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Abstract

Progression of systemic scleroderma (SSc), a chronic connective tissue disease that

causes a fibrotic phenotype, is highly heterogeneous amongst patients and difficult to accu-

rately diagnose. To meet this clinical need, we developed a novel three-layer classification

model, which analyses gene expression profiles from SSc skin biopsies to diagnose SSc

severity. Two SSc skin biopsy microarray datasets were obtained from Gene Expression

Omnibus. The skin scores obtained from the original papers were used to further categorize

the data into subgroups of low (<18) and high (�18) severity. Data was pre-processed for

normalization, background correction, centering and scaling. A two-layered cross-validation

scheme was employed to objectively evaluate the performance of classification models of

unobserved data. Three classification models were used: support vector machine, random

forest, and naive Bayes in combination with feature selection methods to improve perfor-

mance accuracy. For both input datasets, random forest classifier combined with correla-

tion-based feature selection (CFS) method and naive Bayes combined with CFS or support

vector machine based recursive feature elimination method yielded the best results. Addi-

tionally, we performed a principal component analysis to show that low and high severity

groups are readily separable by gene expression signatures. Ultimately, we found that our

novel classification prediction model produced global gene signatures that significantly cor-

related with skin scores. This study represents the first report comparing the performance of

various classification prediction models for gene signatures from SSc patients, using current

clinical diagnostic factors. In summary, our three-classification model system is a powerful

tool for elucidating gene signatures from SSc skin biopsies and can also be used to develop

a prognostic gene signature for SSc and other fibrotic disorders.
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Introduction

Systemic Scleroderma (SSc) is a multifaceted disease that exhibits heterogeneity and clinical

variability among patients, often complicating diagnosis and decisions regarding treatment.

SSc causes skin fibrosis, systemic vascular alterations and collagen accumulation from chronic

hardening and tightening of the skin and connective tissues, eventually leading to organ failure

and poor prognosis [1]. One level of heterogeneity can be demonstrated by the presence of

two SSc disease forms that are defined based on extent of skin involvement: limited cutaneous

SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) [2]. Prognosis and risk of internal organ involve-

ment is different for patients in these clinically-defined disease subsets [3–5]. Moreover, geno-

mic studies indicate that variability exists even within each disease forms [6]. Further

complexity in SSc stems from the fact that gender [7], race [8], and environmental toxin expo-

sure [9] can predispose individuals to the disease. Thus, the multifactorial nature of SSc patho-

genesis can impede accurate measurements of severity and estimation of progression.

Clinical progression of SSc is most often measured by skin thickening using the modified

Rodnan skin score (mRSS), which entails a 17-point assessment of skin thickness on various

areas of the body, culminating in a 51-point maximum scale of severity. Expression levels of

several genes have been associated with skin score [10–12]. However, these investigations did

not report the use of a comprehensive analysis comparing various methods available to iden-

tify and define a genomic signature that correlates with disease severity. Furthermore, there is

evidence that mRSS does not always necessarily correlate with disease trajectory [13]. Thus,

the spread of fibrotic behavior to other organs suggests a systemic pathogenic mechanism that

requires a more in depth diagnostic analysis to be used in conjunction with skin score. There-

fore, the goal of this study was to assess the ability of various classification methods to identify

a genetic signature that could be the basis for a diagnostic test for SSc.

In this current study, we constructed classification models with the goal of predicting SSc

skin severity based on gene expression profiles and identifying marker gene sets that correlate

with high or low severity patients. Ongoing and future studies will focus on the importance of

genes identified herein in disease and how they relate to patient-to-patient heterogeneity. Our

classification models were capable of readily parsing patients, based on genomic profile alone,

into high or low severity groups as defined by mRSS and led to the identification of gene sets

associated with disease progression. Thus, our model is a powerful tool not only for diagnosis

but also to find previously unknown disease-related genes that warrant further investigation.

