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Abstract

This study addresses the nonlinear structure-extended cavity interaction simulation using a
new version of the multilevel residue harmonic balance method. This method has only been
adopted once to solve a nonlinear beam problem. This is the first study to use this method to
solve a nonlinear structural acoustic problem. This study has two focuses: 1) the new ver-
sion of the multilevel residue harmonic balance method can generate the higher-level non-
linear solutions ignored in the previous version and 2) the effect of the extended cavity,
which has not been considered in previous studies, is examined. The cavity length of a
panel-cavity system is sometimes longer than the panel length. However, many studies
have adopted a model in which the cavity length is equal to the panel length. The effects of
excitation magnitude, cavity depth, damping and number of structural modes on sound and
vibration responses are investigated for various panel cases. In the simulations, the present
harmonic balance solutions agree reasonably well with those obtained from the classical
harmonic balance method. There are two important findings. First, the nonlinearity of a
structural acoustic system highly depends on the cavity size. If the cavity size is smaller, the
nonlinearity is higher. A large cavity volume implies a low stiffness or small acoustic pres-
sure transmitted from the source panel to the nonlinear panel. In other words, the additional
volume in an extended cavity affects the nonlinearity, sound and vibration responses of a
structural acoustic system. Second, if an acoustic resonance couples with a structural reso-
nance, nonlinearity is amplified and thus the insertion loss is adversely affected.

1 Introduction

In recent decades, many researchers have tackled various vibro-acoustic and fluid-structure
interaction problems (e.g., [1-8]). Most of these studies that have included sound and vibra-
tion analyses of a panel backed by a cavity have concerned the transmission losses of various
enclosure panels and have adopted the assumption that the cavity size is equal to the panel
size. For example, Pan et al. [9], and Nehete et al. [10] considered a structure coupled with a
cavity and subjected to external excitation. The logarithm difference between the external and
internal sound pressures is defined as the transmission loss. In fact, the insertion loss of a
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panel is a very practical indicator and is defined as the logarithm difference between the sound
pressures with and without the panel. This can truly reflect the sound reduction ability. In
practice, the cavity length of a panel-cavity system is sometimes longer than the panel length,
which may significantly affect sound reduction, but has not been considered in the aforemen-
tioned work. Although very few studies have examined the nonlinear structural acoustic prob-
lem considered in this study, numerous researchers have studied linear structural acoustic or
nonlinear structure problems (e.g., [11-18]). The only research work directly related to this
study of a nonlinear panel coupled with an extended cavity was done by Lee [19], who investi-
gated the free vibration of a panel backed by an extended cavity only. It did not contain any
new solution method and considered the forced vibration and sound responses. Nonlinear
vibration (or large amplitude vibration) must be considered in structural acoustic problems
for two reasons. First, when a thin panel is used, it vibrates nonlinearly because its weak struc-
tural stiffness can cause large amplitude vibrations. Second, a panel mounted very close to a
sound source may also vibrate nonlinearly due to the high excitation level imposed by the
sound source.

Many studies have applied various solution methods (e.g., the perturbation method, multi-
ple scales method and elliptic integral method) to various nonlinear vibration/oscillation prob-
lems or differential equations (e.g., [20-26]). The total classical harmonic balance method and
the incremental harmonic balance method have also been commonly used to solve nonlinear
problems (e.g., [27-31]). Because the incremental harmonic balance method eliminates all
nonlinear terms during the variational process, some nonlinear behaviour types are missing.
The classical harmonic balance method retains all of the nonlinear terms to produce the multi-
ple solutions possible in a set of nonlinear algebraic equations. The nonlinear solutions are
assumed by Fourier series expansion to produce a set of nonlinear algebraic equations. From
the results of Srirangarajan [27], the results from the classical harmonic balance method closely
agreed with those of the closed-form solution. However, it is extremely time consuming to use
the classical harmonic balance method to construct higher-order analytical approximations.
Hence, in this study, the other harmonic balance method (i.e., the multilevel residue harmonic
balance method), which was developed by Leung and Guo [32] and by Hansan et al. [33], is
modified and used to solve the nonlinear structural acoustic problem. The main advantage of
this method is that the higher-level solutions to any desired accuracy can be obtained easily
by solving only one nonlinear algebraic equation and a set of linear algebraic equations in
each solution level. Table 1 shows the numbers of algebraic equations required by the three
harmonic balance methods to solve the governing equation of a single-mode cubic nonlinear
undamped panel vibration. In the previous multilevel residue harmonic balance method, the

Table 1. Numbers of algebraic equations for a single mode cubic nonlinear undamped panel vibration.

