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Abstract

The liver is a complex organ governing several physiological processes that define biologi-

cal mechanisms affecting growth, feed efficiency and performance traits in all livestock spe-

cies, including pig. Proteomics may contribute to a better understanding of the relationship

between liver functions and complex production traits in pigs and to characterize this spe-

cies as biomedical model. This study applied, for the first time, a label-free liquid chromatog-

raphy-mass spectrometry (LC-MS) proteomic approach to compare the liver proteome

profiles of two important heavy pig breeds, Italian Duroc and Italian Large White. Liver speci-

mens were collected (after slaughtering) from performance tested pigs of these two breeds,

raised in standard conditions. The label-free LC-MS method captured a total of 501 proteins

of which 200 were subsequently considered in the between breeds comparison. A statistical

pipeline based on the sparse Partial Least Squares Discriminant Analysis (sPLS-DA), cou-

pled with stability and significance tests, was applied for the identification of up or down reg-

ulated proteins between breeds. This analysis revealed a total of 25 proteins clearly

separating Italian Duroc and Italian Large White pigs. Among the top proteins differentiating

the two breeds, 3-ketoacyl-CoA thiolase, mitochondrial (ACAA2) and histone H2B type 2-F

(HIST2H2BF) were up-regulated in Italian Duroc pigs and carboxylesterase 3 (CES3) and

ketohexokinase (KHK) were up-regulated in Italian Large White pigs. Fatty acid synthase

(FASN), involved in fatty acid metabolism and encoded by a gene located in a QTL region

for fatty acid composition, was up-regulated in Italian Large White pigs. The in silico protein

interaction analysis showed that 16 of these proteins were connected in one big module.

Bioinformatic functional analysis indicated that differentially expressed proteins were

involved in several biological processes related to the metabolism of lipids, amino-acids,

carbohydrates, cofactors and antibiotics/drugs, suggesting that these functions might distin-

guish Italian Duroc and Italian Large White pigs. This pilot comparative proteomic analysis

of the porcine liver highlighted several biological factors that could determine the peculiar
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production potentials of these two heavy pig breeds, derived by their different genetic

backgrounds.

Introduction

The liver is an important metabolic organ that governs many physiological processes that

define biological mechanisms leading to growth, feed efficiency and several other economically

relevant traits in all livestock species, including pig. The liver is involved in lipid oxidation, is a

primary source of proteins and the centre of amino acid metabolism, is responsible for the

secretion of many proteins into the blood and interplays with this circulating tissue for the

transfer of amino acids and energy compounds and the disposal of waste metabolites, i.e.

derived by the protein degradation in the form of urea metabolism [1, 2].

The construction of liver proteome maps [3, 4] and the establishment of the Human Liver

Proteome Project (HLPP) by the Human Proteome Organisation (HUPO) [5] are important

resources for the study of liver function not only in humans but also in all animal species [6,

7]. Indeed, a better understanding of the metabolic processes being undertaken in the hepato-

cytes will eventually be a step forward in managing animal growth and feed efficiency. In this

context, proteomics can help to unravel the variations in the metabolic pathways of the hepato-

cytes in healthy and diseased animals and to identify biomarkers that could be applied in

breeding programmes. Proteomic information in livestock species can be also useful to define

animal models to better characterize liver physiology and related diseases [8, 9].

Despite these key roles and envisaged potential applications, the interest of the animal sci-

ence sector on liver proteomics has been slowly increasing over the last years. For example,

Timperio et al. [10] compared the cattle liver proteome profiles using traditional proteomic

approaches [including two-dimensional polyacrylamide gel electrophoresis (2DE) and mass

spectrometry (MS)], assuming that differences could be imputed to genetic diversity between

dairy and beef breeds [10].

A first comprehensive proteomic analysis of porcine hepatic cells was achieved by Caperna

et al. [11] who analysed three-lines hybrid pigs (Landrace × Yorkshire × Poland China). This

study produced 2DE maps of cytosol and membrane fractions from hepatocytes that were sub-

sequently characterized by MS analysis. A similar approach was used by Wang et al. [12] and

Liu et al. [13] to investigate how intrauterine growth restriction affected the liver proteome in

new borne and fetal pigs.

More recently, gel-free proteomic approaches have risen in popularity [14] and have been

also applied in livestock. Tang et al. [15] investigated the heat stress response in broiler liver

using a gel-free method, i.e. sequential window acquisition of all theoretical spectra (SWATH)-

MS, reaching a good resolution that was able to quantify about 2,400 proteins. One tenth of

these proteins was differentially expressed between the controls and the heat stressed group.

Other MS based proteomics methods, such as label-free liquid chromatography (LC)-MS, have

become more frequently adopted for quantifying protein expression and comparing different

samples. This method can also give the possibility to better investigate hydrophobic proteins

with low or high molecular weights that are quite challenging to be analysed using traditional

proteomic approaches [14].

It is well known that pig breeds and lines differ in their potentials for many production and

economically relevant traits (like growth rate, feed efficiency, carcass and meat quality traits,

reproduction performances and rusticity) that might affect their use or choice in various
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production systems and breeding programmes. These traits can be considered as external traits or

end phenotypes and are the outcome of complex biological processes and interactions. Therefore,

a more detailed description of these phenotypes can be obtained only adding intermediate or

molecular information, which can dissect the biological mechanisms underlying their final expres-

sion [16]. This intermediate level that links the genetic layer (defined by the genetic variability)

and the external phenotypes (i.e. production traits) includes internal phenotypes such as metabo-

lite and protein quantitative and qualitative profiles [17]. Recently, comparative metabolomic

analyses of plasma and serum of two Italian heavy pig breeds (Italian Duroc and Italian Large

White) have identified biomarkers that might explain the metabolic differences between these

breeds [18]. Italian Duroc and Italian Large White are two heavy pig breeds, selected under the

national pig breeding program, that differ for several economically important traits (e.g. growth

rate, feed efficiency, intermuscular fat deposition, meat quality, rusticity and reproduction traits)

[19–21]. These breeds are commonly used in crossbreeding plans to produce final pigs, for the

production of high quality dry-cured hams [19–21].

