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Abstract

Chronically high blood glucose concentrations are a characteristic of diabetes mellitus.
Maternal diabetes affects the metabolism of early embryos and can cause a delay in devel-
opment. To mimic maternal diabetes, bovine in vitro fertilization and embryo culture were
performed in fertilization medium and culture medium containing 0.5, 2, 3, and 5 mM, glu-
cose whereas under control conditions, the medium was glucose free (0 mM). Compared to
control conditions (0 mM, 31%), blastocyst development was decreased to 23% with 0.5
and 2 mM glucose. Presence of 3 or 5 mM glucose in the medium resulted in decreased
blastocyst rates (20% and 10% respectively). The metabolomic profile of resulting day 8
blastocysts was analysed by UPLC-MS/MS, and compared to that of blastocysts cultured in
control conditions. Elevated glucose concentrations stimulated an increase in glycolysis and
activity of the hexosamine pathway, which is involved in protein glycosylation. However,
components of the tricarboxylic acid cycle, such as citrate and alpha-ketoglutarate, were
reduced in glucose stimulated blastocysts, suggesting that energy production from pyruvate
was inefficient. On the other hand, activity of the polyol pathway, an alternative route to
energy generation, was increased. In short, cattle embryos exposed to elevated glucose
concentrations during early development showed changes in their metabolomic profile con-
sistent with the expectations of exposure to diabetic conditions.

Introduction

In diabetic patients, glucose utilization and storage is not regulated properly, resulting in
hyperglycemia and glycosuria. Of the two major types of diabetes, type 1 is an autoimmune
disease that generally onsets during childhood, whereas type 2 diabetes is the result of insulin
resistance, and is mostly triggered by an unhealthy lifestyle, including poor nutrition and phys-
ical inactivity. Diabetes is an increasingly prevalent disease; in 2015, it was estimated that 415
million people worldwide suffered from some form of diabetes, and it is expected that this will
increase to 642 million people by 2040, largely as a result of an increasing incidence of insulin
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resistance linked to obesity [1]. In addition to diabetes-related pathology in the primary
patient, there is an increased risk of gestational complications, including spontaneous abortion
and the development of metabolic diseases in the children of mothers who are, or become, dia-
betic during pregnancy [2]. Gestational diabetes occurs spontaneously and is triggered by
pregnancy-related changes in the endocrine environment [3], but disappears after birth of the
child. However, women that develop gestational diabetes, and their children, have a higher
risk of developing type 2 diabetes later in life [1]. In 2015, it was estimated that 20.9 million
children were born to mothers suffering from hyperglycemia during pregnancy [1].

Although blood glucose concentrations fluctuate markedly in healthy individuals depend-
ing primarily on the time and composition of their last meal, they are homeostatically regu-
lated by insulin, glucagon and other catabolic hormones, such that they return to
normoglycemic resting values between approximately 4 and 6 mM. By contrast, the blood glu-
cose concentrations of diabetic patients are chronically elevated to approximately 12-19 mM,
primarily as a result of either inadequate insulin production (type 1 diabetes) or insensitivity
to the actions of insulin (type 2 diabetes). In women, high blood glucose concentrations are
reflected in reproductive tract fluids, and may therefore affect oocyte maturation and early
embryo development [4]. In cows the glucose concentrations vary between 0.05 and 4.5 mM
in the reproductive tract, which is lower compared to the glucose concentrations detected in
blood (5.8-7.7 mM) [5-8]. Indeed, careful regulation of the metabolic status of women suffer-
ing from diabetes during pregnancy has been shown to decrease the incidence of fetal abnor-
malities [9]. How, and to what extent, high glucose concentrations affect pre-implantation
development is less well understood, primarily because of the relative inaccessibility of affected
early embryos. To investigate the possible effects of maternal diabetes on oocytes or early
embryos, various animal models have therefore been developed. A diabetic mouse model dem-
onstrated that oocytes from hyperglycemic animals are smaller and exhibit delayed meiotic
maturation when compared to oocytes from control mice [10, 11]. In addition, both oocyte
developmental competence [12-14] and early embryonic development are compromised by
hyperglycemia in diabetic animal models including the mouse, rat, rabbit, sheep and cow [4,
15-19]. While most diabetes studies have been performed in rodent models, using bovine blas-
tocysts has several advantages for extrapolation to human development. The main advantages
of bovine oocytes include accessibility and avoiding the use of experimental animals, since cow
ovaries can be obtained as a by-product from slaughterhouses. Furthermore, like man, the cow
is a mono-ovulatory species with a similar time course of oogenesis and folliculogenesis, mak-
ing the cow a good animal model for human reproduction [20, 21]. In addition, germinal vesi-
cle breakdown during maturation requires protein synthesis in human and bovine oocytes
[22, 23], which is not needed in the mouse [24].

