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Abstract

This study addresses the nonlinear structure-extended cavity interaction simulation using a

new version of the multilevel residue harmonic balance method. This method has only been

adopted once to solve a nonlinear beam problem. This is the first study to use this method to

solve a nonlinear structural acoustic problem. This study has two focuses: 1) the new ver-

sion of the multilevel residue harmonic balance method can generate the higher-level non-

linear solutions ignored in the previous version and 2) the effect of the extended cavity,

which has not been considered in previous studies, is examined. The cavity length of a

panel-cavity system is sometimes longer than the panel length. However, many studies

have adopted a model in which the cavity length is equal to the panel length. The effects of

excitation magnitude, cavity depth, damping and number of structural modes on sound and

vibration responses are investigated for various panel cases. In the simulations, the present

harmonic balance solutions agree reasonably well with those obtained from the classical

harmonic balance method. There are two important findings. First, the nonlinearity of a

structural acoustic system highly depends on the cavity size. If the cavity size is smaller, the

nonlinearity is higher. A large cavity volume implies a low stiffness or small acoustic pres-

sure transmitted from the source panel to the nonlinear panel. In other words, the additional

volume in an extended cavity affects the nonlinearity, sound and vibration responses of a

structural acoustic system. Second, if an acoustic resonance couples with a structural reso-

nance, nonlinearity is amplified and thus the insertion loss is adversely affected.

1 Introduction

In recent decades, many researchers have tackled various vibro-acoustic and fluid-structure

interaction problems (e.g., [1–8]). Most of these studies that have included sound and vibra-

tion analyses of a panel backed by a cavity have concerned the transmission losses of various

enclosure panels and have adopted the assumption that the cavity size is equal to the panel

size. For example, Pan et al. [9], and Nehete et al. [10] considered a structure coupled with a

cavity and subjected to external excitation. The logarithm difference between the external and

internal sound pressures is defined as the transmission loss. In fact, the insertion loss of a
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panel is a very practical indicator and is defined as the logarithm difference between the sound

pressures with and without the panel. This can truly reflect the sound reduction ability. In

practice, the cavity length of a panel-cavity system is sometimes longer than the panel length,

which may significantly affect sound reduction, but has not been considered in the aforemen-

tioned work. Although very few studies have examined the nonlinear structural acoustic prob-

lem considered in this study, numerous researchers have studied linear structural acoustic or

nonlinear structure problems (e.g., [11–18]). The only research work directly related to this

study of a nonlinear panel coupled with an extended cavity was done by Lee [19], who investi-

gated the free vibration of a panel backed by an extended cavity only. It did not contain any

new solution method and considered the forced vibration and sound responses. Nonlinear

vibration (or large amplitude vibration) must be considered in structural acoustic problems

for two reasons. First, when a thin panel is used, it vibrates nonlinearly because its weak struc-

tural stiffness can cause large amplitude vibrations. Second, a panel mounted very close to a

sound source may also vibrate nonlinearly due to the high excitation level imposed by the

sound source.

Many studies have applied various solution methods (e.g., the perturbation method, multi-

ple scales method and elliptic integral method) to various nonlinear vibration/oscillation prob-

lems or differential equations (e.g., [20–26]). The total classical harmonic balance method and

the incremental harmonic balance method have also been commonly used to solve nonlinear

problems (e.g., [27–31]). Because the incremental harmonic balance method eliminates all

nonlinear terms during the variational process, some nonlinear behaviour types are missing.

The classical harmonic balance method retains all of the nonlinear terms to produce the multi-

ple solutions possible in a set of nonlinear algebraic equations. The nonlinear solutions are

assumed by Fourier series expansion to produce a set of nonlinear algebraic equations. From

the results of Srirangarajan [27], the results from the classical harmonic balance method closely

agreed with those of the closed-form solution. However, it is extremely time consuming to use

the classical harmonic balance method to construct higher-order analytical approximations.

Hence, in this study, the other harmonic balance method (i.e., the multilevel residue harmonic

balance method), which was developed by Leung and Guo [32] and by Hansan et al. [33], is

modified and used to solve the nonlinear structural acoustic problem. The main advantage of

this method is that the higher-level solutions to any desired accuracy can be obtained easily

by solving only one nonlinear algebraic equation and a set of linear algebraic equations in

each solution level. Table 1 shows the numbers of algebraic equations required by the three

harmonic balance methods to solve the governing equation of a single-mode cubic nonlinear

undamped panel vibration. In the previous multilevel residue harmonic balance method, the

Table 1. Numbers of algebraic equations for a single mode cubic nonlinear undamped panel vibration.

Zero level solution 1st level solution 2nd level solution

Nos. of

uncoupled nonlinear

algebraic equations

Nos. of linear

algebraic equations

Nos. of

uncoupled nonlinear

algebraic equations

Nos. of linear

algebraic equations

Nos. of

uncoupled nonlinear

algebraic equations

Nos. of linear

algebraic equations

Old multi-level
residue HB method

1 0 1 2 1 3

New multi-level
residue HB method

1 0 2 1 3 2

One harmonic term

Nos. of

coupled nonlinear algebraic equations

Two harmonic terms

Nos. of

coupled nonlinear algebraic equations

Three harmonic terms

Nos. of

coupled nonlinear algebraic equations

Classical
HB method

1 2 3

https://doi.org/10.1371/journal.pone.0199159.t001
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higher-level nonlinear phenomena are omitted because no nonlinear algebraic equations are

required to calculate the higher-level harmonic components. The new multilevel residue har-

monic balance method requires only one nonlinear algebraic equation at each solution level

[34]. Fig 1 shows that the computational effort required for the new method is less than that

for the classical harmonic balance method, which generates more coupled nonlinear algebraic

equations. Tables 2 and 3 shows the comparison between the numbers of nonlinear terms gen-

erated in the two harmonic balance methods. There are much more nonlinear terms in the

classical harmonic balance method. In fact, in the total time of the entire solution process

should include the time spent on the formulation derivation as well as the time on the compu-

tation. The more nonlinear terms are generated, the more time is spent on the formulation

derivation. Unlike finding the roots of the nonlinear algebraic equations (which is done by

computer), the formulation derivation and setup of initial guess value for nonlinear algebraic

equations are done manually. In this study, only two or three nonlinear algebraic equations

are considered for each case. Nowadays, personal computers are very fast so that the computa-

tional time is not the bottleneck in the entire solution process and much less than the times

spent on the manual steps, which depend on the complexity of the algebraic equations.