This study characterized and compared the liver proteomic profiles of Italian Duroc and

Italian Large White pigs using a quantitative label-free LC-MS proteomic approach. The final

aim was to identify intermediate phenotypes that might capture biological differences between

these two porcine genetic types and then inform the biological mechanisms underlying their

different production performances.

Materials and methods

All animals used in this study were kept according to the Italian and European legislations for

pig production. All procedures described here were in compliance with Italian and European

Union regulations for animal care and slaughter. Animals were slaughtered in a commercial

abattoir following standard procedures. Animals were not fasted for the purpose of this study.

Fasting was part of the standard pre-slaughtering procedures. Animals were raised in an

approved performance tested structure. Pigs were not raised or treated in any way for the pur-

pose of this study and for this reason no other ethical statement is needed.

Samples

Five Italian Duroc gilts and five Italian Large White gilts were included in this study. Animals

did not have common grandparents. Gilts from both pig breeds were performance-tested at

the Test Station of the National Pig Breeder Association (ANAS). Performance evaluation

started when the pigs were 30 to 45 days of age and ended when the animals reached about

155 ± 5 kg live weight. Details of performance testing system in Italian heavy pigs of these two

breeds are reported in [22–24].

The management of all pigs included in this study with regard to housing, feeding, handling

and transportation was the same. All animals were fed with the same standard commercial

feed for fattening pigs under the production rules of the Parma and San Daniele dry-cured

ham consortia. After a fasting period of 12 h, all animals, which were nine months old (and

weighting 155 ± 5 kg), were transported in the morning in a commercial abattoir, where they

were electrically stunned and then slaughtered under controlled conditions. Then, after

slaughtering, liver specimens were collected from the extreme end of right lobe, placed in a

labelled tube, snap frozen in liquid nitrogen and then stored at −80˚C until they were analysed.

Protein extraction and digestion

Protein extraction and digestion were performed according to a slightly modified Filter Aided

Sample Preparation (FASP) protocol to improve sensitivity, recovery and proteomic coverage
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for processed samples [25]. Briefly, proteins were extracted from approximately 100 mg of

liver tissue homogenised in 1 mL of extraction buffer [0.1% SDS (Affymetrix/Thermo Fisher

Scientific, USA), 100 mM Tris/HCl (Affymetrix/Thermo Fisher Scientific, USA) pH 7.6, 10

mM DTT (Affymetrix/Thermo Fisher Scientific, USA)]. Liver samples were homogenised for

2 min using a homogenizer (G50 Tissue Grinder, Coyote Bioscience, Inc., China) in an Eppen-

dorf tube immersed into liquid nitrogen. The lysates were vortexed at room temperature for 3

min and then centrifuged at 16,000 × r.c.f. at 4˚C for 5 min. Samples were heated at 56˚C for

30 min and then centrifuged at 16,000 × r.c.f. at 20˚C for 20 min. The supernatants were trans-

ferred into new labelled tubes, were mixed, aliquoted and stored at -20˚C until usage. Qubit™
Fluorometric Quantitation was used to determine the protein concentration according to the

manufacturer’s instructions (Affymetrix/Thermo Fisher Scientific, USA).

Protein samples were reduced and alkylated with dithiothreitol (DTT) and iodoacetamide

(IAA; Sigma-Aldrich/Merck, USA) and then digested with trypsin according to the FASP

method [25]. Samples were then purified from any contaminants using Pierce C18 Spin Col-

umns (Affymetrix/Thermo Fisher Scientific, USA), vacuum dried and stored at -20˚C. All 10

peptide samples (five from Italian Duroc and five from Italian Large White pigs) were collected

for MS analysis.

Mass spectrometry analysis

Dry peptides from each sample were resuspended in 25 μL of a mixture of water:acetonitrile:

formic acid 97:3:2 and sonicated for 10 min at room temperature, then centrifuged at 12,100 x

r.c.f. for 10 min. Mass spectrometry analyses were performed on an ESI-Q-TOF Accurate-

Mass spectrometer (G6520A, Agilent Technologies, Santa Clara, CA, USA), controlled by

MassHunter software, Agilent (v. B.04.00) (https://www.agilent.com/en/products/software-

informatics/masshunter-suite/masshunter/masshunter-software) and interfaced with a CHIP-

cube to an Agilent 1200 nano-pump (Agilent Technologies, Santa Clara, CA, USA).

Chromatographic separation was performed on a high-capacity loading chip (Agilent Tech-

nologies) with a 75 μm internal diameter (I.D.), 150 mm, 300 Å C18 column, prior to a desalt-

ing step through a 500 nL trap column. The injected samples (8 μL) were loaded onto the trap

column with a 4 μL/min 0.1% (v/v) formic acid (FA):acetonitrile (ACN) (98:2 v/v) phase flow.

After 3 min, the precolumn was switched in-line with the nanoflow pump (400 nL/min, phase

A: water:ACN:FA (96.9:3:0.1 v/v/v), phase B: ACN:water:FA 94.5:5:0.1 v/v/v), equilibrated in

1% (v/v) B. The peptides were eluted from the reverse phase (RP) column through the follow-

ing gradient: 1% for one min, 1->5% B in 7 min, 5->30% B over a period of 142 min, 30–60%

B in 20 min, 60->90% B in 0.1 min, then held at 90% B for 8 min, and switched back to 1% B

for column reconditioning, for a total runtime of 190 min. Eight μL of each samples were run

twice; analytical controls (a mix of baker’s yeast enolase and bovine serum albumin tryptic

digests) were run daily to monitor chromatographic performances. Ions were formed in a

nano-ESI source, operated in positive mode, 1860 V capillary voltage, with the source gas

heated at 350˚C and at a 5 L/min flow. Fragmentor was set to 160 V, skimmer lens operated at

65 V. Centroided MS and MS2 spectra were recorded from 250 to 1700 m/z and 70 to 1700 m/

z, respectively, at scan rates of 8 and 3 Hz. The six most intense multi-charged ions were

selected for MS2 nitrogen-promoted collision-induced dissociation. The collision energy was

calculated according to the following expression:

CE Vð Þ ¼ 3:6 �
m=z
100
� 3
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A precursor active exclusion of 0.22 min was set, and the detector was operated at 2 GHz in

extended dynamic range mode. Mass spectra were automatically recalibrated with two refer-

ence mass ions.

