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Abstract

Background

Deviation in gait performance from normative data of healthy cohorts is used to quantify

gait ability. However, normative data is influenced by anthropometry and such differences

among subjects impede accurate assessment. De-correlation of anthropometry from gait

parameters and mobility measures is therefore desirable.

Methods

87 (42 male) healthy subjects varying form 21 to 84 years of age were assessed on gait

parameters (cadence, ankle velocity, stride time, stride length) and mobility measures (the

3-meter/7-meter Timed Up-and-Go, 10-meter Walk Test). Multiple linear regression models

were derived for each gait parameter and mobility measure, with anthropometric measure-

ments (age, height, body mass, gender) and self-selected walking speed as independent

variables. The resulting models were used to normalize the gait parameters and mobility

measures. The normalization’s capability in de-correlating data and reducing data disper-

sion were evaluated.

Results

Gait parameters were predominantly influenced by height and walking speed, while mobility

measures were affected by age and walking speed. Normalization de-correlated data from

anthropometric measurements from |rs| < 0.74 to |rs| < 0.23, and reduced data dispersion by

up to 69%.

Conclusion

Normalization of gait parameters and mobility measures through linear regression models

augment the capability to compare subjects with varying anthropometric measurements.
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Introduction

Physiotherapists commonly rely on mobility measures for a patient’s assessment, such as the

3-meter/7-meter Timed Up-and-Go (3mTUG/7mTUG) [1] and the 10-meter Walk Test

(10mWT) [2]. These mobility measures have been employed to enable goal-setting [3], to

assess gait capacity [4], to evaluate rehabilitation progresses [5, 6], or to gauge a Parkinson’s

disease patient’s falls risk [7]. Patients’ performance on these mobility measures is used to

assess the severity of their pathological gait by quantifying the degree to which their perfor-

mance deviates from normative data of an age-matched healthy cohort [8]. Hence, accurate

normative data is crucial for proper physiotherapeutic assessment and characterization of gait.

With regard to the South-East Asian population, knowledge about normative gait data is

scarce and fragmented. Although age and gender-specific normative values for TUG and gait

speed have been widely reported, these studies largely involved healthy cohorts residing in the

United States [2, 9–13] or Europe [14–17]. Gait ability, however, may be influenced by ethnic-

ity or country due to differences in anthropometric measurements. Indeed, normative values

for the 3mTUG of Japanese cohorts were 1.44 s faster on average than those of Caucasian

cohorts in a summary of 14 studies [18]. Hence, physiotherapeutic assessment of gait parame-

ters and mobility measures is impeded for South-East Asian subjects as they rely on normative

data of non-South-East Asian cohorts with different anthropometric measurements.

A possible remedy is to de-correlate anthropometric measurements from the data through

normalization, thereby eliminating any influence of anthropometric differences among

patients. Various methods have been proposed for normalization: Hof et al. demonstrated

how gait data can be normalized to a non-dimensional quantity by accounting for an individu-

al’s height and weight [19]. In contrast, the detrending technique proposed by O’Malley et al.

preserves the data’s units while successfully eliminating any correlation between anthropomet-

ric measurements and gait data [20]. A more sophisticated approach attempts to normalize the

data through the use of multiple regression models, which was shown by Wahid et al. to sur-

pass the aforementioned methods in the ability to de-correlate anthropometric measurements

from gait data [21].

In this study, we derive multiple linear regression models for various gait parameters and

mobility measures of a healthy Singaporean cohort. The regression models are then used to

normalize the data according to Wahid et al.’s method [21]. The effect of anthropometric

measurements on gait parameters and mobility measures is evaluated, and the ability of the

normalization process to de-correlate the data and reduce the dispersion within data is dem-

onstrated. Anthropometric measurements evaluated are age, height, body mass and gender.

We also included the subject’s self-selected walking speed as an independent variable, as it was

shown to significantly affect gait parameters [21–23]. The demonstrated normalization has the

potential to improve gait related analyses, such as the differentiation of Parkinsonian gait from

healthy controls [21], or the evaluation of spatio-temporal parameters of cohorts comprising

children of varying ages [24, 25].