Fig 1. Computational time for solving nonlinear algebraic equations generated in the problem (single mode, no damping).

https://doi.org/10.1371/journal.pone.0199159.g001

Table 2. Number of nonlinear terms in the algebraic equations generated in the problem (no damping, new

multi-level residue HB method).

Zero level solution 1st level solution 2nd level solution

One mode 1 3 5

Two modes 2 6 10

Three modes 3 9 15

https://doi.org/10.1371/journal.pone.0199159.t002
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Using the classical approach and modal analysis, the nonlinear modal governing equations

are developed to represent the large-amplitude structural vibration of an enclosure panel cou-

pled with a cavity. Then, the proposed harmonic balance method is used to solve the nonlinear

differential equations. Generally, the classical approach is used for those structures and acous-

tic cavities with regular geometries (e.g. rectangle and circle). In fact, there were some finite

element methods developed recently for structural/acoustic problems (e.g. [35–37]). They are

more suitable for handling models with complicated geometries and boundary conditions. If

one of these finite elements is used for the problem in this study, a set of nonlinear differential

equations will also be derived from the finite element process. The proposed harmonic balance

method is still suitable for solving them.

2 Theory

Fig 2 shows a nonlinear panel backed by an extended cavity. The cavity walls are acoustically

and structurally rigid. The excitation source is the vibrating panel, which induces the acoustic

pressure force within the cavity. This section mainly describes the deduction of the formula to

calculate the acoustic pressures within the cavity and the panel vibration responses, which are

used to find the insertion loss of the nonlinear panel. Eq (1) is the governing equation [2] of

the acoustic pressure within a rectangular cavity, as shown in Fig 2.

ðr2 þ k2

hÞpQ;hðx; y; zÞ ¼ 0 ð1Þ

where kh is the wave number; pQ,h(x,y,z) is the acoustic pressure at the position of (x,y,z); and

Q and h represent the panel mode number and harmonic component order, respectively.

The total acoustic pressure field is assumed to be equal to the sum of the modal pressure

fields:

pQ;hðx; y; zÞ ¼
P�J

J¼1
PQJ;hφJðx; y; zÞ ð2Þ

where PQJ,h is the acoustic pressure amplitude of the Jth acoustic mode and �J is the number of

acoustic modes used. φJ is the Jth acoustic mode function, which is expressed as follows:

φJ x; y; zð Þ ¼ cos
lxpx
a

cos
lypy
b

cos
lzpz
c

ð3Þ

where lx, ly and lz are even non-negative integers and a, b and c are the cavity dimensions in

the x, y and z directions, respectively.

Using the technique of integration by parts in [38], Eq (1) can be expressed in the following

form:

k2

h � k2

J

� �
aJJPQJ;h ¼ �

Z

z¼0

@pQ;h
@n

φJdxdy þ
Z

z¼c

@pQ;h
@n

φJdxdy ð4Þ

where

Table 3. Number of nonlinear terms in the algebraic equations generated in the problem (no damping, classical

HB method).

One

harmonic term

Two

harmonic term

Three

harmonic term

One mode 1 6 18

Two modes 2 12 36

Three modes 3 18 54

https://doi.org/10.1371/journal.pone.0199159.t003
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Fig 2. A nonlinear panel coupled with extended cavity.

https://doi.org/10.1371/journal.pone.0199159.g002
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kJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lx
a

� �2
þ

ly
b

� �2

þ
lz
c

� �2

r

aJJ ¼
R

vol φJφJdxdydy

The derivative term on the right side of Eq (4) is the pressure gradient on the source panel

or the nonlinear panel, which are expressed as follows:

At z = 0,

@pQ;h
@n
¼ � irohovo x; yð Þ ð5Þ

voðx; yÞ ¼ ihowoðx; yÞ ð6Þ

At z = c, for Δa +a’ > x> Δa and Δb +b’ > y> Δb,

@pQ;h
@n
¼ � irohovQ x; yð Þ ð7Þ

vQðx; yÞ ¼ ihowQðx; yÞ ð8Þ

Otherwise,

@pQ;h
@n
¼ vQ x; yð Þ ¼ 0 ð9Þ

where ρo is the air density; Δa = a—a’ and Δb = b—b’; and vo(x,y) and vQ(x,y) are the normal

velocities of the source panel and the nonlinear panel, respectively. wo(x,y) and wQ(x,y) are the

displacements of the source panel and the nonlinear panel, respectively, which are expressed

as follows:

woðx; yÞ ¼ Ao�oðx; yÞ ð10Þ

wQ;hðx; yÞ ¼ AQ;h�Qðx; yÞ ð11Þ

where Ao is the vibration amplitude of the source panel;ϕo(x,y) is the mode shape of the source

panel and assumed as a double sine function (i.e. sin (πx/a’) sin (πy/b’); ϕQ(x,y) is the Qth mode

shape of the panel at z = c and also assumed as a double sine function (i.e. sin (mπ(x- Δa)/a’)sin

(nπ(x- Δb)/b’)); and m and n are the panel mode numbers. AQ,h is the hth harmonic component

of the panel vibration amplitude and equal to the sum of the hth harmonic components of the

vibration amplitudes at different solution levels:

AQ;h ¼ A0Q;h þ A1Q;h þ A2Q;h þ � � � ð12Þ

By substituting Eqs (5–11) into Eq (4), the acoustic pressure amplitude can be expressed as

follows:

PQJ;h ¼
� roðhoÞ

2

ðk2
h � k2

J ÞaJJ
aQJAQ;h � aoJAo

� �
ð13Þ

where

aQJ ¼
R

z¼c �QφJdxdy

aoJ ¼
R

z¼o �oφJdxdy.