During oocyte maturation, the cumulus cells that surround the oocyte are glycolytically
active; they take up glucose and generate pyruvate, the preferred metabolic substrate of the
oocyte [25-27] and preimplantation embryo [28, 29]. In addition, the pentose phosphate path-
way is reported to play an important role in glucose utilization during meiotic maturation [30,
31] and early embryo development [32, 33]. Overall, it is thought that, before it enters the
uterus, the embryo’s main energy substrates are pyruvate and lactate, which are metabolized
via oxidative phosphorylation. After arrival in the relatively anaerobic environment of the
uterus, the embryo switches its primary mode of metabolism to glycolysis [34].

Exactly how high glucose concentrations affect the metabolism of the preimplantation
embryo is not well understood. Here, we used bovine in vitro fertilization and embryo develop-
ment both in the presence of exogenous glucose, to create an environment mimicking that
expected in a diabetic mother, and compared the metabolomic profile of resulting blastocysts
and the medium conditioned by embryo culture with those of glucose-free culture.
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Materials and methods
All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated.

Collection of cumulus-oocyte complexes, in vitro maturation, fertilization
and embryo culture

Cattle ovaries were collected from a local slaughterhouse (Gosschalk, Epe, The Netherlands)
and transported to the laboratory in a thermos flask. On arrival at the laboratory, the ovaries
were rinsed in tap water and maintained at 30°C in physiological saline (0.9%) containing 100
IU/ml penicillin and 100 pg/ml streptomycin. Cumulus-oocyte complexes (COCs) were then
aspirated from small antral follicles (2-8 mm) using an 18-gauge needle connected via a 50 ml
collection tube to a low-pressure aspiration pump. COCs with several cumulus cell layers were
selected and, after washing in HEPES buffered M199 (Gibco BRL, Paisley, UK), were matured
in vitro in groups of 50-60 COCs. All culture steps (maturation, fertilization and embryo cul-
ture) took place in 4-well culture plates (Nunc A/S, Roskilde, Denmark). To allow in vitro mat-
uration, COCs were incubated for 23h in 500 ul NaHCO;-buffered M199 (Gibco BRL), which
contains 5.5 mM glucose, supplemented with 1% penicillin-streptomycin (Gibco BRL), 0.02
IU FSH/ml (Sioux Biochemical Inc., Sioux Centre IA, USA), 0.02 IU LH/ml (Sioux Biochemi-
cal Inc.), 7.7 pg/ml cysteamine and 10 ng/ml epidermal growth factor, at 39°C in a humidified
atmosphere containing 5% CO,.