Label-free quantitative profiling

Raw MS data were converted to MASCOT (www.matrixscience.com) generic file (mgf) using

MassHunter Qualitative Analysis (v. B.05.00, Agilent Technologies). Then data were used for

peptide identification with MASCOT (version 2.4, Matrix Science, London, UK) searched

against an implemented version of the Pig PeptideAtlas resource (http://www.peptideatlas.org/)

[26], including contaminant protein sequences as retrieved from the cRAP v.1.0 resource

(http://www.thegpm.org/crap/). The search parameters used were as follow: 40 ppm precursor

tolerance, 0.1 Da fragment mass error allowed, two missed cleavage allowed for trypsin, carba-

midomethyl as a fixed modifier of cysteine residues, asparagine and glutamine deamidation and

methionine oxidation as variable modification. The peptide identification results were imported

into an in-house Trans-Proteomic Pipeline server (TPP, v. 5.1.0) [27], rescored and validated

with PeptideProphet [28]. Protein inference was then achieved by ProteinProphet [29]. As last

step, relative label-free quantification was performed with Skyline v.4.1 [30] using the rescored

search results [Protein probability�0.9, corresponding to a global false discovery rate (FDR)

�0.1]. PepXML files and raw mzXML data were imported in Skyline and: (i) the protein data-

base was filtered by retaining only the proteins with a ProteinProphet score� 0.9 and (ii) MS1

data were correlated to the corresponding peptide identification, matches were filtered

(idotP�0.9).

Data were exported and analyzed with InfernoRDN v.1.1.6556.25534 (https://omics.pnl.

gov/software/InfernoRDN; [31]). Data were Log2 transformed and normalized with the cen-

tral tendency adjustment method. Peptide measurements were then rolled up to correspond-

ing protein abundances through the Zrollup method. In the ZRollup procedure a scaling

method similar to z-scores is applied first to peptides that originate from a single protein and

then the scaled peptide measures are averaged to obtain a relative protein abundance measure

[31]. Differences in protein abundance between Italian Duroc and Italian Large White pigs

were investigated as described below. Proteins were considered only if identified with more

than one peptide.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (http://www.ebi.ac.uk/pride; [32]) partner repository with the

dataset identifier PXD009771 and project DOI: 10.6019/PXD009771.

Analyses

Multivariate statistical analysis. Differentially abundant proteins were detected by apply-

ing the multivariate approach of sparse Partial Least Squares Discriminant Analysis (sPLS-DA)

[33] coupled with the validation procedure detailed in Bovo et al. [18, 34]. sPLS-DA is a multi-

variate technique used in classification and discrimination problems especially when variables

are highly correlated [35]. Briefly, breed was modeled as response variable (Italian Duroc = 0,

Italian Large White = 1) and proteins as predictors. The sPLS-DA penalization coefficient eta
(ranging from 0.1 to 0.9) and the number of hidden components K (ranging from 1 to 5) were

automatically selected by an internal 4-fold cross-validation procedure (4CV). The selected

proteins were then assessed through a stability and significance test [18]. The stability test was

based on a Leave One Out (LOO) procedure coupled with a permutation test. For this purpose,

1,000 artificial datasets were obtained by randomly permuting the breed trait values. While the

stability test is aimed at evaluating the frequency of selection of a protein in the original dataset

Label-free LC-MS analysis of pig liver proteins
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against the permuted ones, the significance test evaluates the regression coefficient (β). These

two tests estimate the probability (P) that the selection of a given protein inside the dataset is

due to chance or to a particular structure of the dataset. Proteins having a P< 0.10 (with the

sign of the regression coefficient that matched the fold change ratio) were declared stable and

significantly related to breed. Analyses were performed in R v. 3.0.2 [36] by using the “spls”

package (function “cv.splsda” and “splsda”). Scatter plot of the first two components was

drawn (each point represents an individual sample).

Functional and protein network analyses and relation to genomic information. Func-

tional interpretation of differentially abundant proteins was carried out in Cytoscape (http://

www.cytoscape.org/) [37] using the plug-in ClueGO (http://www.ici.upmc.fr/cluego/) [38].

Gene enrichment analysis was carried out over the Gene Ontology (GO)–Biological Process

(BP) branch (release data: May 2018) by setting the following parameters: (i) GO hierarchy

level from 3 to 20; (ii) minimum number of genes per GO term equal to 2; (iii) minimum of

input genes associated to the functional term greater than 2%; (iv) GO term network connec-

tivity (Kappa score) equal to 0.70 and right-sided hypergeometric test. These adjustments were

applied to maximize the process of functional association. Indeed, the tuning of the above-

mentioned parameters allows to over-represent processes and functions very specific (the low-

est levels of the GO hierarchy) rather than terms that are general and uninformative (the high-

est levels of the GO hierarchy). Moreover, similar processes and functions are clustered in

functional groups representing closely related terms. The analysis made use of Sus scrofa spe-

cific functional annotations. The other parameters were kept with default values. GO:BP terms

with a Benjamini–Hochberg corrected p-value< 0.05 were considered statistically over-repre-

sented. A pathway enrichment analysis was separately carried out, with ClueGO, over the

KEGG pathway database (release data: May 2018).