Nonlinear structure-extended cavity interaction simulation
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Then, the modal contribution of the acoustic pressure acting on the panel is expressed as

follows:

FQ ¼
P �H

h¼1;3;5...

P�J
J¼1

aQJ

aQQ
PQJ;h ð14Þ

where

aQQ ¼
R

z¼c �Q�Qdxdy

�J ¼ number of acoustic modes used

�H ¼ number of harmonic terms used

Hence, the modal governing equation of the nonlinear panel, which is directly excited by

the interior acoustic pressure force and expressed as follows [2,19]:

r
d2AQ

dt2
þ ro2

QAQ þ bQAQ
3 ¼ FQsin otð Þ ð15Þ

where AQ and ωQ are the modal amplitude and resonant frequency of the Qth panel mode,

respectively; m and n are the panel mode numbers; a’ is the panel length; γ is the aspect ratio; E
is Young’s modulus; ν is Poisson’s ratio; τ is the panel thickness; ρ is the panel surface density;

FQ is the modal force magnitude; and ω is the excitation frequency, and βQ is the nonlinear

stiffness coefficient which is given by

bQ ¼
Et

4ð1 � v2Þ

mp

a0

� �4

1þ
n
m

g
� �4

� �
3

4
�
v2

4

� �

þ v
n
m

g
� �2

� �

ð16Þ

The proposed solution method [34] was newly presented for nonlinear beam problem in

2017, modified from the previous harmonic method in [32,33], is applied to the nonlinear

forced vibration of a flexible panel. The solution form of AQ is expressed as follows:

AQ ¼ ε
0A0Q þ ε

1A1Q þ ε
2A2Q þ higher order terms ð17Þ

A0Q ¼ A0Q;1sinðotÞ ð18Þ

A1Q ¼ A1Q;1sinðotÞ þ A1Q;3sinð3otÞ ð19Þ

A2Q ¼ A2Q;1sinðotÞ þ A2Q;3sinð3otÞ þ A2Q;5sinð5otÞ ð20Þ

AQ;1 ¼ A0Q;1 þ A1Q;1 þ A2Q;1 þ higher order terms ð21Þ

AQ;3 ¼ A1Q;3 þ A2Q;3 þ higher order terms ð22Þ

AQ;5 ¼ A2Q;3 þ higher order terms ð23Þ

where ε is an embedding parameter, the terms associated with ε0, ε1 and ε2 represent the zero,

1st and 2nd levels terms, respectively; A0Q, A1Q and A2Q are the zero, 1st and 2nd level panel

responses, respectively; A0Q,1, A1Q,1 and A2Q,1 are the zero, 1st and 2nd level amplitudes of the

sin(ωt) responses, respectively; A1Q,3 and A2Q,3 are the 1st and 2nd level amplitudes of sin(3ωt)
responses, respectively; A2Q,5 is the 2nd level amplitude of the sin(5 ωt) response; and AQ,1,

AQ,3 and AQ,5 are the sin(ωt), sin(3 ω t) and sin(5 ω t) components of the modal amplitude.

Nonlinear structure-extended cavity interaction simulation
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Substitute Eq (17) into Eq (15) and collect the terms associated with ε0 to set up Eq (24).

Then, consider the harmonic balance of sin(ωt) to set up Eq (26) and find the zero level solu-

tion to A0Q,1

r
d2A0Q

dt2
þ ro2

QA0Q þ bQA0Q
3 � FQsin otð Þ¼ R0Q tð Þ ð24Þ

Z 2p

0

R0QðtÞsinðotÞdt ¼ 0 ð25Þ

� ro2A0Q;1 þ ro2

QA0Q;1 þ
3

4
bQA0Q;1

3 ¼ FQ ð26Þ

where R0Q is the sum of all terms associated with ε0

Rewrite Eq (26) as the following cubic algebraic equation form in terms of one unknown

only

Z01A0Q;1 þ Z03A0Q;1
3 ¼ Z00 ð27Þ

where Z01 and Z03 are the coefficients that precede the linear and nonlinear terms in Eq (26)

and Z00 is the constant term.

If damped cases are considered, rewrite Eq (27) to obtain the following equation:

A0Q;1 ¼
Z00

Z01 þ Z03A0Q;1
2

ð28Þ

C0þ iD0ð Þ ¼
Z00

Z01 þ Z03ðC02 � D02Þ þ ið2xoopo þ 2Z03C0D0Þ
ð29Þ

where C0 and D0 are the real and imaginary parts of A0Q,1, respectively, and ωpo is the resonant

frequency of the zero-level resonance.

The zero-level resonance occurs when the magnitude of A1Q,3 is maximum and ω = ωpo.
Thus, the expression Z01 + Z03(C02−D02), which is function of ω, is equal to 0.

Z01 þ Z03ðC02 � D02Þ ¼ 0 ð30Þ

As Z01 + Z03(C02−D02) = 0, the right side of Eq (11f) is purely imaginary (; C0 = 0):

Z01 � Z03D02 ¼ 0 ð31Þ

iD0 ¼
Z00

ið2xoopoÞ
ð32Þ

Hence, the resonant frequency, ωpo, can be obtained by solving Eqs (31–32).