Zero level solution

Nos. of
uncoupled nonlinear
algebraic equations

Old multi-level 1
residue HB method
New multi-level 1

residue HB method

One harmonic term

algebraic equations

2" Jevel solution

Nos. of
uncoupled nonlinear
algebraic equations

1°*level solution

Nos. of
uncoupled nonlinear
algebraic equations

0 1 2 1 3

Nos. of linear
algebraic equations

Nos. of linear
algebraic equations

Nos. of linear

Two harmonic terms Three harmonic terms

Nos. of Nos. of Nos. of
coupled nonlinear algebraic equations coupled nonlinear algebraic equations coupled nonlinear algebraic equations
Classical 1 2 3
HB method

https://doi.org/10.1371/journal.pone.0199159.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0199159  July 3, 2018

2/25


https://doi.org/10.1371/journal.pone.0199159.t001
https://doi.org/10.1371/journal.pone.0199159

@° PLOS | ONE

Nonlinear structure-extended cavity interaction simulation

Computational time (sec)

) A S A N U ) N @ ) BN B ¢

()

——  Uncoupled (New method) M
[ 1 Coupled (Classical HB) M
pe /’
/’/’
- s
’
.///
o’

1 2 3 4 5 6 7 8 9 10
Number of nonlinear equations

Fig 1. Computational time for solving nonlinear algebraic equations generated in the problem (single mode, no damping).

https://doi.org/10.1371/journal.pone.0199159.g001

higher-level nonlinear phenomena are omitted because no nonlinear algebraic equations are
required to calculate the higher-level harmonic components. The new multilevel residue har-
monic balance method requires only one nonlinear algebraic equation at each solution level
[34]. Fig 1 shows that the computational effort required for the new method is less than that
for the classical harmonic balance method, which generates more coupled nonlinear algebraic
equations. Tables 2 and 3 shows the comparison between the numbers of nonlinear terms gen-
erated in the two harmonic balance methods. There are much more nonlinear terms in the
classical harmonic balance method. In fact, in the total time of the entire solution process
should include the time spent on the formulation derivation as well as the time on the compu-
tation. The more nonlinear terms are generated, the more time is spent on the formulation
derivation. Unlike finding the roots of the nonlinear algebraic equations (which is done by
computer), the formulation derivation and setup of initial guess value for nonlinear algebraic
equations are done manually. In this study, only two or three nonlinear algebraic equations
are considered for each case. Nowadays, personal computers are very fast so that the computa-
tional time is not the bottleneck in the entire solution process and much less than the times
spent on the manual steps, which depend on the complexity of the algebraic equations.

Table 2. Number of nonlinear terms in the algebraic equations generated in the problem (no damping, new
multi-level residue HB method).

Zero level solution 1% level solution 2" Jevel solution
One mode 1 3 5
Two modes 2 6 10
Three modes 3 9 15

https://doi.org/10.1371/journal.pone.0199159.t1002
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Table 3. Number of nonlinear terms in the algebraic equations generated in the problem (no damping, classical
HB method).

One Two Three
harmonic term harmonic term harmonic term
One mode 1 6 18
Two modes 2 12 36
Three modes 3 18 54

https://doi.org/10.1371/journal.pone.0199159.t003

Using the classical approach and modal analysis, the nonlinear modal governing equations
are developed to represent the large-amplitude structural vibration of an enclosure panel cou-
pled with a cavity. Then, the proposed harmonic balance method is used to solve the nonlinear
differential equations. Generally, the classical approach is used for those structures and acous-
tic cavities with regular geometries (e.g. rectangle and circle). In fact, there were some finite
element methods developed recently for structural/acoustic problems (e.g. [35-37]). They are
more suitable for handling models with complicated geometries and boundary conditions. If
one of these finite elements is used for the problem in this study, a set of nonlinear differential
equations will also be derived from the finite element process. The proposed harmonic balance
method is still suitable for solving them.

2 Theory

Fig 2 shows a nonlinear panel backed by an extended cavity. The cavity walls are acoustically
and structurally rigid. The excitation source is the vibrating panel, which induces the acoustic
pressure force within the cavity. This section mainly describes the deduction of the formula to
calculate the acoustic pressures within the cavity and the panel vibration responses, which are
used to find the insertion loss of the nonlinear panel. Eq (1) is the governing equation [2] of
the acoustic pressure within a rectangular cavity, as shown in Fig 2.