The in silico Protein-Protein Interaction (PPI) analysis of differentially abundant proteins

identified in the breed comparison was obtained using STRING v. 10.5 database (https://

string-db.org/) [39]. STRING is a web resource providing uniquely comprehensive coverage of

experimental and predicted interaction information. The analysis was carried out considering

the Sus scrofa specific interactome. Only interactions having a STRING combined score > 0.4

were considered (i.e. medium confidence). Network indices such as the number of nodes and

edges, the average node degree (average no. of connections), the expected number of edges

and the PPI enrichment p-value were computed. The expected number of edges gives how

many edges would be expected if the nodes were selected at random. A small PPI enrichment

p-value indicates that nodes are not random and that the observed number of edges is signifi-

cant (https://string-db.org/).

The Pig Quantitative Trait Locus Database (Pig QTLdb release 35) [40] was used to explore

possible links between up or down-regulated proteins and genomic QTLs for economically rel-

evant traits and parameters that could be affected by genes encoding these proteins. The whole

set of 27,465 QTLs/associations was downloaded and their genome coordinates were com-

pared with genome coordinates of the genes encoding differentially abundant proteins

observed in this study. Borders of the considered genomic regions were defined by the gene

coordinates ± 50 kbp. QTL relationships were filtered by manually curating functional rela-

tionships of the genes encoding these proteins.

Results

Label-free proteomic data of porcine liver samples

Label-free proteomic analysis was performed from proteins extracted from the liver of pigs of

two heavy pig breeds, Italian Duroc and Italian Large White. The analysis of the Italian Duroc
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liver specimens identified a total of 1,696 peptides belonging to 467 proteins, with an average

of 3.6 peptides per protein. The analysis in the Italian Large White liver samples identified

1,253 peptides related to 350 proteins, with an average of 3.6 peptides per protein. Combining

these two datasets, this study identified a total of 1,873 peptides related to 501 proteins (average

of 3.7 peptides per protein), that were then re-defined using stringent parameters in the Infer-

noRDN analysis, obtaining 329 unique proteins (S1 Table). These proteins were included in a

total of 13 GO:Biological Processes (Fig 1), four of which (organonitrogen compound meta-

bolic process, lipid metabolic process, carbohydrate metabolic process and cellular amino acid

metabolic process) accounted each for more than 10% of the total listed proteins.

Only proteins having at least two supporting peptides were kept and subsequently used in

the study. Bioinformatic analyses were carried out on a final dataset counting 200 proteins

(including a total of 1,041 peptides) identified with high confidence and subsequently quanti-

fied. The full list of the 200 proteins analysed in this study, as well as the information on the

identified peptides, is shown in the S2 Table.

Comparative analysis of breed derived proteomic liver profiles

Differences at the proteome level between Italian Duroc and Italian Large White pigs were

investigated by using the multivariate approach of sPLS-DA. This technique was coupled with

a statistical procedure aimed at evaluating the stability and significance of the proteins selected

as differentially expressed. The scatter plot of the first two sPLS-DA components shows that

animals of the same breed clustered together, indicating that the identified proteins can dis-

criminate animals of these two pig breeds (Fig 2). According to the stability test, 33 proteins

(16.5% on the total) had a P� 0.10 (defined as a threshold of significance, based on the

Fig 1. Percentage of liver proteins (over all 329 identified proteins; S1 Table) grouped according to different biological processes.

https://doi.org/10.1371/journal.pone.0199649.g001
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validation procedure; [18]). The sPLS-DA regression coefficient of 57 proteins (28.5%) was

equal to 0, indicating that these proteins do not have any weight in the classification derived by

the breed. At the significance test, 56 out of 57 proteins had a P� 0.10. A total of 25 out of 200

identified proteins (12.5%) were both stable (in terms of statistically assigned condition) and

significantly differentially expressed (P� 0.10) (Table 1). Among these proteins, 14 (56%)

showed an increased abundance in Italian Duroc pigs, while the remaining 11 (44%) had a

higher quantification level in Italian Large White pigs. Details about proteins with significant

different quantification between the two breeds are presented in Table 1. Four of these proteins

(two with the highest expression in Italian Duroc pigs: 3-ketoacyl-CoA thiolase, mitochondrial

(ACAA2) and histone H2B type 2-F (HIST2H2BF); and two with the highest expression in

Italian Large White pigs: ketohexokinase (KHK) and carboxylesterase 3 (CES3) showing one

of the two calculated P values�0.01 and the other with�0.05, were considered the top pro-

teins identified in this study differentiating the two analysed breeds.

Functional inference of proteomic differences between breeds

Biological processes and pathways involving the 25 differentially abundant proteins were

investigated through functional association analysis. Enrichment analyses were carried out in

Cytoscape (ClueGO package). Analyses were run over the GO:BP and KEGG pathway data-

bases, separately. Two proteins (HIST2H2BF and LOC100625049) were not in the ClueGO

annotation sets. A total of 24 GO:BP terms (involving 14 differentially abundant proteins)

were retrieved (Table 2, Fig 3A). These biological processes can be summarized in the follow-

ing functional groups (G, in Table 2): (i) metabolism of carbohydrates and energy (G1—G3),

Fig 2. Scatter plot of the first two sPLS-DA components obtained from the liver proteome of five Italian Duroc

pigs (blue circles) and five Italian Large White pigs (orange diamonds).

https://doi.org/10.1371/journal.pone.0199649.g002
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(ii) metabolism of antibiotics/drugs (G4—G5), (iii) metabolism of cofactors (G6), (iv) metabo-

lism of amino-acids (G7—G8; G10), (v) metabolism of lipids (G9—G10). It is interesting to

note that processes related to the glutamine family amino acids and lipids involve proteins

with a higher abundance in Italian Duroc than in Italian Large White pigs. Processes related to

organic acid catabolism cellular/alpha amino acid metabolism showed the same direction,

except for the aminoadipate-semialdehyde synthase (AASS) protein, that was more expressed

in the Italian Large White pigs. This inversion was also evident for proteins involved in the car-

bohydrate catabolic process that showed a higher abundance in Italian Large White than in

Italian Duroc pigs.