Again, substitute Eq (17) into Eq (15) and collect the terms associated with ε1 to set up the

following 1st level equation:

r
d2A1Q

dt2
þ ro2

QA1Q þ 3bQA0Q
2A1Q ¼ R1Q tð Þ ð33Þ

where R1Q is the sum of all terms associated with ε1.
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Then, consider the harmonic balance of sin(ωt) to set up the following equation:

Z 2p

0

R1QðtÞsinðotÞdt ¼ 0 ð34Þ

� ro2A1Q;1 þ ro2

QA1Q;1 þ b
9

4
A0Q;1

2A11 �
3

4
A0Q;1

2A1Q;3

� �

¼ 0 ð35Þ

Note that Eq (35) is a linear equation that contains two unknowns. A0Q,1 has been found at

the zero level.

When substituting Eq (17) into Eq (15), collect those terms which contain the harmonic

component of sin(3ωt), to set up the following 1st level equation (excluding those terms with

A2Q or higher level terms):

r
d2A1Q

dt2
þ ro2

QA1Q þ bQ A0Q
3 þ 3A0Q

2A1Q þ 3A1Q
2A0Q þ A1Q

3
� �

¼ R1Q;3 tð Þ ð36Þ

where R1Q,3 is the sum of the terms which contain the harmonic component of sin(3ωt).
Then, consider the harmonic balance of sin(3ωt) to set up the following equation:

Z 2p

0

R1Q;3ðtÞsinð3otÞdt ¼ 0 ð37Þ

� 9ro2A1Q;3 þ ro2

QA1Q;3 þ bQ

�
� 1

4
A0Q;1

3 �
3

4
A0Q;1

2A1Q;1 þ
3

2
A0Q;1

2A1Q;3 �
3

4
A1Q;1

2A0Q;1

þ 3A1Q;1A1Q;3A0Q;1 �
1

4
A1Q;1

3 þ
3

2
A1Q;1

2A1Q;3 þ
3

4
A1Q;3

3

�

¼ 0ð38Þ

By substituting Eq (35) into Eq (38), it can be expressed in the following cubic algebraic

equation form, in terms of one unknown only:

Z10 þ Z11A1Q;3 þ Z12A1Q;3
2 þ Z13A1Q;3

3 ¼ 0 ð39Þ

where Z11, Z12, and Z13 are the coefficients that precede the linear and nonlinear terms in Eq

(38) and Z10 is the zero-order term.

If damped cases are considered, rewrite eq (39) to obtain the following equation

A1Q;3 ¼
Z10

Z11þZ12A1Q;3 þ Z13A1Q;3
2

ð40Þ

C1þ iD1ð Þ ¼
Z10

Z11 þ Z12C1þ Z13ðC12 � D12Þ þ ið6xoop1 þ Z12D1þ 2Z13C1D1Þ
ð41Þ

where C1 and D1 are the real and imaginary parts of A1Q,3, respectively.

The 1st level resonance occurs (i.e., the magnitude of A1Q,3 is maximum and ω = ωp1) in the

frequency range at which the zero-level resonance does not occur. Thus, the damping term in

Z10 in Eq (41) can be omitted and the following expression is equal to 0

Z11 þ Z12C1þ Z13ðC12 � D12Þ ¼ 0 ð42Þ

Nonlinear structure-extended cavity interaction simulation
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The right side of Eq (41) is purely imaginary (; C1 = 0):

Z11 � Z13D12 ¼ 0 ð43Þ

iD1 ¼
Z10

ið6xoop1 þ Z12D1Þ
ð44Þ

Hence, the resonant frequency, ωp1 can be obtained by solving Eqs (43–44)

Again, substitute Eq (17) into Eq (15) and collect the terms associated with ε2 to set up the

following 2nd-level equations:

r
d2A2Q

dt2
þ ro2

QA2Q þ 3bQA1Q
2A0Q þ 3bQA0Q

2A2Q ¼ R2Q tð Þ ð45Þ

where R2Q is the sum of the terms associated with ε2.
Then, consider the harmonic balances of sin(ωt) and sin(3ωt)

Z 2p

0

R2QðtÞsinðotÞdt ¼ 0 ð46Þ

� ro2A2Q;1 þ ro2

QA2Q;1

þ 3b
3

4
A0Q;1A1Q;1

2 �
1

2
A0Q;1A1Q;1A1Q;3 þ

1

2
A0Q;1A1Q;3

2 þ
3

4
A0Q;1

2A2Q;1 �
1

4
A0Q;1

2A2Q;3

� �

¼ 0 ð47Þ

Z 2p

0

R2QðtÞsinð3otÞdt ¼ 0 ð48Þ

� 9ro2A2Q;3 þ ro2

QA2Q;3 þ 3b �
1

4
A0Q;1

2

A2Q;1 þ
1

2
A0Q;1

2A2Q;3 �
1

4
A0Q;1

2A2Q;5

� �

¼ 0 ð49Þ

Note that the 1st nonlinear term in Eq (45) has been used for the harmonic balance of sin

(3ωt) in the 1st level. Thus, it is not considered for the harmonic balance of sin(3ωt) in the 2nd

level. Eqs (47) and (49) are linear equations that contain three unknowns, as A0Q and A1Q
have been found in the zero and 1st levels.