<v2 + ki)pQﬁh(xv)@ Z) =0 (1)

where kj, is the wave number; pg, ,(x,y,2) is the acoustic pressure at the position of (x,y,z); and
Q and h represent the panel mode number and harmonic component order, respectively.

The total acoustic pressure field is assumed to be equal to the sum of the modal pressure
fields:

pQ.h (x7y7 Z) = ZL]PQ],h(P](xvya Z) (2)

where P, is the acoustic pressure amplitude of the /™ acoustic mode and J is the number of
acoustic modes used. ¢ is the J™ acoustic mode function, which is expressed as follows:

lnx lmy Iz
¢,(x,y,2) = COs == €08 = = cos = (3)

where ,, [, and [, are even non-negative integers and a, b and c are the cavity dimensions in
the x, y and z directions, respectively.

Using the technique of integration by parts in [38], Eq (1) can be expressed in the following
form:

0o

z=0 871

9
¢, dxdy + i az’h ¢, dxdy (4)

(kfm - k?)aUPQI.h ==

where
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Fig 2. A nonlinear panel coupled with extended cavity.
https://doi.org/10.1371/journal.pone.0199159.g002

PLOS ONE | https://doi.org/10.1371/journal.pone.0199159  July 3, 2018 5/25


https://doi.org/10.1371/journal.pone.0199159.g002
https://doi.org/10.1371/journal.pone.0199159

@° PLOS | ONE

Nonlinear structure-extended cavity interaction simulation

oy = [, 9,9,dxdydy

The derivative term on the right side of Eq (4) is the pressure gradient on the source panel
or the nonlinear panel, which are expressed as follows:

Atz=0,
Opon .
an - _lpahwvo(x7y) (5)
vu (x3y) = ihwwu (x7y) (6)

Atz=¢ for Aa+a’ > x > Aaand Ab +b’ > y > Ab,

P —ip,haw,(x, y) (7)
vo(x,y) = ihowy(x, y) (8)
Otherwise,
op
Dot yy(x,9) = 0 ©)

where p,, is the air density; Aa = a—a’ and Ab = b—b’; and v,(x,y) and v(x,y) are the normal
velocities of the source panel and the nonlinear panel, respectively. w,(x,y) and wq(x,y) are the
displacements of the source panel and the nonlinear panel, respectively, which are expressed
as follows:

Wa(x7y) = Au¢a('x7y) (10)

WQ.h(x’y) :AQ,h%(xJ) (11)

where A, is the vibration amplitude of the source panel;¢,(x,y) is the mode shape of the source
panel and assumed as a double sine function (i.e. sin (mx/a’) sin (ny/b); ¢po(x,y) is the Q™ mode
shape of the panel at z = ¢ and also assumed as a double sine function (i.e. sin (m7n(x- Aa)/a’)sin
(nm(x- Ab)/b)); and m and n are the panel mode numbers. Ag, is the h™ harmonic component
of the panel vibration amplitude and equal to the sum of the 4™ harmonic components of the
vibration amplitudes at different solution levels:

Agp = A0, +Aly, +A2,, + - (12)
By substituting Eqs (5-11) into Eq (4), the acoustic pressure amplitude can be expressed as
follows:
—p, (ho)’
Py, = (0 Ay, — oA, (13)
Qh (ki _ k%)ocﬂ( QU Qh J )
where

Oy = [, G dxdy
oty = [._, &,9,dxdy.
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Then, the modal contribution of the acoustic pressure acting on the panel is expressed as
follows:

" 7 %y
FQ = Zh:LB,S,..ZI:l a_P@,h (14)
QQ

where

%o = fz:c PoPodxdy

J = number of acoustic modes used
H = number of harmonic terms used
Hence, the modal governing equation of the nonlinear panel, which is directly excited by
the interior acoustic pressure force and expressed as follows [2,19]:
2

d*A
p dtZQ + pwAq + PoAy’ = Fysin(wt) (15)

where Ag and wq are the modal amplitude and resonant frequency of the Q™ panel mode,
respectively; m and » are the panel mode numbers; a’ is the panel length; y is the aspect ratio; E
is Young’s modulus; v is Poisson’s ratio; 7 is the panel thickness; p is the panel surface density;
Fq is the modal force magnitude; and w is the excitation frequency, and i is the nonlinear
stiffness coefficient which is given by

o= (o) [0+ G ) (2-5) G )