In vitro fertilization was performed as described previously [6, 35]. In brief, fertilization
medium which does not contain glucose but instead contains sodium pyruvate as an energy
source, was supplemented with 1.8 IU/ml heparin, 20 uM d-penicillamine, 10 uM hypotaurine,
and 1 pM epinephrine. Frozen-thawed spermatozoa from an in vitro fertility proven bull was
washed through a Percoll gradient and used at a concentration of 1x10° sperm cells/ml. After
sperm-oocyte co-incubation for 18-22h at 39°C in a humidified atmosphere containing 5%
CO; and 7% O,, presumptive zygotes were denuded of their cumulus investment by vortexing
for 3 min, and transferred to 500 pl synthetic oviductal fluid (SOF) [36], containing sodium
pyruvate, BSA and sodium lactate, for further culture. Assessment of presumptive embryos
for cleavage was performed on day 5 of culture, and only cleaved embryos were transferred to
fresh SOF and cultured for an additional 3 days (until day 8), when blastocyst development
was assessed. To determine an appropriate glucose concentration for the metabolome analysis,
fertilization medium and SOF were supplemented with 0.5, 2, 3, and 5 mM glucose. Control
conditions were without glucose. Based on embryo development data, 3 mM glucose and no
glucose (control) were used for fertilization medium and SOF for the definitive metabolome
analysis.

Collection of blastocysts and culture medium for metabolomic analysis

Day 8 blastocysts, which did not show any morphological abnormalities, were washed in PBS,
snap frozen in liquid nitrogen and stored at -80°C until processing for metabolomic analysis.
In total, 3 samples from each condition, containing between 538 and 590 blastocysts per sam-
ple were analysed. Medium (500 pl) was conditioned by incubation of at least 50 embryos with
more than eight-cells from day 5 to day 8 in SOF medium, either without glucose (control) or
supplemented with 3 mM glucose.

Sample preparation and metabolomic analysis

Sample preparation and ultra-high performance liquid chromatography-tandem mass spec-
troscopy (UPLC-MS/MS) were performed as described previously [37] by Metabolon Inc.
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(Durham, NC USA). In brief, 4 analysing methods were used, two separate reverse phase (RP)
UPLC-MS/MS methods employing positive ion mode electrospray ionization, one analysis

by RP/UPLC-MS/MS with negative ion mode electrospray ionization, and one analysis by
hydrophilic interaction chromatography (HILIC)/UPLC-MS/MS with negative ion mode elec-
trospray ionization. Raw data were extracted, peak-identified and QC-processed using Meta-
bolon’s proprietary hardware and software. Measurements for blastocysts were normalized
against total protein concentration. In the case of missing values, imputation was used to cal-
culate the fold change (marked with an asterisk in the supplementary tables).

Statistical analysis

Statistical analysis of the success of blastocyst development in medium with different glucose
concentrations was performed using SigmaPlot software (Systat software Inc., San Jose, CA,
USA), these data are expressed as means = SD. To compare the percentage of blastocysts
between treatment groups, after testing for normality of distribution, an analysis of variance
(ANOVA) was performed followed by a post-hoc Bonferroni test. Welch’s two-sample t-test
was used to compare metabolite concentrations between 0 and 3mM glucose conditions. A P-
value < 0.05 was considered to be statistically significant.

Results

In order to determine tolerance of bovine embryos to glucose, bovine oocytes were fertilized
and cultured to the blastocyst stage in the presence of exogenous glucose. Under standard con-
ditions fertilization medium and synthetic oviductal fluid (SOF) do not contain glucose (0
mM). To find an optimal glucose concentration for stimulation, concentrations between 0.5
mM and 5 mM glucose were tested. Cleavage was compromised at glucose concentration of 3
mM (67%) and 5 mM (68%), compared to 83% under control conditions (Fig 1A). Presence of
0.5 mM and 2 mM glucose resulted in 80% cleavage. Comparison of blastocyst development
showed a decrease to 23% in the presence of 0.5 or 2 mM glucose, compared to 31% in the con-
trol group. Presence of 3 mM glucose resulted in more reduced blastocyst rates (20% and 10%,
respectively: Fig 1B). For further experiments 3 mM glucose was chosen, because it showed a
clear compromise on embryo development, while still providing adequate blastocyst develop-
ment to collect blastocysts for the metabolome analysis.