Methods

Subjects

87 healthy subjects participated in the study for the acquisition of gait parameters and mobility

measures. All subjects were Singaporean and recruited via convenience sampling between

May 2011 and September 2012. The inclusion criteria were adults aged 21 years and above,

without central or peripheral nervous system disorders, and no significant orthopaedic or

rheumatological disorders affecting walking ability. Subjects were excluded if they were unable
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to provide informed consent, were pregnant, had implanted devices or had sensitive skin con-

ditions that prohibited them from using the gait monitoring system. The subject demographics

are displayed in Table 1. A goodness-of-fit test using the Kolmogorov–Smirnov statistic (D)

for the continuous variables (age, height, body mass, walking speed) and Chi-Squared statistic

(χ2) for the categorical variable (gender) indicates the uniform distribution of age and gender.

Each subject had his unique self-selected walking speed derived from the average velocity

observed in all 10mWT trials. Four additional subjects were recruited for the sole purpose of

validating the gait monitoring system. Two of them were Parkinson’s disease patients in antici-

pation of future studies involving subjects with Parkinson’s disease. The study was approved

by the Singhealth Centralized Institutional Review Board (CIRB 2011/255/A) and all subjects

gave written informed consent.

Study procedure

Subjects performed the 3mTUG and 7mTUG thrice each, and 10mWT twice at their comfort-

able pace on a firm and flat surface at the Motor Control Laboratory. The TUG was performed

with an arm chair, and a turning point marked at 3-meter from the chair (for the 3mTUG)

and another at 7-meter from the chair (for the 7mTUG). The 7mTUG was included because

longer walking distances are recommended for Parkinson’s disease assessments and hence

normative values thereof become essential [26]. Subjects were instructed to sit with their back

leaning against the back rest, and to stand up and walk upon the command ‘Ready, Go’. They

were allowed to use the arm rest if they could not rise from the chair without support. The

time to complete the task was manually recorded by a physiotherapist using a stopwatch, from

the ‘Go’ signal to the time when the subject returned to the chair and sat down with the back

leaning against the back rest. The 10mWT was performed with subjects walking a total dis-

tance of 14 meters, with start-time at the 2-meter mark and end-time at the 12-meter mark in

order to remove acceleration and deceleration phases.

Extraction of gait parameters and mobility measures

All subjects performed the TUG and 10mWT while wearing a wireless gait monitoring system

[27]. In brief, the system consists of three sensor nodes, one of which is placed around the

neck using a neck holder while the other two are placed around the ankles using a flexible

strap. Each sensor node consists of a microcontroller (AVR ATMega328), 3-axis accelerometer

(BMA180), 3-axis gyroscope (ITG3200), 3-axis digital compass (HMC5843) and a wireless

module for data transmission to a data-logging device. Acceleration, angular velocity and local

magnetic field are captured with a sampling rate of 100 Hz and transmitted using Bluetooth

with a baud rate of 57600 bps. A sensor node weighs roughly 15 g and transmits data to the

data-logging device which can be located 15 to 25 meters away. Mobility measures extracted

with the gait monitoring system included time taken (in seconds) to complete the 3mTUG,

Table 1. Anthropometry measurements and demographic parameters of the 87 recruited subjects along with its corresponding distribution.

Demographics Data Ranges Distribution

μ ± σ Range Fit D or χ2 α

Age (years) 49.2 ± 16.8 [21, 83] uniform 0.13 0.10

Height (cm) 164 ± 9 [148, 189] normal 0.11 0.20

Body Mass (kg) 63.2 ± 15.1 [45, 117] normal 0.14 0.05

Walking Speed (m/s) 1.34 ± 0.22 [0.83,1.80] normal 0.05 0.20

Gender 42 male, 45 female uniform 0.10 0.05

https://doi.org/10.1371/journal.pone.0199215.t001
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7mTUG and 10mWT, as well as the sit-to-stand and stand-to-sit duration. The extracted gait

parameters included cadence (steps/min), ankle velocity (deg/s), stride time (s) and stride

length (m). Gait parameters were extracted from a patient’s 10mWT, whereas sit-to-stand and

stand-to-sit durations were extracted from the TUG tests. The gait parameters and mobility

measures were evaluated for every successfully completed trial and no average among multiple

trials were calculated.

Statistics

The gait monitoring system is examined for its test-retest reliability and validated through cri-

terion validation using intra-class correlation coefficients (ICC). The test-retest reliability is

computed for every gait parameter and mobility measure among a subject’s trials with ICC

(3,1) [28]. To evaluate the system’s criterion validity, the agreement between the gait monitor-

ing system and a gold standard is computed using ICC(2,1). For gait parameters, the gold stan-

dard is a 3D motion analysis system (Qualysis Motion Analysis System, Gothenburg, Sweden),

whereas for mobility measures, the gold standard is given by a therapist’s measurements. Reli-

ability and agreement are deemed satisfactory if the corresponding ICC value exceeds 0.75

[29].