Materials and methods

Study population

The two datasets used in this study were obtained from the Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo/). Dataset 1 (GEO Accession: GSE9285) [14] contains microarray

data from 75 biopsies from 34 individuals, including 28 patients and 6 healthy controls. SSc

patients met the criteria of the American College of Rheumatology [15]. Data were generated

by Whole Human Genome Oligo Microarray G4112A platform (Agilent Technologies). The

skin scores of these samples were documented in the original paper. Microarray data from 21

samples (5 morphea samples, 15 healthy samples, and 1 dSSc sample) was not used because

there was no associated skin score information. This left a remaining total of 54 samples,

which were included in the analysis. The 54 samples were derived from a total of 24 patients.

In several cases, one or more biopsy was taken from a single patient. The skin scores and other

patient information related to these samples were documented in the original paper (S1

Table).
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Dataset 2 (GEO Accession: GSE47162) [16] contains 59 microarray data of skin biopsies

from 59 patients. Data were generated using Illumina HumanHT-12 V4.0 Expression Bead-

chips. The skin scores and other patient information were extracted from GEO sample record

information (S2 Table). One sample without the skin score was excluded from analysis, result-

ing into a total of 58 samples. For Dataset 1, 25 samples fell into the high severity group and 29

into the low severity group. For Dataset 2, 21 samples fell into the high severity group and 37

into the low severity group.

In all data sets a two-class classification was used to establish classification models that dis-

tinguish between "high group" and "low" group ". Skin scores between 18 and 51 were catego-

rized as "high severity", and those less than 18 were categorized as "low severity". An analysis of

over 900 patients indicated that a mRSS threshold between 18 and 25 was optimal for distin-

guishing between patients that would progress or regress [17]. We took a conservative

approach and chose the lower limit of this range as our cutoff.

Statistical analyses

For the Dataset 1, microarrays were visually inspected for defects or technical artifacts, and

poor-quality spots were manually excluded in the original study. Spots with fluorescent signals

less than two-fold of local background in both Cy3- and Cy5- channel were excluded. Follow-

ing this pre-processing step, 28,495 probes with at least 80% of their data points were included

in downstream analysis. Background correction and quantile normalization were performed

using limma package [18]. The data were represented as log2 of the Cy5/Cy3 ratios. Data for

each probe were centered by subtracting the expression value from the mean of all expression

values across the arrays, and scaled by dividing the centered value by the standard deviation of

values across the arrays. For the Dataset 2, quality control was performed by filtering probes

using the detection P-value. The detection P-value represents the confidence that a given tran-

script is expressed above the background level calculated based on negative control probes. We

adopted a P-value cutoff of 0.01 as suggested by a quality control manual for this type of micro-

arrays. Probe sets were filtered for a minimum of 20% samples with detection P-value less than

0.01. Quantile normalization was performed across arrays. The data were then log2 trans-

formed, followed by centering and scaling procedures as described for Dataset 1. In total, 9266

features were included for further analysis.

Cross-validation design

We used a five-fold cross-validation design to compare the performance of the various classifi-

cation methods. To find the best parameters for the model, we performed another “nested”

leave-one-out (LOO) cross-validation on the five original training sets. We identified perfor-

mance information for each combination of classification method and parameter set and

selected the optimal combination to be used for the testing set. This methodology has been

described and aims to limit the effects of overfitting the model while objectively evaluating

model performance [19].

Classification

Three classification methods were applied to each of the two datasets: support vector machine

(SVM), random forest (RF) and naive Bayes (NB). We used the SVM methods implemented in

the e1071 package in R, and selected the RBF (radial basis function) kernel, which has been

shown to produce outstanding classification performance in previous studies [19]. We

employed the RF implementation in the R package random Forest [20]. There are three impor-

tant parameters, the values of which need to be determined: mtry (the number of input
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variable tried at each split), ntree (the number of trees to grow for each forest) and nodesize

(the minimum size of the terminal nodes). We considered different parameter configurations

for their values of mtry = {0.5,1,2}, ntree = {500,1000,2000} and nodesize = 1, as recommended

in a previous study [21]. The best-performing parameters were selected by nested cross-valida-

tion, as described in the last section. NB implemented in this study used the klaR package [22]

in R. The parameter fL (factor for Laplace correction) was set by default (no correction), and

usekernel (logic value to set if a kernel density estimate will be used for density estimation) was

optimized by nested cross-validation. Classification model performance was evaluated using

three classification metrics: accuracy, sensitivity and specificity. The Matthews Correlation

Coefficient (MCC) was also used to quantify the balance between sensitivity and specificity.