When substituting Eq (17) into Eq (15), collect all terms with A0Q, A1Q and A2Q, which

contain the harmonic component of sin(5ωt), to set up the following 2nd-level equation:

r
d2A2Q

dt2
þ ro2

QA2Q

þ bQ 3A0Q
2A1Q þ 3A1Q

2A0Q þ A1Q
3 þ 6A0QA1QA2Q þ 3A2Q

2A0Q þ 3A1Q
2A2Q þ 3A0Q

2A2Q þ A2Q
3

� �

¼ R2Q;5 tð Þ ð50Þ

where R2Q,S is the sum of the terms with A0Q,, A1Q, and A2Q,, which contain the harmonic

component of sin(5ωt):
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Then, consider the harmonic balance of sin(5ωt) to set up the following equation:

Z 2p

0

R2Q;5ðtÞsinð5otÞdt ¼ 0 ð51Þ

� 25ro2A2Q;5 þ ro2

QA2Q;5 þ bQð�
3

4
A0Q;1

2A1Q;3 þ
3

4
A0Q;1A1Q;3ðA1Q;3 � 2A1Q;3Þ

þ
3

4
A1Q;1A1Q;3ðA1Q;3 � A1Q;1Þ þ

3

2
A0Q;1ðA1Q;3A2Q;3 � A1Q;1A2Q;3 � A1Q;3A2Q;1 þ 2A1Q;1A2Q;5Þ

þ
3

4
A0Q;1ðA2Q;3

2 � 2A2Q;1A2Q;3 þ 4A2Q;1A2Q;5Þ þ 3ð
� 1

4
A1Q;1

2A2Q;3 þ
1

2
A1Q;1

2A2Q;5

�
1

2
A1Q;1A1Q;3A2Q;1 þ

1

4
A1Q;3

2A2Q;1 þ
1

2
A1Q;1A1Q;3A2Q;3 þ

1

2
A1Q;3

2A2Q;5Þ þ
3

4
A0Q;1

2ð2A2Q;5

� A2Q;3Þ þ ð
3

2
A2Q;1

2A2Q;5 þ
3

2
A2Q;1A2Q;3

2 �
3

4
A2Q;1

2A2Q;3 þ
3

2
A2Q;3

2A2Q;5 þ
3

4
A2Q;5

3ÞÞ

¼ 0 ð52Þ

By substituting Eqs (47) and (49) into Eq (52), it can be expressed as a cubic algebraic equa-

tion in terms of one unknown only

Z21A2Q;5 þ Z22A2Q;5
2 þ Z23A2Q;5

3 ¼ Z20 ð53Þ

where Z21, Z22, and Z23 are the coefficients that precede the linear and nonlinear terms. Z20 is

the constant term.

If damped cases are considered, rewrite Eq (15d) to obtain the following equation:

A2Q;5 ¼
Z20

Z21þZ22A2Q;5 þ Z23A2Q;5
2

ð54Þ

C2þ iD2ð Þ ¼
Z20

Z21 þ Z22C2þ Z13ðC22 � D22Þ þ ið10xoop2 þ Z22D2þ 2Z23C2D2Þ
ð55Þ

where C2 and D2 are the real and imaginary parts of A2Q,5, respectively, and ωp2 is the reso-

nant frequency of the 2nd-level resonance.

The 2nd-level resonance occurs (i.e., the magnitude of A1Q,3 is maximum and ω = ωp1) in

the frequency range at which the zero level and 1st-level resonances do not occur. Thus, the

damping term in Z20 in Eq (55) can be omitted and the following expression is equal to 0.

Z21 þ Z22C2þ Z13ðC22 � D22Þ ¼ 0 ð56Þ

Note that the right side of Eq (55) is therefore purely imaginary (; C2 = 0):

Z21 � Z23D22 ¼ 0 ð57Þ

iD2 ¼
Z20

ið10xoop2 þ Z22D2Þ
ð58Þ

Hence, the resonant frequency ωp2 can be obtained by solving Eqs (57–58). Similarly, in the

higher-level solution procedures, the harmonic components from the 3rd- or higher-level

responses (e.g. A3Q and A4Q) are used to set up the harmonic balance equations. One of these

harmonic balance equations is a cubic algebraic equation and the others are linear. By solving

these algebraic equations, the harmonic components of higher-level vibration amplitudes can be

computed. For example, in the 3rd-level solution procedure, the three algebraic equations from

Nonlinear structure-extended cavity interaction simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0199159 July 3, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0199159


the harmonic balances of sin(ωt), sin(3ωt), and sin(5ωt) are linear, whereas the one from the har-

monic balance of sin(7ωt) is cubic. The unknowns in the four algebraic equations are A3Q,1,

A3Q,3, A3Q,5, and A3Q,7. Using the three algebraic equations, A3Q,1, A3Q,3, and A3Q,5 can be

expressed in terms of A3Q,7.. Then substitute the expressions into the cubic algebraic equation to

find A3Q,7. Once A3Q,7 is known, A3Q,1, A3Q,3 andA3Q,5 can be determined using the three alge-

braic equations. Finally, the overall vibration amplitude of the Qth mode is expressed as follows:

jAQj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�h

h¼1;3;5...
jAQ;hj

2

q

ð59Þ

where

�h ¼ highest solution level or harmonic order:

After the nonlinear panel vibration amplitudes are obtained, the modal sound radiation

and radiation efficiency can be computed using the modified Rayleigh’s integral method [29]:

LQ ¼

Z 2p

0

Z p
2

0

jXQðr; y1; y2Þj
2

roCa
r2sin y1ð Þdy1dy2 ð60Þ

sQ ¼
8LQ

roCaa0b0
ð61Þ

XQ r; y1; y2ð Þ ¼ � ikhroCa
eikhr

2pr

Z a0

0

Z b0

0

�Qe
� i Zxx

a0 þ
Zyy
b0ð Þdxdy ð62Þ

where r is the distance between the panel corner and the observer point; ϕQ is the Qth panel

mode shape; θ1 and θ2 are the angles between the observer vector and y-axis and between the

observer vector and x-axis, respectively (see [29] for details); kh is the wave number; and Ca is

the speed of sound.