The multiple linear regression model selection followed a backward elimination process.

First, variance inflation factors (VIF) were computed to check for potential multicollinearity.

If the VIF exceeded 5, the independent variables were screened for correlations and removed

from the model. The elimination process then removes the least significant independent vari-

able from the model, given that it is not significant at p< 0.001. This process is repeated until

only significant variables remain, or the adjusted R2 drops below 95% of the R2 observed from

the model comprising all independent variables. To check whether the resulting models are

overfitted, a 10-fold cross-validated root-mean-square error (CV-RMSE) is computed and

compared to the resulting model’s RMSE. Given the resulting multiple linear regression

model, the normalization of gait parameters and mobility measures is obtained by [21]

ynorm ¼
yraw

ymodel
; ð1Þ

where yraw is the raw data value and ymodel is the subject-specific predicted data value using

the resulting multiple linear regression. Finally, the statistical assumptions of a linear regres-

sion, namely linearity, homoscedasticity and normality have been met for each independent

variable.

The linear regression model’s ability to de-correlate gait parameters and mobility measures

from anthropometric measurements through normalization is evaluated using Spearman cor-

relation coefficients before and after normalization. To further evaluate the normalization’s

ability to reduce dispersion within the data, the coefficient of variation is computed along with

its 95% confidence interval (CI) and standard error (SE). Differences between pre- and post-

normalization outcomes were evaluated using the student’s t-test with p< 0.05. All analyses

were performed using MATLAB (version R2014a).

Results

Criterion validity and test-retest reliability of the gait monitoring system

Table 2 shows the cohort’s mean values of the extracted gait parameters and mobility mea-

sures, as well as their agreement with the gold standard (ICC(2,1)) and their test-retest reliabil-

ity (ICC(3,1)). In general, the test-retest reliability of the various measures was good, with

ICC(3,1) > 0.75 except for stand-to-sit duration (ICC(3,1) = 0.67). The agreement of the gait
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monitoring system with the gold standard was excellent, with no ICC(2,1) dropping below

0.96 for gait parameters and mobility measures. No agreement to a therapist’s measurement

was evaluated for sit-to-stand or stand-to-sit, as manual measurement of these measures

proved difficult. The analysis for ankle velocity was omitted here, as angular measurements

were validated in our previous study [30].

Multiple linear regression models

The resulting multiple linear regression models are displayed in Table 3. A subject’s self-selected

walking speed remained significant for every gait parameter and mobility measure. Gait param-

eters were furthermore affected by a subject’s height, while mobility measures were influenced

predominantly by a subject’s age. Gender was only significant for ankle velocity and sit-to-

stand, but both models are performing rather poor compared to others (adjusted R2� 0.270).

Removal of the gender variable in these models reduces the adjusted R2 significantly, hence the

backward elimination process retained the model containing the gender variable. With excep-

tion of stand-to-sit, all other models demonstrate a good ability to predict the gait parameters

and mobility measures. The CV-RMSE are only slightly higher than the model’s RMSE, indicat-

ing that the linear regression models are not overfitted. As walking speed correlates with age

(rs = -0.38, p< 0.05), linear regression models without walking speed have been added to allow

for a more accurate discussion on the impact of age on gait parameters and mobility measures.

However, the use of walking speed is advisable for de-correlation of data and reduction in data

dispersion through normalization as the resulting models are more potent.

De-correlation through normalization

The correlations of anthropometric measurements with gait parameters and mobility mea-

sures are shown in Table 4. The mobility measures had significant correlations with age and

walking speed before normalization. A subject’s body mass also significantly correlated with

the TUG tests and the sit-to-stand motion. After normalization, no significant correlation

between anthropometric measurements or walking speed and mobility measures remained.

The correlation coefficients rs reduced from |rs|< 0.45 to |rs|< 0.06 for age, and even |rs| <

0.97 to |rs|< 0.07 for walking speed. Overall, the correlations for mobility measures dropped

from |rs|< 0.97 to |rs|< 0.14 after normalization. Similarly, normalization removed any

significant correlation between anthropometric measurements or walking speed and gait

Table 2. The criterion validity (agreement to 3D motion analysis system/a physiotherapist’s measurements, ICC

(2,1)) and test-retest reliability among a subject’s trials (ICC(3,1)).