Feature (gene) selection methods

In feature selection method, a small subset of features are identified that, together with the clas-

sification methods, are most effective in distinguishing samples belonging to different groups.

There are three broad categories of selection methods: filter, wrapper, and embedded methods.

Filter methods rank the features or genes regardless of the model. They select the most signifi-

cant feature or gene based on univariate measure. Wrapper methods evaluate subsets that are

optimal with respect to a subset evaluator such as a classifier. Embedded methods incorporate

the search algorithm into the classifier. In this study, two filter methods and two wrapper

methods were applied. The Chi-Squared method is a filter method that evaluates features or

genes individually by measuring their chi-squared statistic with respect to the classes. The cor-

relation-based feature selection method (CFS) method is also a filter method, which measures

the correlation between attributes and recognizes those feature subsets in which each feature is

highly correlated with the class but uncorrelated with other subset features. The SVM-based

recursive feature elimination method (SVM-RFE) is a wrapper method used in microarray

data analysis. It eliminates unessential genes and selects better and more compact gene subsets.

Random forest-based backward feature elimination method (RFVS) is another wrapper

method that constructs RFs in an iterative manner. Upon each iteration, RFVS builds a ran-

dom forest after discarding genes with the smallest importance values in the last iteration. The

returned subset of genes is the one with the smallest out-of-bag error [23].

Principal component analysis

Principal component analysis (PCA) was performed using function pca() in R (version 3.2.2)

package FactoMineR (version 1.31.4). Configuration: scale.unit = TRUE, ncp = 5, ind.

sup = NULL, quanti.sup = NULL, quali.sup = NULL, row.w = NULL, col.w = NULL,

graph = TRUE, axes = c(1,2) [24].

The component loadings used in PCA are the correlation coefficients between the variables

(rows) and factors (columns) and the values for the genes of PC1 and PC2 indicate the

"weights" for the genes. The higher the loading value, the higher weight a gene carries in com-

posing the PC. Background correction and quantile normalization were performed using

limma package [18]. Data was loaded into MeV as a tab delimited text file of log2-transformed

Cy5/Cy3 ratios. For PCA analysis, missing data were first estimated using K-nearest neighbors

(KNN) imputation with N = 4.

Construction of heat maps

Heat maps showing gene expression for the patients by severity group were constructed using

normalized and scaled expression levels. Quantile normalization was performed on the raw

microarray data, and the normalized expression levels were then Log2 transformed, centered
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(on 0), and scaled to the same range across genes, so that each gene is evaluated with equal

weight.

Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (Qiagen) (Version 43605062) was used to perform Canonical

Pathway Analysis and Upstream Regulator Prediction. Analysis was performed on four lists of

microarray probe IDs: identified by CFS classifier in Dataset 1 and differentially expressed,

identified by SVM-RFE classifier in Dataset 1 and differentially expressed, identified by CFS

classifier in Dataset 2 and differentially expressed, and identified by SVM-RFE classifier in

Dataset 2 and differentially expressed. Differential expression was considered statistically sig-

nificant if the t-test p-value was< 0.05 following Bonferroni correction based on the number

of probe IDs identified for each classifier-dataset combination. The Bonferroni correction was

applied to limit the false positive discovery rate associated with multiple hypothesis testing.

Probe IDs that were successfully mapped by IPA were included for analyses. The direction of

expression was positive for probes with higher expression in high severity patients and nega-

tive for probes with higher expression in low severity patients. For each dataset, the appropri-

ate reference probe set was based on the microarray used in the original study.

Results

Classification and accuracy performances were improved by applying

feature selection methods

Several studies, including retrospective cohort analyses and prospective clinical trials, have

shown that the severity of skin sclerosis, as assessed by the modified Rodnan skin thickness

score (mRSS), is predictive of disease outcome [25]. However, only a very select few have

attempted to map the clinical covariates of mRSS to unique gene expression signatures. To fur-

ther explore this, we used microarray data from two SSc patient studies (Dataset 1 and Dataset

2) from the NCBI GEO Database (Patient data shown in Table 1 and S1 and S2 Tables). We

categorized microarray profiles as either low (mRSS 0–17) or high (mRSS 18–51) severity.

