or development (UDD) as the key trait when constructing the AWM SNP matrix. These

genes were represented by several biological processes involved in positive regulation of cellu-

lar biosynthetic processes and cell development, suggesting an endogenous characterization

linked to udder morphology [28]. Fortes et al. [10] reported more similar SNP and genetic cor-

relations for traits with moderate to high heritability and less similar correlations between

traits with low heritability (Table 4). In our study, most traits had a heritability >10% thus aid-

ing both GWAS detection power and AWM SNP detection.

The AWM was assessed for gene ontology (GO). The top GO terms were Calcium cation

antiporter and Calcium-activated Potassium channel activity. As reported by Paulsen et al.

[29], the former is a member of the cation diffusion facilitator (CDF) superfamily which are

integral membrane proteins that increase tolerance to divalent metal ions, whereas, the latter is

involved in ionic signaling in cells, a critical function for hormonal control of cell proliferation

and differentiation [30]. Control of calcium signaling is likely to have profound effects on

mammary physiology and pathophysiology. Their high significance level can be explained by

the fact that mammary glands extract large quantities of calcium from the plasma during lacta-

tion [31], to ensure sufficient calcium concentration in milk. Dendrite development and

putrescine biosynthetic processes were top biological GO terms. Dendritic cells (DC) are

accessory cells of the mammalian immune system whose work is availing antigen material to T

cells of the immune system [32–33]. This ability to stimulate native T-cells makes this result

significant because it can directly be applied to improve udder health. DC has also been

reported to play a pivotal role in the initiation of an adaptive immune response [34]. Putres-

cine, as a member of polyamine pathway, is regulated by the periovulatory endocrine milieu

[35].

The central pathways that showed enrichment were “Neuropathic pain-signaling in dorsal

horn neurons pathway," and, “CREB signaling pathway." Neuropathic pain is the pain after

nerve injury whereas the dorsal horn (tip of the spinal cord) pathways have been shown to

offer substantial overlap with spinal projections from adjacent mammary glands in model

organisms [36]. Reflex milk ejection may result from the strong integration of sensory input

from mammary glands afferents that terminate in the dorsal horn. CREB (cyclic-AMP

response element-binding) protein family of transcription factors (TF—a protein that con-

trols the rate of transcription of genetic information from DNA to messenger RNA, by bind-

ing to a specific DNA sequence [37]) play a crucial role in supporting the survival of sensory

neurons [38]. The intervention of sensory neurons stimulates cells to secrete nerve growth

factor (NGF) via the sympathetic nervous system (SNS) that maintains homeostasis [39].

NGF mediate its functions through ligation of tyrosine kinase (Trk) receptors [40]. Regula-

tion of Trk signaling is by a variety of intracellular signaling cascades, which include MAPK
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pathway, which promotes cell continuation and growth [41]. Previous studies indicate that

Trk could be multifunctional growth factors that exert various effects through their receptors

on non-neuronal cells such as mammary ducts [30].

Fontanesi et al. [8] reported that long-term transcriptomic adaptations of tissues depend on

the action of external stimuli that induce action of cellular functions on transcription factors

(TF) [42]. In this study, we identified 39 interacting gene clusters and the most significant

cluster had ten TF directly involved with mammary gland development and mammary gland

duct morphogenesis: BTRC, ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, and,

TGFBR2. These TF are homonymous with genes encoding them. This top cluster is directly

involved in mammary gland development, regulation of response to a stimulus, gland develop-

ment, epithelium development, tissue development, animal organ development, system devel-

opment and multicellular organism development. This was partly in agreement to works

reported by Yang et al. [43] on QTL associated with follicle stimulating hormone production

in Chinese Holstein cattle.

Conclusion

Our study suggests the usefulness of system-based approaches to identify candidate genes

from interacting gene networks in a multi-breed context. We achieved this by exploiting asso-

ciations between correlated traits. The reluctant inclusion of intergenic SNP leaves the possi-

bility that the AWM approach was not capturing significant SNP such as trans-activators.

Nonetheless, the AWM proved to be more efficient for integrating related complex traits and

analyzing thousands of SNP and therefore appropriate for the analysis of these complex traits.

When applied to our dataset, it predicted gene interactions that are consistent with the known

biology of udder morphology and health captured known TF (e.g., ESR1, FGF2, GLI2, PGR
and BTRC), and provided new candidate genes for udder morphology. This experiment may

be replicated using whole genome sequence data and other independent datasets.
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