Gait & Mobility Measures μ ± σ ICC(2,1) ICC(3,1)

Mobility Measures
3mTUG (s) 9.61 ± 1.68 0.94 0.82

7mTUG (s) 14.88 ± 2.05 0.97 0.94

10mWT (s) 7.68 ± 1.25 0.96 0.82

sit-to-stand (s) 1.18 ± 0.33 - 0.76

stand-to-sit (s) 2.08 ± 0.52 - 0.67

Gait Parameters
cadence (steps/min) 120.22 ± 10.75 0.99 0.91

ankle velocity (deg/s) 217.61 ± 20.98 – –

stride time (s) 1.01 ± 0.09 0.97 0.88

stride length (m) 1.31 ± 0.12 0.96 0.75

https://doi.org/10.1371/journal.pone.0199215.t002
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parameters, with the exception of age that remained significant for cadence and stride time.

Nonetheless, significant correlations involving height, body mass, walking speed and gender

have all been successfully removed. Overall, the correlations for gait parameters dropped from

|rs|< 0.74 to |rs|< 0.23 after normalization.

Table 3. Resulting multiple linear regression models for the mobility measures and gait parameters. The adjusted R2 is shown along with the root-mean square error

(RMSE) and the 10-fold cross-validated RMSE (CV-RMSE). All models and remaining independent variables are significant at p< 0.001. The variables selected are walk-

ing speed (S), height (H), age (A) and gender (G).

Dependent Variable Multiple Linear Regression Model Adjusted R2 RMSE CV-RMSE

Mobility Measures (with walking speed (S))
3mTUG (s) = 8.501 − 4.418 � S + 0.034 � H + 0.029 � A 0.473 1.205 1.221

7mTUG (s) = 17.321 − 6.344 � S + 0.022 � H + 0.039 � A 0.532 1.496 1.497

10mWT (s) = 15.537 − 5.902 � S 0.904 0.378 0.388

sit-to-stand (s) = 1.262 − 0.371 � S + 0.006 � A + 0.160 � G 0.226 0.292 0.293

stand-to-sit (s) = 2.391 − 0.471 � S + 0.006 � A 0.084 0.499 0.506

Gait Parameters (with walking speed (S))
cadence (steps/min) = 159.200 + 39.833 � S − 0.567 � H 0.763 5.240 5.335

ankle velocity (deg/s) = 286.250 + 47.675 � S − 0.736 � H − 20.633 � G 0.270 17.921 18.282

stride time (s) = 0.660 − 0.345 � S + 0.005 � H 0.735 0.049 0.050

stride length (m) = −0.238 + 0.418 � S + 0.005 � H 0.667 0.068 0.069

Mobility Measures (without walking speed (S))
3mTUG (s) = −1.248 + 0.051 � H + 0.049 � A 0.252 1.436 1.444

7mTUG (s) = 3.228 + 0.048 � H + 0.070 � A 0.276 1.868 1.870

10mWT (s) = 6.378 + 0.028 � A 0.142 1.128 1.134

sit-to-stand (s) = 0.678 + 0.008 � A + 0.146 � G 0.193 0.298 0.301

stand-to-sit (s) = 1.637 + 0.009 � A 0.066 0.504 0.511

Gait Parameters (without walking speed (S))
cadence (steps/min) = 244.310 − 0.669 � H − 0.306 � A 0.398 8.342 8.402

ankle velocity (deg/s) = 324.990 − 0.598 � H − 17.100 � G 0.060 20.264 20.524

stride time (s) = −0.088 + 0.006 � H + 0.003 � A 0.402 0.073 0.075

stride length (m) = 0.197 + 0.006 � H 0.181 0.106 0.107

https://doi.org/10.1371/journal.pone.0199215.t003

Table 4. Spearman correlation coefficients for the data before (raw) and after normalization. Significance level p< 0.05.

Correlations Age Height Body Mass Walking Speed Gender

Raw Norm Raw Norm Raw Norm Raw Norm Raw Norm

Mobility Measures
3mTUG (s) 0.45 -0.01† 0.10† -0.01† 0.14 -0.07† -0.63 -0.07† -0.11† 0.07†