The percentages of oocytes that developed to blastocysts decreased significantly at glucose
concentrations as low as 3 mM (Fig 1B). To further understand how blastocysts that developed
in the presence of elevated glucose concentrations differed to those that developed in the
absence of exogenous glucose, the metabolomic profiles of the blastocysts were determined by
mass spectrometry. In total, 1719 control blastocysts and 1698 glucose-stimulated (3 mM)
blastocysts were divided into three groups for metabolite identification. In addition, the
medium in which embryos had been cultured from days 5 to 8 was analysed for metabolite
concentrations.

The metabolomic profiles revealed 22 biochemical constituents that increased and 41 that
decreased significantly in concentration, in glucose-stimulated compared to control blasto-
cysts. The comparison of conditioned media from the two types of culture showed significantly
altered concentrations of 18 biochemical compounds, 11 of which were increased and 7
decreased when blastocysts were cultured in medium containing elevated glucose concentra-
tions. As expected, the intraembryonic glucose concentration increased markedly when
embryos were cultured in the presence of 3 mM glucose (Fig 2A, S1 Table). Intracellular con-
centrations of 3-phosphoglycerate and phosphoenolpyruvate (Fig 2B and 2C, S1 Table) were
also increased significantly, indicating enhanced glycolytic activity; however, intracellular
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Fig 1. Effect of glucose on bovine cleavage and blastocyst development. Fertilization and embryo culture was
performed in culture medium without supplementary glucose (control) and in medium containing final glucose
concentrations as indicated. A) Cleavage was evaluated on day 5 of post-fertilization culture. B) Blastocyst

development was evaluated on day 8 of post-fertilization culture. Data are depicted as mean + SD; columns with

different letters differ significantly, p < 0.05.
https://doi.org/10.1371/journal.pone.0199310.g001
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Fig 2. Selected biochemicals detected in bovine blastocysts. Box and whisker plots for biochemical components detected in day 8 blastocysts produced in medium in the
presence or absence (control) of 3 mM glucose. A) glucose (p = 0.0396), B) 3-phosphoglycerate (p = 0.0015), C) phosphoenolpyruvate (p = 0.0077), D) pyruvate

(p = 0.6239), E) lactate (p = 0.6635) and F) oxidized glutathione (GSSG) (p = 0.0146). The upper whiskers represent the maximum, and the lower whiskers the minimum
values. The plus-signs indicate the mean values, while the median values are represented by a black line within the boxes. Boxes with different letters differ significantly.
Light blue—d8 blastocysts without supplementary glucose; blue—d8 blastocysts cultured in the presence of 3 mM glucose.

https://doi.org/10.1371/journal.pone.0199310.g002

concentrations of pyruvate and lactate were not altered (Fig 2D and 2E, S1 Table). Embryonic
mannitol/sorbitol and fructose concentrations were however increased, indicating glucose
metabolism via the polyol pathway (S1 Table). Surprisingly, given that sorbitol does not diffuse
efficiently through the plasma membrane, the concentrations of sorbitol and fructose were
also increased in the medium conditioned by glucose-stimulated embryos (Fig 3A and 3B, S2
Table). And while the pyruvate concentrations in the conditioned medium tended to increase
(Fig 3C, S2 Table), the increase did not reach statistical significance (P = 0.09). Increased intra-
cellular concentrations of N-acetylglucosamine, N-acetyl-glucosamine 1-phosphate, UDP-N-
acetylglucosamine/galactosamine, and N-acetylneuraminate (S1 Table) indicate increased hex-
osamine pathway activity in the glucose-stimulated blastocysts. Sedoheptulose, an intermedi-
ate of the pentose phosphate pathway, was detected in glucose-stimulated blastocysts only. A
reduced concentration of oxidized glutathione was also detected in glucose-stimulated blasto-

cysts (Fig 2F).

Discussion

Metabolic stress induced by supraphysiological glucose concentrations has previously been
reported to alter gene expression in preimplantation embryos [4, 19]. Furthermore, high
maternal blood glucose concentrations are thought to compromise embryo development and
predispose to gestational complications. In this study, we investigated changes in the metabo-
lomic profile of bovine blastocysts resulting after culture in glucose-supplemented (3 mM) fer-
tilization and embryo culture media in comparison to blastocysts produced in control media
(0 mM).