Over-representation analysis over the KEGG pathway database highlighted a total of nine

pathways (Table 3, Fig 3B) related to the metabolism of lipids, amino-acids, carbohydrates and

chemicals (as previously showed from the analysis over the GO:BP database). Nine proteins

Table 1. Differentially abundant proteins identified from label-free mass spectrometry analysis of liver samples of Italian Duroc (ID) and Italian Large White

(ILW) pigs. Proteins are ordered according to their fold change score.

UniProtKB1 Gene Name Protein Peptides PAIDU
2 PAILW

3 FC4 Direction5 Pst
6 Psi

7

P51781 GSTA1 Glutathione S-transferase A1 5 -0.41 0.54 0.52 ILW 0.077 0.026

I3LVE1 KHK Ketohexokinase 3 -0.24 0.64 0.54 ILW 0.005 0.027

I3LEI5 CES3 Carboxylesterase 3 2 -0.64 0.23 0.55 ILW 0.006 0.014

B1A8Z3 PYGL Glycogen phosphorylase, liver form 5 -0.45 0.38 0.56 ILW 0.022 0.036

Q9TV69 DHDH (SUS2DD) Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase 3 -0.39 0.30 0.62 ILW 0.091 0.016

A0A286ZKH3 SPR Sepiapterin reductase 5 -0.41 0.19 0.66 ILW 0.042 0.044

A0A286ZIW5 ILVBL Acetolactate synthase-like protein 2 -0.21 0.34 0.68 ILW 0.031 0.027

F1RII7 HBB Hemoglobin subunit beta 8 -0.20 0.33 0.69 ILW 0.080 0.042

F1RQP0 PRDX5 Peroxiredoxin-5, mitochondrial 8 -0.20 0.31 0.70 ILW 0.042 0.024

F1SLX5 AASS Alpha-aminoadipic semialdehyde synthase, mitochondrial 2 -0.42 -0.02 0.76 ILW 0.073 0.029

A5YV76 FASN Fatty acid synthase 7 -0.12 0.17 0.82 ILW 0.086 0.035

F1SSS0 CPS1 Carbamoyl-phosphate synthase [ammonia], mitochondrial 39 0.12 -0.07 1.14 IDU 0.084 0.066

F1RKG8 PEBP1 Phosphatidylethanolamine-binding protein 1 7 0.21 -0.24 1.37 IDU 0.073 0.038

D0G0B3 ACAA2 3-ketoacyl-CoA thiolase, mitochondrial 10 0.36 -0.20 1.48 IDU 0.010 0.016

F1S2X3 ECHDC1 Ethylmalonyl-CoA decarboxylase 2 0.09 -0.49 1.50 IDU 0.086 0.041

F1S0C1 ADH5 Alcohol dehydrogenase class-3 4 0.38 -0.24 1.53 IDU 0.068 0.052

F1RMH5 UROC1 Urocanate hydratase 3 0.25 -0.41 1.58 IDU 0.029 0.035

I3LP02 ACAT1 Acetyl-CoA acetyltransferase, mitochondrial 2 0.22 -0.57 1.73 IDU 0.099 0.023

F1RL81 HSD17B14 17-beta-hydroxysteroid dehydrogenase 14 4 0.29 -0.51 1.74 IDU 0.047 0.026

A0A287AR55 FH Fumarate hydratase, mitochondrial 3 0.40 -0.43 1.78 IDU 0.059 0.044

F1RWY0 RGN Regucalcin 9 0.40 -0.45 1.80 IDU 0.051 0.055

F2Z558 YWHAZ 14-3-3 protein zeta/delta 2 0.33 -0.64 1.96 IDU 0.082 0.048

UPI0002105648 HIST2H2BF Histone H2B type 2-F 2 0.58 -0.40 1.97 IDU 0.009 0.008

F1RIF3 FAH Fumarylacetoacetase 3 0.54 -0.48 2.02 IDU 0.005 0.052

I3LDY2 LOC100625049 Uncharacterized protein 3 0.54 -0.85 2.63 IDU 0.012 0.020

1UniProtKB accession number as derived from the Pig PeptideAtlas resource
2Average abundance level of protein in Italian Duroc pigs
3Average abundance level of protein in Italian Large White pigs
4Fold change
5“ID” indicates protein abundance higher in Italian Duroc pigs than Italian Large White pigs while ‘ILW’ indicates protein abundance higher in Italian Large White pigs

than Italian Duroc pigs
6p-value at the stability test
7p-value at the significance test.

https://doi.org/10.1371/journal.pone.0199649.t001
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Table 2. Over-represented biological processes (GO:BP) associated to up or down regulated proteins in the breed comparison.

Term Description Functional

group1
p-

value2
% of associated

proteins3
N. of

proteins

Up or down regulated proteins 4

GO:0005996 monosaccharide metabolic process G1 2.26E-

03

2.05 3 KHK#, RGN", SUS2DD#

GO:0006091 generation of precursor metabolites

and energy

G2 1.23E-

04

2.03 5 AASS#, ACAT1", ADH5", FH", PYGL#

GO:0016052 carbohydrate catabolic process G3 7.63E-

03

2.47 2 PYGL#, SUS2DD#

GO:0016999 antibiotic metabolic process G4 6.36E-

03

2.78 2 ADH5", FH"

GO:0042737 drug catabolic process G5 5.31E-

03

3.13 2 AASS#, ACAT1"

GO:0009108 coenzyme biosynthetic process G6 1.40E-

03

2.48 3 ACAT1", RGN#, SPR#

GO:0008652 cellular amino acid biosynthetic

process

G7 2.95E-

03

4.44 2 AASS#, CPS1"

GO:1901607 alpha-amino acid biosynthetic

process

G7 2.86E-

03

4.65 2 AASS#, CPS1"

GO:0009064 glutamine family amino acid

metabolic process

G7 3.05E-

03

4.26 2 CPS1", FAH"