7mTUG (s) 0.44 -0.06† 0.03† 0.00† 0.19 0.05† -0.67 0.06† -0.07† 0.08†

10mWT (s) 0.35 0.04† 0.06† -0.12† 0.14† -0.12† -0.97 0.04† -0.12† 0.14†

sit-to-stand (s) 0.35 -0.04† -0.21 0.02† -0.25 -0.11† -0.33 -0.02† 0.19 -0.02†

stand-to-sit (s) 0.26 0.00† 0.01† 0.06† 0.01† 0.00† -0.26 -0.01† 0.03† 0.04†

Gait Parameters
cadence (steps/min) -0.35 -0.23 -0.42 -0.03† -0.31 0.03† 0.73 -0.02† 0.46 0.18†

ankle velocity (deg/s) 0.45† 0.10† 0.03† -0.03† -0.07† -0.14† 0.35 -0.04† -0.23 0.01†

stride time (s) 0.35 0.23 0.42 -0.02† 0.31 -0.08† -0.73 0.08† -0.46 -0.15†

stride length (m) -0.27 0.14† 0.42 -0.06† 0.18† -0.04† 0.74 -0.01† -0.30 -0.14†

† denotes non-significant correlations

https://doi.org/10.1371/journal.pone.0199215.t004
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The dispersion of data is captured by the coefficient of variation in Table 5. Normalization

succeeded in significantly reducing the dispersion of data for all gait and mobility measures.

The ability of the multiple linear regression models to accurately predict gait parameters and

mobility measures clearly reflects the normalization’s capacity to reduce data dispersion. Accu-

rate models (in terms of adjusted R2), such as those for cadence, stride time or 10mWT were

able to reduce data dispersion by 50% to 69%. Similarly, the model for stride length and TUG

tests reduced data dispersion by 42% and 33%, respectively. Less predictive models, such as

those for stand-to-sit, sit-to-stand and ankle velocity, reduced data dispersion by 4% to 15%.

Discussion

In order to account for anthropometric differences among subjects within or between cohorts,

this study attempted to de-correlate gait parameters and mobility measures from such influ-

ences using a normalization procedure that relies on multiple linear regression models. The

derived models indicate the significant effects of various anthropometric measurements on

performance. However, self-selected walking speeds had a profound role in predicting gait

parameters and mobility measures as well. After all, a comfortable walking pace is subject to

an individual’s interpretation, and walking speed has been shown to impact spatio-temporal

gait parameters [22, 23]. The fact that walking speed remained significant for the stand-to-sit

and sit-to-stand motions where no walking is performed suggests that it describes more than

merely a speed component. Higher motivational levels and superior gait capabilities in form of

a reliable sense of balance and coordination ought to have an effect on a subject’s self-selected

walking speed. Hence, a highly motivated subject whose comfortable pace is faster than aver-

age will most likely stand up in a faster motion as well. Overall, walking speed established itself

as the most prominent effect within the resulting linear regression models, which suggests that

it should be accounted for in some way when evaluating the performance on gait parameters

and mobility measures.

With regard to the resulting linear regression models for mobility measures, both TUG var-

iants, as well as the stand-to-sit and sit-to-stand motions, remained significantly influenced by

a subject’s age even after accounting for a subject’s self-selected walking speed. The 3mTUG

and 7mTUG performances were slower by 0.29 s and 0.39 s, respectively, for every 10 years

increase in age. The TUGs dependence on age is well known, and the resulting linear regres-

sion models predict values within previously published normative ranges [2, 17, 31]. However,

Table 5. Coefficient of variation indicating the dispersion of data before and after normalization.

Coefficient of Variation (%) Raw Data Normalized Data Significance

Mean 95% CI SE Mean 95% CI SE

Mobility Measures
3mTUG (s) 17.16 [15.46, 18.81] 0.864 12.37 [13.53, 16.59] 0.734 < 0.001

7mTUG (s) 15.09 [13.53, 16.59] 0.736 9.96 [8.89, 10.93] 0.510 < 0.001

10mWT (s) 15.72 [13.78, 17.51] 0.931 4.85 [3.92, 5.61] 0.433 < 0.001

sit-to-stand (s) 27.98 [25.11, 30.79] 1.476 23.71 [21.42, 25.96] 1.157 < 0.001

stand-to-sit (s) 25.04 [22.79, 27.368] 1.206 23.98 [21.40, 26.53] 1.303 < 0.001

Gait Parameters
cadence (steps/min) 8.94 [7.60, 10.27] 0.663 4.39 [3.79, 4.96] 0.299 < 0.001

ankle velocity (deg/s) 9.64 [8.45, 10.71] 0.56 8.12 [7.25, 8.94] 0.439 < 0.001

stride time (s) 9.43 [7.59, 11.19] 0.953 4.63 [3.92, 5.26] 0.354 < 0.001

stride length (m) 10.25 [8.80, 11.67] 0.751 5.89 [4.92, 6.81] 0.493 < 0.001

https://doi.org/10.1371/journal.pone.0199215.t005
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the effect of age on the TUG performance is most likely larger than what our regression models

suggest when applied to elderly subjects. The aforementioned studies on normative values for