Finally, the insertion loss is defined as the logarithm difference between the sound energy

radiated from the nonlinear panel and the sound energy radiated from the source panel (i.e., the

difference between the radiated sound levels in the cases with/without the nonlinear panel).

IL ¼ � 10 log
Lnlin

Lsou

� �

ð63Þ

Lnlin ¼
P�Q

Q¼1
sQroCaa

0b0jAQj
2

ð64Þ

Lsou ¼ soroCaab jAoj
2

ð65Þ

where

�Q ¼ number of panel modes used

σo = radiation efficiency of the source panel mode.

3 Results and discussion

In this section, the material properties in the numerical cases considered are as follows:

Young’s modulus = 7.1 × 1010 N/m2, Poisson’s ratio = 0.3 and mass density = 2,700 kg/m3. In

Tables 4–6, the case is the nonlinear vibration of a single undamped panel subject to uniform

excitation (i.e., no cavity).
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The modal external excitation term in Eq (2), FQ, is expressed as αQ/αQQ κρg, where κ is the

dimensionless excitation parameter and g is 9.81 ms-2. The panel dimensions are 1 m × 1

m × 2 mm. The first two structural modes are used. Tables 4–6 show the convergence studies

of normalised panel vibration amplitudes for various excitation magnitudes and frequencies.

The 2nd-level solutions are normalised as 100. In the small excitation (κ = 0.1), the zero level

solutions can achieve an error rate of less than 2% for the three different excitation frequencies.

The 1st- and 2nd-level solutions to two–decimal place accuracy are almost identical. In the

other two excitation cases (i.e., κ = 0.5 and κ = 1.2), the maximum difference between the

zero-level and 2nd-level solutions is 4.35%, whereas the maximum difference between the 1st

and 2nd level solutions is only 0.79%. It can be seen that the 1st-level solutions are good enough

for three-digit accuracy. Tables 7 and 8 show the modal contributions of the nonlinear panel

coupled with an extended cavity for various excitation magnitudes and frequencies. The panel

Table 4. Vibration amplitude convergence for various excitation magnitudes (ω = ω1, ξ = 0.01, 2 structural

modes, no cavity.

κ = 0.1 = 0.5 = 1.2

Zero level Solution 100.55 101.88 104.35

1st level Solution 100.02 100.16 100.79

2nd level Solution 100.00� 100.00� 100.00�

�The 2nd level values are normalized as 100).

https://doi.org/10.1371/journal.pone.0199159.t004

Table 5. Vibration amplitude convergence for various excitation magnitudes(ω = 1.5ω1, ξ = 0.01, 2 structural

modes, no cavity.

κ = 0.1 = 0.5 = 1.2

Zero level Solution 101.35 101.80 102.55

1st level Solution 100.06 100.11 100.23

2nd level Solution 100.00� 100.00� 100.00�

�The 2nd level values are normalized as 100).

https://doi.org/10.1371/journal.pone.0199159.t005

Table 6. Vibration amplitude convergence for various excitation magnitudes(ω = 2ω1, ξ = 0.01, 2 structural

modes, no cavity.

κ = 0.1 = 0.5 = 1.2

Zero level Solution 101.75 101.94 102.26

1st level Solution 100.09 100.12 100.17

2nd level Solution 100.00� 100.00� 100.00�

�The 2nd level values are normalized as 100).

https://doi.org/10.1371/journal.pone.0199159.t006

Table 7. Modal contributions for various excitation frequencies (Ao/τ = 1, ξ = 0.01, cavity depth = panel length).

ω/ ω1 = 1 = 2 = 4

1st mode 99.98 100.00 78.52

3rd mode 0.02 0.00 21.43

5th mode 0.00 0.00 0.05

https://doi.org/10.1371/journal.pone.0199159.t007
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dimensions are 1 m × 1 m × 3 mm. The cavity length and width are equal to 1.5 × the panel

length. In each case, the sum of the three modal contributions is 100. Note that the 2nd and

4th modes are asymmetrical and are not considered for this symmetric load case. In the low-

frequency excitations, the single-mode approach is sufficient because the contributions from

the 3rd and 5th modes are minimal. When the excitation frequency is higher and closer to the

resonant frequency of the 3rd mode (see the case of ω = 4 ω3 in Table 7), the 3rd-mode contri-

bution is significantly higher and the 5th-mode contribution is still minimal. Because the fre-

quency range considered in this study is 0 to 6 ω1, the two-mode approach is appropriate.

Figs 3 and 4 present the comparisons between the 1st-mode vibration amplitudes of a single

undamped panel subject to uniform excitation (i.e., no cavity) obtained with the proposed

classical harmonic balance method [31] and the previous multilevel residue harmonic balance

method [32,33]. The dimensionless excitation parameter value κ = 0.1. In Fig 3, the results

obtained from the two methods are generally in good agreement for both zero- and 1st-level

nonlinear solutions. In Fig 4, the 1st-level solution of the previous multilevel residue harmonic

balance method is linear and much different from those from the proposed method and the

classical harmonic balance method. Only linear equations are set up in the 1st level of the pre-

vious multilevel residue harmonic balance method. Fig 5 shows the contribution of sin(3ωt)

Table 8. Modal contributions for various source panel amplitudes (ω = ω1, ξ = 0.01, cavity depth = panel length).