We first tested various two-class classification models to determine which could best distin-

guish between samples designated as low or high severity. The accuracy, sensitivity, specificity,

and Mathew’s correlation coefficient (MCC) were determined for each of the classification

models (Table 2). MCC values demonstrate the contribution from each of the randomly

formed gene sets. An MCC value of 1 indicates a perfect prediction [26]. In the Dataset 1, the

accuracy performance classifier RF and feature selection correlation-based selection method

CFS showed a MCC value of 0.96 (Table 2). NB combined with either CFS or SVM-RFE

showed MCC values of 0.96, and 0.96 respectively (Table 2). In Group 2, RF and CFS had a sig-

nificant MCC value of 1.00. NB combined with either CFS or SVM-RFE also produced a MCC

Table 1. Summary of patient information for microarray biopsy samples used in models.

C Dataset 1 Dataset 2

Number of Biopsies 54 58

Gender (Male/Female) 14/40 14/44

Race (W/AA/H/A) 44/4/2/4 38/9/10/1

Age (Years) 52.3 ± 7.1 52.2 ± 10.7

Skin Score 19.5 ± 2.7 14.9 ± 2.7

Means +/- SEM are shown. W: White, AA: African American, H: Hispanic, A: Asian.

https://doi.org/10.1371/journal.pone.0199314.t001
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value of 1.00. Thus, higher MCC values were obtained in cases where either CFS or SVM-RFE

selection methods were employed. Therefore, we chose to focus primarily on the results from

these two feature selection methods for the remainder of the investigation.

The CFS selection method identified 84 probe IDs in Dataset 1 and 89 probe IDs in Dataset

2 as being differentially expressed between low and high severity groups. Likewise, the

SVM-RFE method identified 450 probe IDs in Dataset 1 and 50 probe IDs in Dataset 2

(Table 3). Specific genes and potential interactions were explored using Ingenuity Pathway

Analysis.

Patient severity classification groups are readily separable by gene

expression signatures

We performed principal component analysis (PCA) using all targets to pass data cleaning and

filtering to visually interpret the variability within and between severity groups. PCA based on

Table 2. Performance evaluation of various classifier and feature selection methods.

Dataset Classifier Feature Selection Accuracy Sensitivity Specificity MCC

Dataset 1 SVM All Features 0.87 0.88 0.87 0.74

Chi-Squared 0.93 0.96 0.90 0.85

CFS 0.93 1.00 0.87 0.86

SVM-RFE 0.96 1.00 0.93 0.93

RVFS 0.89 0.88 0.90 0.78

RF All Features 0.76 0.67 0.83 0.51

Chi-Squared 0.93 0.92 0.93 0.85

CFS 0.98 1.00 0.97 0.96

SVM-RFE 0.94 0.92 0.97 0.89

RVFS 0.94 0.96 0.93 0.89

NB All Features 0.74 0.85 0.73 0.48

Chi-Squared 0.89 0.83 0.93 0.78

CFS 0.98 1.00 0.97 0.96

SVM-RFE 0.98 1.00 0.97 0.96

RVFS 0.91 0.92 0.90 0.81

Dataset 2 SVM All Features 0.84 0.62 0.97 0.66

Chi-Squared 0.91 0.90 0.92 0.82

CFS 0.95 1.00 0.92 0.90

SVM-RFE 1.00 1.00 1.00 1.00

RVFS 0.95 0.95 0.95 0.89

RF All Features 0.72 0.29 0.97 0.38

Chi-Squared 0.91 0.81 0.97 0.81

CFS 1.00 1.00 1.00 1.00

SVM-RFE 0.97 0.90 1.00 0.93

RVFS 0.98 0.95 1.00 0.96

NB All Features 0.71 0.43 0.86 0.33

Chi-Squared 0.90 0.86 0.92 0.78

CFS 1.00 1.00 1.00 1.00

SVM-RFE 1.00 1.00 1.00 1.00

RVFS 0.95 0.95 0.95 0.89

SVM: support vector machine, RF: random forest, NB: naive Bayes, CFS: correlation-based feature selection method, SVM-RFE: SVM-based recursive feature