GO:0006525 arginine metabolic process G8 2.81E-

04

16.67 2 CPS1", FAH"

GO:0016042 lipid catabolic process G9 4.45E-

05

2.59 5 ACAA2", ACAT1", CPS1", ECHDC1",

HSD17B141"

GO:0044242 cellular lipid catabolic process G9 1.16E-

04

3.25 4 ACAA2", ACAT1", CPS1", ECHDC1"

GO:0034440 lipid oxidation G9 2.82E-

04

4.62 3 ACAA2", ACAT1", ECHDC1"

GO:0019395 fatty acid oxidation G9 2.81E-

04

4.76 3 ACAA2", ACAT1", ECHDC1"

GO:0009062 fatty acid catabolic process G9 2.54E-

04

5.08 3 ACAA2", ACAT1", ECHDC1"

GO:0072329 monocarboxylic acid catabolic

process

G9 2.89E-

04

4.35 3 ACAA2", ACAT1", ECHDC1"

GO:0006635 fatty acid beta-oxidation G9 1.33E-

04

6.52 3 ACAA2", ACAT1", ECHDC1"

GO:0044282 small molecule catabolic process G10 2.21E-

07

3.85 7 AASS#, ACAA2", ACAT1", ECHDC1", FAH",

SUS2DD#, UROC1"

GO:0016054 organic acid catabolic process G10 5.77E-

07

4.51 6 AASS#, ACAA2", ACAT1", ECHDC1", FAH",

UROC1"

GO:0006520 cellular amino acid metabolic

process

G10 4.45E-

05

2.59 5 AASS#, ACAT1", CPS1", FAH", UROC1"

GO:1901605 alpha-amino acid metabolic process G10 1.00E-

05

3.82 5 AASS#, ACAT1", CPS1", FAH", UROC1"

GO:0009063 cellular amino acid catabolic

process

G10 8.06E-

06

7.14 4 AASS#, ACAT1", FAH", UROC1"

GO:0046395 carboxylic acid catabolic process G10 5.77E-

07

4.51 6 AASS#, ACAA2", ACAT1", ECHDC1", FAH",

UROC1"

GO:1901606 alpha-amino acid catabolic process G10 7.81E-

06

8.16 4 AASS#, ACAT1", FAH", UROC1"

1Groups of closely related terms
2Benjamini-Hochberg corrected p-values
3Percentage of input proteins found associated with respect to the number of proteins directly annotated with the functional term
4The symbol " indicates protein abundance higher in Italian Duroc pigs than Italian Large White pigs while the symbol # indicates protein abundance higher in Italian

Large White pigs than Italian Duroc pigs

https://doi.org/10.1371/journal.pone.0199649.t002
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were involved in these pathways. Again, in this case, all the differentially abundant proteins

involved in the fatty acid catabolism had higher concentration in Italian Duroc pigs than in

Italian Large White pigs. Moreover, in addition to the glutamine family amino acids, the path-

ways involving valine, leucine, isoleucine and tyrosine showed the same behaviour.

STRING was used to highlight the functional connections established among the differen-

tially abundant proteins. The analysis revealed a connected protein network (Fig 4) divided in:

Fig 3. Functional analysis of the 25 differentially abundant proteins between Italian Duroc and Italian Large White pigs. The two panels show the result of gene

enrichment analyses over the A) Gene Ontology–Biological Process branch, and B) over the KEGG pathway database. Bars represent the percentage of input proteins

found associated with respect to the number of proteins directly annotated with the functional term. The number of input proteins related to the term and the term

significance are reported next to each bar. Detailed statistics are reported in Table 2 and Table 3, respectively. In each panel, bars sharing a specific color are clustered

in the same functional group (see Table 2).

https://doi.org/10.1371/journal.pone.0199649.g003

Table 3. Over-represented KEGG pathways associated to up or down regulated proteins in the breed comparison.

Term Description p-value1 % of associated proteins2 N. of proteins Up or down regulated proteins3

KEGG:00310 Lysine degradation 1.06E-02 3.45 2 AASS#, ACAT1"

KEGG:00350 Tyrosine metabolism 7.88E-03 5.71 2 ADH5", FAH"

KEGG:00620 Pyruvate metabolism 7.04E-03 5.41 2 ACAT1", FH"

KEGG:00640 Propanoate metabolism 8.27E-03 6.45 2 ACAT1", ECHDC1"

KEGG:00071 Fatty acid degradation 1.28E-03 7.32 3 ACAA2", ACAT1", ADH5"

KEGG:00280 Valine, leucine and isoleucine degradation 9.07E-03 4.00 2 ACAA2", ACAT1"

KEGG:00980 Metabolism of xenobiotics by cytochrome P450 1.09E-03 6.12 3 ADH5", GSTA1#, SUS2DD#

KEGG:00982 Drug metabolism 9.38E-03 4.26 2 ADH5", GSTA1#

KEGG:05204 Chemical carcinogenesis 1.04E-02 3.28 2 ADH5", GSTA1#

1Benjamini-Hochberg corrected p-values
2Percentage of input proteins found associated with respect to the number of proteins directly annotated with the functional term
3The symbol " indicates protein abundance higher in Italian Duroc pigs than Italian Large White pigs while the symbol # indicates protein abundance higher in Italian

Large White pigs than Italian Duroc pigs.

https://doi.org/10.1371/journal.pone.0199649.t003
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(i) one big module composed by 16 nodes (64%) and 19 links, (ii) a small component of two

proteins (8%) and (iii) seven singletons (28%). The resulting network showed a PPI enrich-

ment p-value of 3.67×10−10 (three expected edges vs. 20 detected edges) indicating that pro-

teins are at least partially biologically connected. In this network most of the proteins

interacted with only one or two other partners (average node degree equal to 1.6). However,

two proteins (ADH5 and HSD17B14; with higher expression in Italian Duroc than in Italian

Large White pigs) presented the highest degree of connection (six edges), which may assign to

them a role as “hub” proteins playing a putative function of controllers inside biochemical

pathways that could potentially lead to cascade of protein expression differences. In addition,

the big module clustered all proteins that were included in the GO and KEGG enriched pro-

cesses clearly differentiating (in terms of direction of the relative level of expression) Italian

Duroc and Italian Large White liver proteomic profiles.