The glucose concentrations reported for bovine oviductal fluid vary between 0.05 and 4.5
mM and are lower than those detected in blood (between 5.8 and 7.7 mM) [5-8]. In this
respect, while it is not too surprising that a glucose concentration of 10 mM appears to be
lethal to bovine embryos during in vitro culture [19], it is surprising that concentrations of 4.5
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Fig 3. Selected biochemicals detected in bovine embryo conditioned medium. Box plots for biochemical
components detected in SOF medium conditioned by bovine embryos with more than eight cells cultured for 3 days
(day 5 —day 8 of in vitro culture). A) mannitol/sorbitol (p = 0.0131), B) fructose (p = 0.0002) and C) pyruvate
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(p = 0.0902). The upper whiskers represent the maximum, and the lower whiskers the minimum values. The plus-signs
indicate the mean values, while the median values are represented by a black line within the boxes. Boxes with different
letters differ significantly. Light blue—conditioned glucose-free medium; blue—conditioned 3 mM glucose
supplemented medium.

https://doi.org/10.1371/journal.pone.0199310.9003

mM [38] or 5 mM [19] compromised embryo development, even when elevated glucose was
only present during part of the embryo culture period and especially when the glucose was
present early in the culture period. In the current study, elevated glucose concentrations (3
mM) were present throughout fertilization and embryo culture up to the blastocyst stage.
Although the percentage of blastocysts that developed from oocytes in the presence of 3 mM
glucose was reduced, the blastocysts formed appeared otherwise grossly normal and were used
for metabolomic analysis.

Early embryos, in the first few days after fertilization, have been reported to primarily utilize
pyruvate as an energy substrate [39, 40]; it is only after compaction at the morula stage that
glucose becomes an important substrate, via glycolysis, for energy production and lipid bio-
synthesis. In addition, glucose can enter the pentose phosphate pathway and be used for nucle-
otide synthesis, NADPH production and regulation of the intracellular redox status [41]. The
increased levels of 3-phosphoglycerate and phosphoenolpyruvate in embryos exposed to
higher concentrations of glucose indicate increased glycolysis under these conditions. Addi-
tionally, the 25-fold increase in sedoheptulose indicates that glucose is also channelled into the
pentose phosphate pathway. Glucose-exposed blastocysts also exhibited a 310-fold increase in
mannitol/sorbitol concentrations. In this respect, the polyol pathway converts glucose into sor-
bitol, which is further converted into fructose; increased sorbitol concentrations therefore
indicate increased activation of the polyol pathway to generate energy. The increased concen-
trations of mannitol/sorbitol in the blastocyst conditioned medium were less expected, because
of the poor diffusion of sorbitol through the plasma membrane. On the other hand, sorbitol
accumulation in cells is a common feature of diabetes, and leads to accumulation of reactive
oxygen species (ROS). The release of sorbitol into the medium might counteract this ROS
accumulation in the blastocysts.

Increased N-acetylglucosamine 1-phosphate and UDP-N-acetylglucosamine concentra-
tions suggest engagement of the hexosamine pathway in blastocysts encountering elevated glu-
cose concentrations. In this respect, it has been reported that protein glycosylation via the
hexosamine pathway is the underlying mechanism for the embryotoxic effect of excess glucose
[42]. It has also been suggested that activation of the hexosamine pathway leads to increased
TGEF-beta-1 expression [43, 44]. However, the transcriptome of glucose-exposed bovine
embryos did not show a change in TGFBI mRNA expression, although Ingenuity Pathway
Analysis did indicate enhanced TGF-beta signalling [19].

Hyperglycemic conditions lead to the production of reactive oxygen species, which can
stimulate the polyol pathway by inhibiting glyceraldehyde-3-phosphate dehydrogenase activity
[44]. It has therefore been suggested that hyperglycemic conditions can trigger the Warburg
effect in bovine embryos, in particular anaerobic glycolysis and lactate production [19].
Although pyruvate oxidation via the tricarboxylic acid cycle seemed to be reduced, which is a
characteristic of the Warburg effect, we did not observe an increase in intra- or extracellular
lactate production by embryos cultured in 3 mM glucose.