Ao/τ = 0.5 = 1 = 2

1st mode 99.99 99.98 99.96

3rd mode 0.01 0.02 0.04

5th mode 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0199159.t008

Fig 3. Comparison of the undamped vibration amplitude results from the proposed and classical harmonic

balance methods (τ = 2 mm, a = b = 1m, κ = 0.1, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g003
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Fig 4. Comparison of the undamped vibration amplitude results from the proposed and old multi-level residue

harmonic balance methods (τ = 2 mm, a = b = 1m, κ = 0.1, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g004

Fig 5. Sin(3ωt) harmonic component contribution in Fig 2A versus normalized excitation frequency (τ = 2 mm,

a = b = 1m, κ = 0.1, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g005
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component to the vibration response in Fig 3. First, in the simple harmonic solution line, the

contribution of sin(3ωt) component is very minimal. It is more like a linear solution. Second,

in the zero-level nonlinear solution line, the contribution of sin(3ωt) component is detectable,

but not dominant. Third, in the 1st level nonlinear solution line, the contribution of sin(3ωt)
component is very significant. It is more like a super-harmonic solution. Fig 6 shows the com-

parisons between the two-mode vibration amplitudes of a single damped panel subject to uni-

form excitation, which are obtained from the proposed method and classical harmonic

balance method. The dimensionless excitation parameter value κ = 0.1. The results obtained

from the two methods are generally in good agreement, except for the resonant peak values

around ω = 0.6 ωQ and ω = 2.2 ωQ. The peak value differences are due to the complete coupling

of the damping terms amongst all nonlinear equations in the classical harmonic balance

method, whilst the damping terms are uncoupled from one solution level to higher solution

levels in the proposed method. The 3rd-mode resonant peak values from the two methods are

also in good agreement because the resonant peaks are more linear.

Figs 7 and 8 show the vibration amplitude and insertion loss plotted against the excitation

frequency for various source excitation magnitudes. In Fig 7, the peak frequencies and vibra-

tion amplitude increase with the excitation magnitude. The peaks are caused by the structural

resonances. It is noted that when it is very small excitation, the normalised resonant frequency

of the panel without cavity effect is one. The peak frequencies in Fig 7 are higher than one

because of the structural nonlinearity and cavity stiffness. The acoustic resonant frequencies

are outside the frequency range concerned in Figs 7 and 8. The jump phenomenon occurs at

approximately ω/ωl = 3. The higher the excitation level, the higher the degree of nonlinearity

and the higher the peak frequency that can be seen at the vibration peak. The three solution

lines converge closely around the zero-level nonlinear resonance. The slope of the solution line

of 3τ around the zero-level nonlinear resonance is the shallowest, whilst the slope of the

Fig 6. Comparison of the damped vibration amplitude results from the proposed and classical harmonic balance

methods (τ = 2 mm, a = b = 1m, κ = 0.1, ξ = 0.01, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g006
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Fig 7. Vibration amplitude versus excitation frequency for various source excitation magnitudes (τ = 3 mm, a’ =
b’ = c = 1m, a = b = 1.5 a’, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g007

Fig 8. Insertion loss versus excitation frequency for various source excitation magnitudes (τ = 3 mm, a’ = b’ =

c = 1m, a = b = 1.5a’, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g008
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solution line of 0.2τ varies sharply (i.e., from shallow to deep). Generally, the 1st-mode vibra-

tion peaks are much higher than the 3rd-mode vibration peaks. The 3rd-mode vibration peak

of 0.2τ is very small and more symmetric than that of high excitation. Furthermore, there is no

jump phenomenon at the 3rd-mode vibration peak and no 1st-level nonlinear resonance.

Unlike that in Fig 7, the higher the excitation level or degree of nonlinearity, the higher the

insertion loss dip value that can be seen in Fig 8. In the non-resonant frequency ranges from

ω/ωl = 2.5 to ω/ωl = 4.5, the three curves in Fig 8 are very close. Figs 7 and 8 show that the reso-

nant bandwidths are wider for higher excitation magnitudes (note that it is a negative effect on

the insertion loss of an acoustic panel). Thus, the linear deign of an acoustic panel may incor-

rectly estimate the noise reduction performance under high excitation.

Figs 9–12 show the vibration amplitudes and insertion losses plotted against the excitation

frequency for various cavity lengths and depths. The zero- and 1st-level nonlinear peak ampli-

tudes/insertion loss dip values and frequencies decrease with the cavity length and depth.

Unlike those in Fig 7 around the zero-level resonance, the three curves in Figs 9 and 11 are

very close but intercept at approximately ω/ωl = 1.5. When ω/ωl< 1.5, the curves of a = a’ and

c = 0.5a’ are the highest in Figs 9 and 11, respectively. When ω/ωl> 1.5, the curves of a = a’
and c = 0.5a’ are the lowest. The 1st-level nonlinear resonance is not significantly affected by

changing the cavity dimensions. It is obvious that the nonlinearity of the structural acoustic

system depends greatly upon the cavity size. If the cavity size is smaller, the nonlinearity is

higher. A large cavity volume implies a low stiffness or small acoustic pressure transmitted

from the source panel to the nonlinear panel. Unlike those in Fig 8, in the non-resonant fre-

quency ranges from ω/ω1 = 2.5 to ω/ωl = 4.5, the three curves in Figs 10 and 12 are clearly sepa-

rate. The 2nd structural resonance occurs from ω/ωl = 5.0 to ω/ω1 = 5.5 in the three cases in

Figs 9–10 and the case of c = a’ in Figs 11 and 12, whereas the 2nd structural resonance occurs

around ω/ωl = 5.8 to ω/ω1 = 6.2 for the cases of c = 0.5a’ and c = 2.5a’ in Figs 11 and 12. As

mentioned, in the case of c = 0.5a’ in Figs 11 and 12, the smaller cavity results in a higher

Fig 9. Vibration amplitude versus excitation frequency for various cavity lengths (τ = 3 mm, a = b, a’ = b’ = c =

1m, Ao/τ = 1, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g009
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Fig 10. Insertion loss versus excitation frequency for various cavity lengths (τ = 3 mm, a = b, a’ = b’ = c = 1m,