The proposed solution method [34] was newly presented for nonlinear beam problem in
2017, modified from the previous harmonic method in [32,33], is applied to the nonlinear
forced vibration of a flexible panel. The solution form of A, is expressed as follows:

A, =&"A0, + €'Al, + £°A2,, + higher order terms (17)
A0, = A0, sin(wt) (18)

Al, = Al, sin(wt) + Al gsin(3wt) (19)

A2, = A2, sin(wt) + A2, sin(3mt) + A2, sin(501) (20)
Agy = AQy, + Al + A2, + higher order terms (21)
Ags = Alys + A2 + higher order terms (22)

Ay = A2y 4 + higher order terms (23)

where £ is an embedding parameter, the terms associated with £%, " and £” represent the zero,
1°*and 2" levels terms, respectively; AOq, Al and A2 are the zero, 1% and 2™ level panel
responses, respectively; A0 ;, Al and A2 are the zero, 1% and 2™ level amplitudes of the
sin(wt) responses, respectively; A1, ;and A2 ; are the 15 and 2™ level amplitudes of sin(3wt)
responses, respectively; A2q s is the 2" Jevel amplitude of the sin(5 wt) response; and Aot
Aq;and Ags are the sin(wt?), sin(3 w t) and sin(5 w t) components of the modal amplitude.
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Substitute Eq (17) into Eq (15) and collect the terms associated with £%to set up Eq (24).
Then, consider the harmonic balance of sin(wt) to set up Eq (26) and find the zero level solu-

tion to AQq,;
d2A0 .
P+ POGAD, + BoAly" — Fosin(t)= R0o(1) (24)
2n
/ RO, (1)sin(of)dt = 0 (25)
0
2 2 3 3
—pw Alg, + pwAlqy, + ZﬁQAOQ,l = F, (26)

where RO, is the sum of all terms associated with £’
Rewrite Eq (26) as the following cubic algebraic equation form in terms of one unknown
only

70,A0, + Z0,A0,,° = Z0, (27)

where Z0; and Z0; are the coefficients that precede the linear and nonlinear terms in Eq (26)
and Z0, is the constant term.
If damped cases are considered, rewrite Eq (27) to obtain the following equation:

Z0,

Al = —
@ Z0, 4 Z0,A0,,°

(28)

Z0,
(CO +iD0) = : — (29)
20, + Z0,(C0* — DO%) + i(2¢ww,, + 220,C0D0)

where C0 and DO are the real and imaginary parts of AO,;, respectively, and w, is the resonant
frequency of the zero-level resonance.

The zero-level resonance occurs when the magnitude of Al 3 is maximum and w = w,,.
Thus, the expression Z0; + Z03(C0*~D0%), which is function of w, is equal to 0.

Z0, + Z0,(C0* — D0*) =0 (30)

As 20, + Z05(C0*~D0?) = 0, the right side of Eq (11f) is purely imaginary (.. C0=0):

Z0, — Z0,D0* = 0 (31)
Z0

iD= —2— 32

i(2lww,,) (32)

Hence, the resonant frequency, w,,, can be obtained by solving Egs (31-32).
Again, substitute Eq (17) into Eq (15) and collect the terms associated with el to set up the
following 1*' level equation:

2

d*Al ‘ ‘
P Lt pwdAly + 3,A0,°Al, = Rl,(t) (33)

where R1, is the sum of all terms associated with &”.
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Then, consider the harmonic balance of sin(wt) to set up the following equation:

/27[ R1,(t)sin(wt)dt = 0 (34)

9 3 ‘
—pw’Aly, + pwpAly, + <4AOQ‘12A11 - 4AOQ712A1Q‘53> =0 (35)

Note that Eq (35) is a linear equation that contains two unknowns. AOq ; has been found at
the zero level.
When substituting Eq (17) into Eq (15), collect those terms which contain the harmonic

component of sin(3wt), to set up the following 1* level equation (excluding those terms with
A2 or higher level terms):

d?Al
P ap

Lt pwdAly + B, (A0, + BA0, Al + 3A1,°A0, + Aly") = Ry, (t) (36)

where Rl ; is the sum of the terms which contain the harmonic component of sin(3wt).
Then, consider the harmonic balance of sin(3wt) to set up the following equation:

2n
/ R1,4(t)sin(3wt)dt = 0 (37)
0
-1 ; 9 3 3 .
—9pa* Al + poAly, + Bo (TAO(M3 — $A0q " ALy, +5 400, *Al,, — T ALy, *A0,,

1., 3. ., 3.
+ 3414, Alg;A0q, — 7 ALy, + 5 Al *Alg, + Al
= 0(38)

By substituting Eq (35) into Eq (38), it can be expressed in the following cubic algebraic
equation form, in terms of one unknown only:

Z1,+ Z1,Al,, + Z1,A1,," + Z1,A1,," = 0 (39)

where Z1;, Z1,, and Z1; are the coefficients that precede the linear and nonlinear terms in Eq
(38) and Z1 is the zero-order term.
If damped cases are considered, rewrite eq (39) to obtain the following equation

Z1,

A1Q3 = 2
’ le—l—leAlQ_3 + Zl3A1Q>3

(40)

z1
(C1 +iD1) = 5 — (41)
Z1, + Z1,C1 + Z1,(C1” — D’) + i(6¢ww,, + Z1,D1 + 2Z1,C1D1)

where CI and DI are the real and imaginary parts of Al 3 respectively.

The 1% level resonance occurs (i.e., the magnitude of Alg3is maximum and w = w,,) in the
frequency range at which the zero-level resonance does not occur. Thus, the damping term in
Z1,in Eq (41) can be omitted and the following expression is equal to 0

71, + Z1,C1 4+ Z1,(C1* = D1*) = 0 (42)
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The right side of Eq (41) is purely imaginary (.". CI1 =0):

Z1, - Z71,D1* =0 (43)

71,

D1 =
" T i6con,, +21,D1)

(44)

Hence, the resonant frequency, w,,; can be obtained by solving Eqs (43-44)
Again, substitute Eq (17) into Eq (15) and collect the terms associated with £” to set up the
following 2nd-level equations:

d*A2
dt?

p——2+ pwtA2, + 3B,A1, A0, + 3B,A0,°A2, = R2,(t) (45)

where R2, is the sum of the terms associated with &°.
Then, consider the harmonic balances of sin(wt) and sin(3wt)

/Zn R2,(t)sin(wt)dt = 0 (46)

—pwA24, + pwA2,,
3 , 1 1 » 3 1o,
+3B( 400, AL," — 5 A0, AL ALy + 5400, ALg," + 7 Al "A2q, — 7 Al "A2q,

—0 (47)

/2" R2,(t)sin(3wt)dt =0 (48)

2

1
—9pw*A2y 5 + pwgA2,, + 3p <— ZAOQ’] 1

1 1
A2, + §AOQ‘12A2Q73 — AOQ‘12A2Q5> =0 (49)

Note that the 1* nonlinear term in Eq (45) has been used for the harmonic balance of sin
(3wt) in the 1% level. Thus, it is not considered for the harmonic balance of sin(3wt) in the 2™
level. Eqs (47) and (49) are linear equations that contain three unknowns, as AOg and Alq
have been found in the zero and 1** levels.

When substituting Eq (17) into Eq (15), collect all terms with A0, Al and A2q, which
contain the harmonic component of sin(5wt), to set up the following 2nd-level equation:

d*A2, )
p i + pw, A2,
+ By (312\(;Q2A1Q + 3A1,°A0, + A1, 4+ 6A0,A1,A2, 4+ 3A2,°A0, + 3A1,°A2, + 3A0,°A2, + A%Q3))
=R2,.(t 50
Q)5

where R2( s is the sum of the terms with A0, Al and A2, which contain the harmonic
component of sin(5wt):
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Then, consider the harmonic balance of sin(5wt) to set up the following equation:

/ " R2y ()sin(50t)dt — 0 (51)

3 3
~25p0’ A2q; + pigh2q; + fo(— 3 ADg, Algs + 7 ADg Al (Alg, — 2414,)

3 3
+ ZAIQJAIQ_;;(AIQ3 —Al,) + QAOQ‘] (Aly3A2,, — Al ;A2 — Al3A2,, + 2A1,,A2,;)

3 . , 1
+ A0 (A" — 2420, A2, + 4420,A2;) + 3( ALy, A2, + 5 Al "A2;

1 1, 1 1, 3.,
— 5 AL ALgsA20, + 7 AL PAZ, + 5 Al ALgyA20, + 5 Alg,"A2y;) + 7 A0, (242,