S3 Table reports information on the potential links between differentially expressed pro-

teins identified in the comparison between breeds and QTL mapped in the corresponding

gene regions, as retrieved from the pigQTL database. A total of 12 out of 25 up or down regu-

lated proteins identified in the breed comparative analysis resulted located in ± 50 kbp sur-

rounding 23 QTL regions (for a total of 40 protein/QTL combinations), that might be directly

or indirectly (in a broad sense) affected by the protein functions. Six of these proteins were up-

regulated in Italian Duroc pigs (ECHDC1, HSD17B14, FAH, UROC1, ACAT1, CPS1) and six

in Italian Large White pigs (PRDX5, SPR, GSTA1, FASN, KHK, CES3).

Fig 4. Protein-protein interaction map of the 25 differentially abundant proteins. Interactions are based on

STRING v.10.5 and are shown in different colors: cyan is from curated databases, magenta is experimentally

determined, dark green is gene neighborhood, blue is gene co-occurrence, light green is textmining, black is co-

expression and purple is protein homology.

https://doi.org/10.1371/journal.pone.0199649.g004
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Discussion

The pig is one of the most important animal species used as protein source for human con-

sumption that is also considered a suitable model for several biomedical aspects related to liver

functions [41, 42]. In spite of that, thus far only few studies have investigated the pig liver pro-

teome [9, 11–13, 43–52]. Most of these liver proteomic investigations compared proteomic

profiles of pigs under different experimental conditions or treatments or just wanted to extend

the porcine liver proteome map. Our work not only contributed to obtain a more detailed pic-

ture of the protein expressed in pig liver but also provided a first comparative analysis of the

liver proteome of two important heavy pig breeds, Italian Duroc and Italian Large White.

These breeds are used in crossbreeding programmes to obtain commercial slaughtered pigs,

maximizing the effect of heterosis. Italian Large White pigs are mainly selected for meat quality

and carcass traits and to maximize maternal reproduction efficiency. Italian Duroc pigs are

mainly used as terminal sires and are selected to maximize growth, feed efficiency and improve

meat quality parameters [21]. As the liver can be considered a key organ for translating growth

rate, feed efficiency and performance potentials of the animals by exploiting tissue specific

metabolic functions, the evaluation of proteome differences between Italian Duroc and Italian

Large White pigs could highlight biological aspects (that, in turn, are derived by genetic fac-

tors) that distinguish and characterize these breeds and that might determine their peculiar

production potentials.

It is clear that any proteomic study cannot disclose in a single analysis or method all pro-

teins that construct a tissue or an organ for intrinsic limits of the available technologies and

difficulties to discriminate and separate all proteins present in complex matrices. The pre-

dicted human proteome has been estimated to be constituted by at least 20,000 proteins (with-

out considering splicing variants), about 59% of which might be expressed in the liver [53]; a

similar fraction could be expected in the porcine liver. Therefore, the liver could be considered

one of the richest organs in terms of number of proteins. However, studies in pig liver

reported, in most cases, tens or just a few hundreds of proteins. For example, Caperna et al.
[11] using 2DE produced two liver porcine proteomic maps, one from the cytosol fraction and

another one from the membrane fraction. A total of 728 proteins spots were picked and ana-

lysed by MS resulting in a total of 282 unique identified proteins. Golovan et al. [44] using iso-

baric tag for relative and absolute quantification (iTRAQ) proteomics identified a higher

number of proteins (i.e. n. = 880) in the liver proteomic profiles obtained from two pig lines

(transgenic Enviropig and conventional Yorkshire).

In our study, the label-free LC-MS analysis revealed a total of 501 different proteins that,

after stringent filtering were identified as 329 unique proteins, of which 200 were then consid-

ered in the comparison between the two breeds (S1 and S2 Tables). Many of the identified pro-

teins (e.g. peroxiredoxin, acetyl-CoA, carboxylesterase, fumarylacetoacetase) were also

identified in other studies carried out in pigs or other livestock species [11, 44, 54]. Most of the

identified proteins were involved in several metabolic processes that characterize the liver

functions (Fig 1). Differences among studies might be due to different methods of protein

extraction employed and by the peptide separation and identification technologies. Different

approaches and methods have different efficiencies and throughput and resolution potentials

which determine, in turn, the number of detected proteins. For example, the 2DE study of

Caperna et al. [11] identified a total of 282 unique porcine liver proteins, the majority of which

were from the cytosol fractions. It is well know that this method is technically challenging and

is not optimized for the analysis of very hydrophobic and/or membrane proteins [55]. Using

iTRAQ, Golovan et al. [44] identified a higher range of proteins in the pig proteome, but only

few of them (i.e. two and four) were differentially expressed between breeds and sexes,

Label-free LC-MS analysis of pig liver proteins
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respectively. In this label-based method, stable isotopes are employed to create specific mass

tags that can be recognized by the mass spectrometer and can provide, at the same time, the

basis for the quantification. One of the main advantage of this method is that it allows, in a sin-

gle MS run, the simultaneous analysis of many samples, reducing analytical variability [56].

On the other hand, the label-free method that we applied provides a higher dynamic range of

quantification than that obtained by stable isotope labelling methods [57].