elimination method, RVFS: random forest-based backward feature elimination method, MCC: Mathew’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0199314.t002
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all four feature selection methods showed clear separation between severity groups based on

gene signature for both Datasets (Fig 1 and S1 Fig). The PCA based on CFS for Dataset 1

showed 24.90% of variance in PC1 and 7.93% of variance in PC2 (Fig 1A). For all feature selec-

tion methods and both datasets, PC1 explained much more of the variability than PC2, indi-

cating that the first principal component explained most of the differences between the

expression profiles of the high and low severity patients. For the PCA performed on genes

from the Chi-squared feature selection method, the microarray probe IDs with the ten highest

absolute loading values for PC1 are given in Table 4. Each of these probe IDs was found to be

statistically differentially expressed between low and high severity groups, based on Bonfer-

roni-adjusted t-test p-value < 0.05. All The most highly weighted probe IDs for datasets 1 and

Table 3. Number of features (microarray probe IDs) selected for each dataset and feature selection method.

Column1 SVM-RFE Chi-Squared CFS RVFS

Dataset 1 450 84 84 23

Dataset 2 50 89 89 9

SVM-RFE: SVM-based recursive feature elimination method, CFS: correlation-based feature selection method, RVFS: random forest-based backward feature

elimination method.

https://doi.org/10.1371/journal.pone.0199314.t003

Fig 1. Principal component analyses (PCA) of gene expression separation between low and high severity groups.

Results based on CFS feature selection method are shown in A (Dataset 1) and B (Dataset 2). Results based on

SVM-RFE feature selection method are shown in C (Dataset 1) and D (Dataset 2).

https://doi.org/10.1371/journal.pone.0199314.g001
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2 corresponded to genes for MAGI1 and SOX18, respectively, with positive loading values

being associated with the more severe disease phenotype in both cases.

In addition, the Log2 normalized expression values were used to create heat maps for each

Dataset. Heat maps were generated to show probe IDs from Dataset 1 (Fig 2) and Dataset 2

(Fig 3) that were identified by CFS feature selection and highlight differences in gene expres-

sion profiles between the severity groups. As expected, expression profiles associated with

these probe IDs can be separated by severity index when inspected visually. Similar results are

shown in heat maps for probe IDs from Dataset 1 (S2 Fig) and 2 (S3 Fig) that were identified

by SVM-RFE.

Pathway enrichment analysis identified a putative signaling network that

included genes related to SSc severity

Based on the high performance of our models, we hypothesized that the genes identified by the

models and differentially expressed between severity groups may have biological significance.

To further explore the relationship between these groups of genes, we used Ingenuity Pathway

Analysis (IPA) to analyze the lists of genes that were both identified by the classifier and that

showed differential expression between severity groups (Bonferroni-corrected t-test p-

value < 0.05). Fig 4 depicts the numbers of Probe IDs that were identified by the classifier,

were statistically significant, and mapped to Gene IDs for each classifier and dataset combina-

tion. We first investigated whether our gene lists were overrepresented in known Canonical

Pathways. The top three Canonical Pathways (ranked by Benjamini-Hochberg p-value) are

shown in S3 Table. Our analysis failed to find any pathways that showed statistically

Table 4. Microarray probe IDs associated with the top 10 highest absolute value of loading values for principal component 1 based on principal component analysis

of genes identified by Chi-squared feature selection.