3 3 3 3 3
— A2y) + (5A2,°A2; + 5 A21A2," — T A2, A2, + 5 A20,7A20; + 7 A20;°))

=0 (52)

By substituting Eqs (47) and (49) into Eq (52), it can be expressed as a cubic algebraic equa-
tion in terms of one unknown only

Z2,A2; + Z2,A2, > + Z2,A2, > = 72, (53)

where Z2;, Z2, and Z2; are the coefficients that precede the linear and nonlinear terms. Z2, is
the constant term.
If damped cases are considered, rewrite Eq (15d) to obtain the following equation:

72,
A2, = .
P Z2,422,A2,, + 72,42,

(54)

Z2
(C2 +iD2) = : o (55)
72, 4 72,C2 + Z1,(C2" — D2°) + i(10¢ww,, + Z2,D2 + 272,C2D2)

where C2 and D2 are the real and imaginary parts of A2q s, respectively, and w,; is the reso-
nant frequency of the 2nd-level resonance.

The 2nd-level resonance occurs (i.e., the magnitude of Alq 3 is maximum and w = w,,;) in
the frequency range at which the zero level and 1st-level resonances do not occur. Thus, the
damping term in Z2, in Eq (55) can be omitted and the following expression is equal to 0.

72, + 72,C2 + Z1,(C2* — D2*) = 0 (56)

Note that the right side of Eq (55) is therefore purely imaginary (.. C2=0):

72, — 72,D2* = 0 (57)

72
iD2 = 0 58
T i10Eww,, + 22,D2) (58)

Hence, the resonant frequency wp,, can be obtained by solving Eqs (57-58). Similarly, in the
higher-level solution procedures, the harmonic components from the 3rd- or higher-level
responses (e.g. A3q and A4q) are used to set up the harmonic balance equations. One of these
harmonic balance equations is a cubic algebraic equation and the others are linear. By solving
these algebraic equations, the harmonic components of higher-level vibration amplitudes can be
computed. For example, in the 3rd-level solution procedure, the three algebraic equations from
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the harmonic balances of sin(wt), sin(3wt), and sin(5wt) are linear, whereas the one from the har-
monic balance of sin(7wt) is cubic. The unknowns in the four algebraic equations are A3q |,
A3q3, A3q 5, and A3q ;. Using the three algebraic equations, A3q 1, A3q 3, and A3q 5 can be
expressed in terms of A3q ;. Then substitute the expressions into the cubic algebraic equation to
find A3, Once A3q is known, A3q;, A3 3 and A3q 5 can be determined using the three alge-
braic equations. Finally, the overall vibration amplitude of the Q™ mode is expressed as follows:

Aol = (59)

where
h = highest solution level or harmonic order.

After the nonlinear panel vibration amplitudes are obtained, the modal sound radiation
and radiation efficiency can be computed using the modified Rayleigh’s integral method [29]:

=, (r,0,,0,)
/ / = Q’ |rsin(91)d01d92 (60)

SA,
7= p.Coarbl (61)

’kh’ r7xx W
Zo(r,0,,0,) = ~ik,p,C, o r/ / boe D dxy (62)

where 7 is the distance between the panel corner and the observer point; ¢Q is the Q™ panel
mode shape; 6, and 8, are the angles between the observer vector and y-axis and between the
observer vector and x-axis, respectively (see [29] for details); ky, is the wave number; and C, is
the speed of sound.

Finally, the insertion loss is defined as the logarithm difference between the sound energy
radiated from the nonlinear panel and the sound energy radiated from the source panel (i.e., the
difference between the radiated sound levels in the cases with/without the nonlinear panel).

A
= —10 log [A"””} (63)
nlm ZQ 10onc a/b/lAQ‘2 (64>
Asou = Jopocaab ‘140|2 (65)

where
Q = number of panel modes used

0, = radiation efficiency of the source panel mode.