To our knowledge, this work is the first study which applies a label-free method to unravel

the pig liver proteome. In the label-free study of Miller et al. [54], that compared the liver pro-

teome of two sheep breeds, a larger number of proteins was identified (2,445 vs 501 of our

work), probably due to differences in sensitivity of the used instruments. Miller et al. [54] and

our work had a similar objective, i.e. identify proteomic differences between breeds. In both

studies that were based on a similar experimental design (both included comparative analyses

between breeds), the same percentage of proteins (about 8%) were declared as differentially

expressed between the two analysed genetic types (within species). Even if it could be quite

speculative, this general overlapping gross picture might define similar levels of underlying

genetic diversity between the compared groups of the two species.

sPLS-DA plot showed distinct clustering, which clearly segregated the samples of the two

analysed pig breeds based on their liver proteomic profiles (Fig 2). This pattern is in agreement

with our previous results obtained by analyzing targeted metabolomic profiles of plasma and

serum of Italian Duroc and Italian Large White pigs [18]. Liver interplays with blood exchang-

ing the products of their respective anabolism and catabolism and many other components,

depicting a metabolic picture that could be observed at the organ or tissue level as well in the

circulating tissue and in its fractions (i.e. plasma and serum).

Among the 25 proteins that were up- or down-regulated between the two pig breeds, the

top differentially expressed proteins (ACAA2, HIST2H2BF, CES3 and KHK) according to

their functions, may contribute to explain in part the phenotypic differences between Italian

Duroc and Italian Large White animals, complementing the metabolomic profile differences

already reported in a previous study [18]. Carboxylesterase 3 (CES3) was up-regulated in Ital-

ian Large White. This is a member of enzymes of the endoplasmic reticulum that hydrolyses a

variety of esters, carbamates, amides and similar structures of drugs and xenobiotics [58]. This

enzyme is involved in hepatic very low-density lipoprotein (VLDL) assembly and in basal

lipolysis of adipose tissues. Ablation of carboxylesterase 3 expression in mice results in reduced

circulating plasma triacylglycerol, apolipoprotein B, and fatty acid levels and increased food

intake and energy expenditure [59, 60]. Moreover, the porcine CES3 gene is located on porcine

chromosome (SSC) 6 in a QTL region for residual feed intake (that might be related to feed

intake and metabolism efficiency; S3 Table) [40]. Differences of hepatic CES3 levels between

Italian Large White and Italian Duroc might be in line with a higher feed efficiency of the latter

breed. ACAA2, among the top up-regulated proteins in Italian Duroc pigs, is a mitochondrial

enzyme catalysing the last step in fatty acid oxidation which releases acetyl CoA for the Krebs

cycle. For its role, it is considered one of the key enzymes in lipid metabolism [61], further

evidencing differences related to fat related pathways. Again, ACAT1, that is involved in cellu-

lar cholesterol homeostasis, macrophage cholesterol metabolism, isoleucine metabolism and

ketogenesis (i.e. Hai et al. [62]), was up-regulated in Italian Duroc pigs. The ACAT1 gene is

located on SSC9 in a region in which several QTLs for average daily gain and intramuscular fat

content have been identified (S3 Table). In addition, this protein has been already identified to

be differentially expressed in a proteomic analysis of skeletal muscles between pigs with

extreme values of intramuscular fat content [63], strengthening a role of lipid metabolism dif-

ferences between pig breeds that could result in different phenotypic traits [23, 64]. Moreover,

a few other hepatic differences between Italian Duroc and Italian Large White pigs highlighted

Label-free LC-MS analysis of pig liver proteins
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also metabolic differences in fatty acid metabolism. The ECHDC1 gene, which encodes for a

protein involved in the mitochondrial fatty acid oxidation, is located in a region of the SSC1

overlapping a QTL region involved in the saturated fatty acid content (S3 Table). FASN (up-

regulated in Italian Large White pigs) is an enzyme that catalyses the biosynthesis of palmitic

acid. The porcine FASN gene is located on SSC12 in a region in which two QTLs affecting the

myristic and palmitic acids have been mapped and for which FASN was pointed out as the

most plausible candidate gene [65]. Histone H2B (HIST1H2BA), is a member of the histone

family, which are basic nuclear proteins that are responsible for the nucleosome structure of

the chromosomal fiber in eukaryotes [66]. This family of proteins and peptides derived from

them were found to be part of the antimicrobial defense of many species [67–69]. For example,

Li et al [68] highlighted the antimicrobial activity of HIST1H2BA and other histone proteins

in the chicken liver extract. In our study, HIST2H2BF was up-regulated in the Italian Duroc

breed, which may allude to a stronger resistance to disease of this breed, that is, in general con-

sidered the most rustic breed among all commercial pig breeds [70].

These specific differences highlighted by the function of the proteins mentioned above (and

all other proteins that contributed to produce “breed specific” proteomic profiles; Table 1) can

be summarized in few biological processes that could be identified summing up their roles,

matching again some of the metabolomic differences (described with biogenic amines and

sphingomyelins) that we already reported between these two breeds [18]. Protein differentially

expressed were widely distributed among the known biological processes associated with liver

metabolism such as metabolism of lipids, metabolism of amino-acids, metabolism of carbohy-

drates, metabolism of cofactors and metabolism of antibiotics/drugs. Liver proteomic profiles

we obtained for Italian Duroc and Italian Large White pigs seems to match production charac-

teristics of these breeds that have been developed over decades of divergent directional selec-

tion originally determined by the genetic pools constituting these two heavy pig breeds.

Conclusions

In this study we reported results from the first proteomic investigation of the liver of heavy

pigs using a label-free proteomic approach. Despite this work should be considered a pilot

study and proteomic differences might be confirmed with other approaches, the 25 identified

proteins up- or down-regulated in the compared breeds were able to discriminate the liver

proteomic profile of pigs belonging to the Italian Duroc and Italian Large White breeds. These

results indirectly demonstrated that breed differences (underlying general genetic differences)

can be highlighted at the liver proteome level. These different proteomic profiles could be use-

ful to describe breed-specific metabolic characteristics. We also provided evidences that quan-

titative proteomic approaches are useful to describe internal phenotypes that could be

important to link and dissect external (production) and complex traits. The obtained proteo-

mic differences highlighted several biomarkers that can be potentially useful to define new

molecular phenotypes for novel applications in pig breeding programmes.
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S1 Table. List of the 329 proteins used to group the liver proteins according to their differ-
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