Microarray Probe ID Gene Symbol Loading Value Gene Name Adjusted p-value

Dataset

1

A_23_P73297 MAGI1 0.813 membrane associated guanylate kinase, WW and PDZ domain containing 1 1.56E-03

A_32_P86578 LOC389023 -0.749 uncharacterized LOC389023 1.75E-03

A_23_P403398 DKFZP586I1420 0.747 uncharacterized protein DKFZp586I1420 1.11E-03

A_23_P36531 TSPAN8 0.745 tetraspanin 8 1.42E-03

A_23_P31996 SLC46A2 0.744 solute carrier family 46, member 2 5.80E-04

A_23_P155441 RFT1 -0.743 RFT1 homolog (S. cerevisiae) 5.19E-03

A_23_P85140 TCEAL2 0.740 transcription elongation factor A (SII)-like 2 4.19E-03

A_23_P147647 SGCD -0.728 sarcoglycan, delta (35kDa dystrophin-associated glycoprotein) 4.40E-03

A_23_P73220 FGD6 0.727 FYVE, RhoGEF and PH domain containing 6 2.13E-03

A_23_P92552 PET112 0.726 PET112 homolog (yeast) 1.11E-03

Dataset

2

ILMN_1812968 SOX18 0.754 SRY (sex determining region Y)-box 18 8.75E-06

ILMN_1741688 CPXM2 0.753 carboxypeptidase X (M14 family), member 2 1.10E-05

ILMN_2402766 AFTPH -0.750 aftiphilin 2.02E-03

ILMN_1663618 STAT3 0.742 signal transducer and activator of transcription 3 (acute-phase response

factor)

3.23E-03

ILMN_1676893 ADCY3 0.737 adenylate cyclase 3 5.26E-04

ILMN_1786197 NR2F1 0.737 nuclear receptor subfamily 2, group F, member 1 9.06E-03

ILMN_1821397 N/A -0.737 N/A 6.71E-03

ILMN_1687840 ABCB7 -0.726 ATP-binding cassette, sub-family B (MDR/TAP), member 7 8.12E-05

ILMN_1786139 VKORC1 0.726 vitamin K epoxide reductase complex, subunit 1 3.83E-04

ILMN_1785113 MUT -0.722 methylmalonyl CoA mutase 2.13E-02

Adjusted p-values are Bonferroni-corrected p-values from T-test statistic comparing normalized levels between low and high severity patient groups.

https://doi.org/10.1371/journal.pone.0199314.t004
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meaningful overrepresentation of our input genes. We then used the Upstream Regulator

Analysis in IPA to see whether a common upstream regulator could explain the differences

that we saw in gene expression between low and high severity patient samples. The upstream

regulator that showed the most predictive value, based on a combination of activation Z-score

of 2.159 and p-value of overlap of 2.25E-03 was oncostatin M (OSM). Activation of OSM was

predicted to regulate five of the genes with significant expression differences identified in

Dataset 2 using the CFS classifier when comparing low and high severity patients (Table 5 and

Fig 5).

Discussion

This study is one of the first to describe an independently validated classification prediction

model for gene signatures in SSc using current clinical diagnostic factors. We used applied

three well-established classification methods, SVM, RF, and NB, coupled with four different

feature selections, to clinically derived microarray data and compared the relative efficiency of

the models. Interestingly, RF and CFS showed high MCC values of 0.96 and 1.00 for both of

Fig 2. Heat map showing Log2 normalized expression values for patient samples from Dataset 1 for probe IDs

identified by CFS feature selection method.

https://doi.org/10.1371/journal.pone.0199314.g002
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the independent datasets that we used, suggesting an efficient diagnostic two-layered system

for SSc. This two-layered model system is capable of reducing the dimensionality of large inde-

pendent data to find a more useful subset for further exploration. Moreover, due to the hetero-

geneity of patients with SSc, a prediction model that can deduce disease severity in an

unsupervised manner is essential. To get an idea of how the gene lists generated by our classifi-

ers compared to conventionally-derived differentially expressed genes, we also performed a

formal differential gene expression analysis comparing low and high severity patients from

each dataset (data not shown), which identified many probe IDs that were statistically signifi-

cant between groups. While some genes identified by the feature selection methods overlapped

with this list of conventionally derived differentially expressed genes, in each case our classifi-

ers also identified several genes that were not found with the conventional differential gene

analysis. This highlights the value of our classifiers in finding genes that can be useful for classi-

fication purposes but may not be identified by conventional methods.