Blastocysts stimulated with glucose showed a reduction in oxidized glutathione concentra-
tions, which is also reported to occur under diabetic conditions [45]. Glutathione is a tripep-
tide synthetized from glycine, cysteine and glutamate. Two of the amino acids, glycine and
cysteine were decreased in glucose treated blastocysts, which hints at decreased glutathione
synthesis. Patients with uncontrolled type 2 diabetes also showed a decrease in concentrations
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of the amino acids glycine and cysteine [46]; the lowered levels of glutathione might be a rea-
son for higher levels of oxidative stress during diabetes.

Despite the apparent increase in embryo glycolysis, reduced concentrations of Kreb’s cycle
components indicate reduced activity of this important energy producing pathway under
hyperglycemic conditions (Fig 4). It is therefore possible that high glucose concentrations
result in defective mitochondrial oxidative phosphorylation. In any case, reduced tricarboxylic
acid cycle activity indicates inefficient energy production under hyperglycemic conditions. As
shown in rats [47] and mice [48], citrate and isocitrate are decreased under diabetic condi-
tions. Similarly, the glucose-treated blastocysts in the current study showed a decrease in cit-
rate and, while isocitrate was not detected in the current study, a decrease in isocitrate is
possible, since aconitate and alpha-ketoglutarate were decreased. The decrease in the compo-
nents in the chain from citrate to alpha -ketoglutarate might be explained by inhibition of the
enzyme aconitase by reactive oxygen species [49, 50]; the unchanged levels of the tricarboxylic
acid cycle metabolites, malate and fumarate, might be explained by maintenance of the reac-
tion from alpha -ketoglutarate to succinyl-CoA by glutamate [50].

In short, most of the changes detected in glucose-stimulated blastocysts were consistent
with altered carbohydrate metabolism, and it appears that these blastocysts use the pentose
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phosphate pathway preferentially to deal with the elevated glucose concentrations in their local
environment.

Glucose can affect the sex ratio of developing embryos, with male embryos developing
faster in glucose supplemented medium and female embryos arresting at the morula stage
[51]. Possibly, sex ratio modulation is influenced by the pentose phosphate pathway [52],
which is also upregulated in the data presented here. It is possible that the analyzed blastocysts
were skewed to male blastocysts, but this would also occur in vivo in the female reproductive
tract in high glucose conditions.

Furthermore, in mouse preimplantation embryos, epigenetic reprogramming, and in par-
ticular DNA methylation and histone modifications, take place at the blastocyst stage [53]. In
cattle, it has been demonstrated that male embryos at the blastocyst stage showed a higher
DNA methylation compared to female embryos at this stage [54]. Moreover, the nutritional
environment to which the early embryo is exposed is able to alter the extent and position of
DNA methylations, and can thereby affect the risk of the resulting offspring developing meta-
bolic diseases [55]. In the current study, we expected glucose exposure to lead to altered con-
centrations of S-adenosylmethionine (SAM), a substrate for methyl-transferases. However,
while SAM was detected in cumulus cells (data not shown) it was not detected in blastocysts,
irrespective of the glucose content of the culture medium. On the other hand, since entire
blastocysts were examined, and differences in DNA methylation are known to exist between
trophectoderm and inner cell mass cells, changes in SAM concentrations may have been
obscured by differences between the two cell types.

In summary, in this study we describe the effect on metabolic pathways of exposing early
bovine embryos to high concentrations of glucose, as would be expected to occur in pregnant
diabetic patients. It should be noted that, during diabetes, other tissues/cells including those
of the oviduct and uterus will also be exposed to high glucose concentrations which may alter
their behaviour and secretory activity accordingly and thereby modify effects seen at the level
of the embryo.
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