Ao/τ = 1, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g010

Fig 11. Vibration amplitude versus excitation frequency for various cavity depths (τ = 3 mm, a’ = b’ = 1.5m,

a = b = 1.5a’, Ao/τ = 1, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g011
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nonlinearity so that the resonant peak/insertion loss dip and the corresponding peak and dip

frequencies are higher. In the case of c = 2.5a’ in Figs 11 and 12 (note that the cavity depth is

very long and it looks like a tube), although the cavity is much bigger, the nonlinear phenome-

non (i.e., jump phenomenon) around the 2nd structural resonance is obvious. The 1st acoustic

resonance around ω/ω1 = 4.7, which is close to and strongly coupled with the 2nd structural

resonance, amplifies the nonlinearity. Note that in the case of c = 2.5a’ in Fig 5A and 5B, there

is no solution found from ω/ωl = 4.7 to 4.8 and thus the solution line is discontinuous there. In

Fig 12, there is an anti-resonant peak at approximately ω/ωl = 2.7 in the case of c = 2.5a’. The

acoustic pressure forces of the zero-frequency cavity mode and the 1st non-zero frequency cav-

ity mode (their mode numbers are lx = ly = lz = 0 and lx = ly = 0; lz = 1) acting on the nonlinear

panel are opposite. Fig 13 shows the two normalised acoustic modal force magnitudes (i.e., |

Fa,0| and -|Fa,1|) against the normalised excitation frequency. The two curves intercept at

approximately ω/ωl = 2.7.

Figs 14 and 15 show the insertion loss dip frequencies and values plotted against the excita-

tion magnitude for various damping ratios. It can be seen that the insertion loss dip values and

the corresponding dip frequencies of the three cases increase monotonically with the excitation

magnitude. When the excitation magnitude is low, the insertion loss dip frequencies in the

three cases converge and the slopes of the three curves deepen. A low excitation magnitude

results in linear panel vibrations in the system; the resonant frequency is not significantly

affected by the damping. When the excitation magnitude is high, the three curves are almost

linear and far from each other. Unlike the resonant frequency, the insertion loss dip value

always highly depends on the damping ratio in the system. Thus, the three dip value curves are

separate for the entire range of excitation magnitude. Figs 16 and 17 show the insertion loss

dip frequencies and values plotted against the cavity depth for various cavity lengths. The

insertion loss dip frequencies and values decrease and increase with the cavity depth,

Fig 12. Insertion loss versus excitation frequency for various cavity depths (τ = 3 mm, a’ = b’ = 1.5m, a = b = 1.5a’,
Ao/τ = 1, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g012
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Fig 13. Acoustic modal force magnitude versus excitation frequency(τ = 3 mm, a’ = b’ = 1.5m, a = b = 1.5a’, Ao/τ =

1, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g013

Fig 14. Insertion loss dip frequency versus source vibration amplitude ratio for various damping ratios (τ = 3

mm, a’ = b’ = c = 1m, a = b = 1.5a’).

https://doi.org/10.1371/journal.pone.0199159.g014

Nonlinear structure-extended cavity interaction simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0199159 July 3, 2018 21 / 25

https://doi.org/10.1371/journal.pone.0199159.g013
https://doi.org/10.1371/journal.pone.0199159.g014
https://doi.org/10.1371/journal.pone.0199159


Fig 15. Insertion loss dip value versus source vibration amplitude ratio for various damping ratios (τ = 3 mm, a’ =
b’ = c = 1m, a = b = 1.5a’).

https://doi.org/10.1371/journal.pone.0199159.g015

Fig 16. Insertion loss dip frequency versus cavity depth ratio for various cavity lengths (τ = 3 mm, a’ = b’ = 1m,

a = b, Ao/τ = 1, ξ = 0.01).

https://doi.org/10.1371/journal.pone.0199159.g016

Nonlinear structure-extended cavity interaction simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0199159 July 3, 2018 22 / 25

https://doi.org/10.1371/journal.pone.0199159.g015
https://doi.org/10.1371/journal.pone.0199159.g016
https://doi.org/10.1371/journal.pone.0199159


respectively. It is found that if the cavity volume is bigger (i.e., the depth or length is greater),

the insertion loss is higher. Furthermore, if the cavity depth is longer, the dip frequencies of

the three cases get close. Finally, if the dip frequencies are lower, then the corresponding inser-

tion loss values are higher. A larger cavity results in a smaller nonlinearity or a lower resonant

frequency in the system. Thus, the vibration amplitude or the insertion loss dip value is higher.

4 Conclusions

This study analyses the insertion loss of a nonlinearly vibrating panel backed by an extended

cavity. The proposed harmonic balance method is applied to this nonlinear structural acoustic

problem. The structural/acoustic modal formulation has been developed from partial differen-

tial equations, which represent the large amplitude structural vibration of a flexible panel cou-

pled with an extended cavity. The results obtained from the proposed harmonic balance

method and classical harmonic balance method are generally consistent. The effects of excita-

tion magnitude, damping ratio, cavity depth and length are investigated. The results show that

the nonlinearity of a structural acoustic system depends greatly upon the cavity size. If the cav-

ity size is smaller, the nonlinearity is higher. A large cavity volume implies a low stiffness or

small acoustic pressure transmitted from the source panel to the nonlinear panel. Thus, the

additional volume in an extended cavity would affect the nonlinearity, sound and vibration

responses of a structural acoustic system. Furthermore, if acoustic resonance couples with

structural resonance, the nonlinearity is amplified, adversely affecting the insertion loss.
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Fig 17. Insertion loss dip value versus cavity depth ratio for various cavity lengths (τ = 3 mm, a’ = b’ = 1m, a = b,

Ao/τ = 1, ξ = 0.01).
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