Further validating the efficiency of the two-step model system, principal component analy-

sis showed a clear separation of patients with high and low skin scores when subjected to the

model. This clustering of datasets further substantiates the efficiency of the model system to

reduce complexity and distinguish between high and low severity gene profiles. After perform-

ing the PCA, we examined which microarray probe IDs were associated with the highest load-

ing values to gain a sense of which were the most important in separating the severity groups.

The most highly weighted probe IDs were associated with a broad array of biological processes.

In Dataset 1, Tetraspanin 8 showed one of the highest loading levels. Tetraspanins have previ-

ously been shown to alter fibrosis through the regulation of epithelial cell-basement membrane

interaction [27]. For Dataset 2, we found that the gene Signal Transducer and Activator of

Transcription 3 (STAT3) ranked was one of those with the highest loading value. STAT3 has

been extensively associated with dermal fibrosis and is critical in the pro-fibrotic effects of

TGF-β signaling [28,29]. Our analysis suggests that the other highly weighted genes are key in

distinguishing low and high severity patients and should be carefully considered for further

investigation. Based on the results of the CFS feature selection method, heat maps showing

Log2 normalized expression for both datasets showed a clear distinction between patients with

high and low skin scores, signifying the presence of two separately clustered gene profiles.

Our model assigned patients into high and low severity groups using skin score, the stan-

dard diagnostic measurement for SSc. This bolsters the efficiency and effectiveness of our

model system to determine outcome, which should help decrease the lack of specificity that

currently hampers clinical treatment. The analytical pipeline reported herein highlights the

potential applicability of an unsupervised, tiered correlation method, whereby disease severity

can be classified based upon genetic signature alone. Furthermore, the novel gene sets that

have been identified as correlating with disease severity may be further investigated to provide

insight into the molecular mechanisms underlying a clinical trait of SSc, a complex fibrotic dis-

ease. Our methodology can be used to stratify patients to assess response to therapy and to

guide appropriate recruitment to clinical trials.

To evaluate the functional relevance of these clusters in the context of disease, we used vari-

ous tools within Ingenuity Pathway Analysis to explore interactions between genes that were

both identified by our classification methods and showed differential expression between low

and high severity groups. Our analysis did not return any pathways that were significantly

enriched by the genes in our lists, showing that the genes identified here to do not belong to

known biological pathways. This result indicates that our classification methods are capable of

identifying genes that, when taken together, can accurately be used to predict disease severity

although they may not participate in the same pathways in vivo. Additionally, it is possible that

these genes may interact in pathways that are not yet known. However, our analysis of
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potential upstream regulators did identify one small network, controlled by the cytokine

oncostatin-m (OSM), that could drive relatively high expression of P-selectin (SELP), choles-

terol 24-hydroxylase (CH25H), c-c motif chemokine ligand 2 (CCL2), and angiopoietin 2

(ANGPT2) and low expression of heat shock protein family B member 3 (HSPB3) in higher

severity SSc patients. Evidence in the literature shows that OSM is capable of regulating these

genes with directionality suggesting that OSM positively regulates the genes associated with

the more severe skin scores [30–32]. Studies have shown that levels of OSM, an IL-6 family

cytokine, are associated with SSc and OSM can modulate production of several extracellular

matrix components important in fibrosis [33–36]. Relevant to our study, serum levels of solu-

ble angiopoietin-1, p-selectin, and CCL2 correlate with increasing severity of SSc and

Fig 3. Heat map showing Log2 normalized expression values for patient samples from Dataset 2 for probe IDs

identified by CFS feature selection method.

https://doi.org/10.1371/journal.pone.0199314.g003
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worsening clinical features [37–40]. Therefore, our data suggest that OSM may influence the

expression of additional genes associated with severe disease.

We observed some differences in the probe IDs identified by our classification methods

and in subsequent downstream analyses. For the two datasets, the CFS method identified simi-

lar number of probe IDs that were used for classification (84 and 85 for Datasets 1 and 2,

respectively). On the other hand, the SVM-RFE method identified 450 probe IDs for Dataset 1

and 50 for Dataset 2. We believe that these differences stem from the fact that CFS and

SVM-RFE use intrinsically different methods for feature selection. The CFS method is a filter

method that gives priority to genes whose expression is highly correlated with a class.