TUG tests are derived from elderly cohorts and indicate an approximate slowdown of 1 s for

every 10 years increase in age. The derived regression models on the other hand attribute

part of the decreasing performance to a reduced self-selected walking speed. Within elderly

cohorts, the highly progressed age inevitably results in a reduced gait capacity which affects a

subject’s self-selected walking speed. Such a correlation between age and walking speed was

observed within our cohort (rs = -0.38, p< 0.05), and is likely to be even larger in cohorts com-

prising elderly individuals only. Hence, if we were to remove walking speed from our linear

regression model, the age’s impact on the TUG performance should increase. The linear

regression models without walking speed in Table 3 indicate exactly that. In these models, the

impact of age on the 3mTUG and 7mTUG performances increases to 0.49 s and 0.70 s for

every 10 years in age, respectively.

The resulting linear regression models for gait parameters on the other hand indicated no

significant dependence on a subject’s age. It was height in conjunction with walking speed that

determined all gait parameters with highly accurate models except for ankle velocity. Every 10

cm increase in height roughly extended the stride length by 5 cm and reduced cadence by 5.6

steps/min. Nonetheless, previous studies have indicated a significant correlation of age with

gait parameters [15, 32–35]. And although gait parameters were noted to correlate with age

(|rs|> 0.27) in this study as well, the correlation with self-selected walking speed dominated

(|rs|> 0.35). Having employed the backward elimination method for model selection, age

ended up being removed in favor of walking speed. The final regression models explain 66% to

76% in the observed variance using self-selected walking speed. Similarly, Wahid et al.’s regres-

sion models for gait parameters reached up to 75% using walking speed as an independent var-

iable [21]. Contrariwise, Samson et al. provides an example for when age instead of walking

speed is employed in a linear regression model to predict gait parameters [15]. For cadence

and stride length, their models explained a comparably low 30% to 59% of the observed

variation.

The noted influences of anthropometric measurements and walking speeds have been suc-

cessfully de-correlated from gait parameters and mobility measures through normalization.

There were no significant correlations after normalization with respect to the mobility mea-

sures. For gait parameters, no significant correlations remained except for age in cadence

and stride time. The overall result of reducing correlations from |rs|< 0.74 to |rs|< 0.23

and reducing the dispersion of data by up to 69% indicates the favorable outcome of using nor-

malization. The use of the derived regression models hence motivate their employment for

normalization of data, allowing for accurate comparisons of gait parameters and mobility mea-

sures between cohorts of varying anthropometric measurements.

There are several limitations to the study that need to be addressed in order to adequately

interpret our findings. First, the sit-to-stand, stand-to-sit and ankle velocity linear regression

models are comparably imprecise in their ability to predict a subject’s outcome given the

anthropometric measurements age, height, body mass and gender, along with the self-selected

walking speed. A possibility to augment the ankle velocity model is to include leg length, rather

than height, as an independent variable [19]. Second, there are other factors than anthropo-

metric measurements and self-selected walking speed that play a role in predicitng gait ability.

Examples include muscle strength and cognition [3, 36]. Third, the derived multiple linear

regression models are incapable of capturing non-linear effects. Non-linearity has been

observed in gait variability of an elderly cohort [32], and any present non-linearity within reg-

ular gait cannot be captured by linear models. Fourth, when comparing our results to those of

other studies, differences in measurement, laboratory or trial related factors between our study
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and others might be responsible for some of the data variance observed. Finally, the sample

size of 87 subjects may limit the ability to obtain highly accurate regression models. Nonethe-

less, the derived regression models’ ability to accurately predict its outcomes are comparable to

previously published regression models [15, 21].

Conclusion

Differences in anthropometric measurements impede accurate physiotherapeutic assessment

and gait characterization. Mobility measures are predominantly affected by age and walking

speed, while gait parameters are determined by height and walking speed. Through normaliza-

tion, gait parameters and mobility measures can be de-correlated from anthropometric mea-

surements and self-selected walking speeds. Employing multiple linear regression models for

normalization purposes, the normalized gait parameters and mobility measures indicate a

reduction in data dispersion and removal of significant correlations with anthropometric mea-

surements. Hence, the resulting normalized measures augment the capability to compare sub-

jects with different anthropometric measurements.
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