SFM-RFE is a wrapper method that discards genes that have only a small impact on classifica-

tion. Interestingly, when only the genes that have significantly different expression levels

between severity groups are considered, the numbers of genes identified by the classifiers are

more analogous. This indicates that the majority of the 450 probe IDs identified when the

SVM-RFE method was applied to Dataset 2 were useful for classification, despite not being

considered differentially expressed between groups.

Our novel three-classification model system of SVM, RF, and NB is an efficient and power-

ful tool for developing gene signatures from SSc skin biopsies and can also be used to develop

a prognostic gene signature for SSc. Our models achieved high accuracy, specificity, and sensi-

tivity, demonstrating their potential use as diagnostic indicators. Furthermore, our model

Fig 4. Schematic representation of pipeline for choosing genes that were included in Ingenuity Pathway Analysis.

Red font indicates numbers of genes more highly expressed by high severity patients; blue font indicates numbers of

genes more highly expressed by low severity patients.

https://doi.org/10.1371/journal.pone.0199314.g004

Table 5. Results of IPA-based upstream regulator analysis showing potential role for OSM in regulating genes identified by CFS-based classification of Dataset 2

and differentially expressed between low and high severity patients.

Probe ID Genes in Dataset Prediction of OSM Activation (based on measurement

direction)

High vs. Low Severity Regulation Evidence from Literature

ILMN_1715417 SELP Activated Upregulated Upregulated by OSM1

ILMN_1720710 HSPB3 Activated Downregulated Downregulated by OSM1

ILMN_1741021 CH25H Activated Upregulated Upregulated by OSM1

ILMN_1720048 CCL2 Activated Upregulated Upregulated by OSM1

ILMN_3250067 ANGPT2 Activated Upregulated Upregulated by OSM1

https://doi.org/10.1371/journal.pone.0199314.t005
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system can be used to model other fibrotic disorders by substituting different phenotypes in

the training cohort. Current ongoing and future studies using alternative methodologies will

investigate specific genes identified by the classifiers to determine how they may relate to dis-

ease pathogenesis and progression.

Supporting information

S1 Table. Patient information for samples used from Dataset 1. B: Back biopsy, FA: Fore-

arm biopsy, F: Female, M: Male, W: White, A: Asian, AA: African American, H: Hispanic.

Shading indicates individual patients.

(DOCX)

S2 Table. Patient information for samples used from Dataset 2. F: Female, M: Male, W:

White, A: Asian, AA: African American, H: Hispanic.

(DOCX)

S3 Table. Canonical pathways identified by Ingenuity Pathway Analysis. Probe IDs

included in analysis were both identified by the classification method and significantly differ-

entially expressed between low and high severity groups (Bonferroni-corrected t-test p-

value < 0.05). CFS: correlation-based feature selection method, SVM-RFE: SVM-based recur-

sive feature elimination method. Ratio: number of genes from input list that occur in pathway.

Fig 5. Predicted signaling network between OSM and downstream genes related to SSc severity. Red shading of

gene indicates upregulation in dataset compared to low severity patients, green shading downregulation, and intensity

of color depicts strength of regulation. Relationships between genes that are predicted based on literature are indicated

by lines connecting genes, with red symbolizing predicted upregulation and blue predicted downregulation.

https://doi.org/10.1371/journal.pone.0199314.g005
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B-H p-value: Benjamini-Hochberg adjusted p-value of right-tailed Fisher’s Exact Test.

(DOCX)

S1 Fig. Principal component analysis (PCA) of gene expression separation between low

and high severity groups. Results based on Chi-squared feature selection method are shown

in A (Dataset 1) and B (Dataset 2). Results based on RVFS feature selection method are shown

in C (Dataset 1) and D (Dataset 2).

(TIF)

S2 Fig. Heat map showing Log2 normalized expression values for patient samples from

Dataset 1 for probe IDs identified by SVM-RFE feature selection method.

(TIF)

S3 Fig. Heat map showing Log2 normalized expression values for patient samples from

Dataset 2 for probe IDs identified by SVM-RFE feature selection method.

(TIF)
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