3 Results and discussion

In this section, the material properties in the numerical cases considered are as follows:
Young’s modulus = 7.1 x 10" N/m?, Poisson’s ratio = 0.3 and mass density = 2,700 kg/m". In
Tables 4-6, the case is the nonlinear vibration of a single undamped panel subject to uniform
excitation (i.e., no cavity).
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Table 4. Vibration amplitude convergence for various excitation magnitudes (w = w;, £ = 0.01, 2 structural
modes, no cavity.

k=0.1 =0.5 =12
Zero level Solution 100.55 101.88 104.35
1* level Solution 100.02 100.16 100.79
2" Jevel Solution 100.00* 100.00* 100.00*

*The 2" level values are normalized as 100).

https://doi.org/10.1371/journal.pone.0199159.1004

Table 5. Vibration amplitude convergence for various excitation magnitudes(w = 1.5w;, & = 0.01, 2 structural
modes, no cavity.

k=0.1 =0.5 =1.2

Zero level Solution 101.35 101.80 102.55
1° level Solution 100.06 100.11 100.23
2" Jevel Solution 100.00* 100.00* 100.00*

*The 2" level values are normalized as 100).

https://doi.org/10.1371/journal.pone.0199159.t1005

Table 6. Vibration amplitude convergence for various excitation magnitudes(w = 2w, £ = 0.01, 2 structural
modes, no cavity.

k=0.1 =0.5 =1.2
Zero level Solution 101.75 101.94 102.26
1% level Solution 100.09 100.12 100.17
2" Jevel Solution 100.00* 100.00* 100.00*

*The 2" level values are normalized as 100).

https://doi.org/10.1371/journal.pone.0199159.t1006

The modal external excitation term in Eq (2), Fq, is expressed as aq/0qq kpg, where i is the
dimensionless excitation parameter and g is 9.81 ms™. The panel dimensions are 1 m x 1
m x 2 mm. The first two structural modes are used. Tables 4-6 show the convergence studies
of normalised panel vibration amplitudes for various excitation magnitudes and frequencies.
The 2nd-level solutions are normalised as 100. In the small excitation (x = 0.1), the zero level
solutions can achieve an error rate of less than 2% for the three different excitation frequencies.
The 1st- and 2nd-level solutions to two—decimal place accuracy are almost identical. In the
other two excitation cases (i.e., ¥ = 0.5 and x = 1.2), the maximum difference between the
zero-level and 2nd-level solutions is 4.35%, whereas the maximum difference between the 1%
and 2™ level solutions is only 0.79%. It can be seen that the 1st-level solutions are good enough
for three-digit accuracy. Tables 7 and 8 show the modal contributions of the nonlinear panel
coupled with an extended cavity for various excitation magnitudes and frequencies. The panel

Table 7. Modal contributions for various excitation frequencies (4,/7 = 1, £ = 0.01, cavity depth = panel length).

w/ w; =1 =2 =4
1% mode 99.98 100.00 78.52
3" mode 0.02 0.00 21.43
5% mode 0.00 0.00 0.05

https://doi.org/10.1371/journal.pone.0199159.t1007
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Table 8. Modal contributions for various source panel amplitudes (w = w;, £ = 0.01, cavity depth = panel length).

A JT=0.5 =1 =2
1% mode 99.99 99.98 99.96
3" mode 0.01 0.02 0.04
5" mode 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0199159.t008

dimensions are 1 m x 1 m x 3 mm. The cavity length and width are equal to 1.5 x the panel
length. In each case, the sum of the three modal contributions is 100. Note that the 2nd and
4th modes are asymmetrical and are not considered for this symmetric load case. In the low-
frequency excitations, the single-mode approach is sufficient because the contributions from
the 3rd and 5th modes are minimal. When the excitation frequency is higher and closer to the
resonant frequency of the 3rd mode (see the case of w = 4 w5 in Table 7), the 3rd-mode contri-
bution is significantly higher and the 5th-mode contribution is still minimal. Because the fre-
quency range considered in this study is 0 to 6 w;, the two-mode approach is appropriate.

Figs 3 and 4 present the comparisons between the 1st-mode vibration amplitudes of a single
undamped panel subject to uniform excitation (i.e., no cavity) obtained with the proposed
classical harmonic balance method [31] and the previous multilevel residue harmonic balance
method [32,33]. The dimensionless excitation parameter value x = 0.1. In Fig 3, the results
obtained from the two methods are generally in good agreement for both zero- and 1st-level
nonlinear solutions. In Fig 4, the 1st-level solution of the previous multilevel residue harmonic
balance method is linear and much different from those from the proposed method and the
classical harmonic balance method. Only linear equations are set up in the 1st level of the pre-
vious multilevel residue harmonic balance method. Fig 5 shows the contribution of sin(3wt?)

2.5
w 2
5
% New multi-level
= residue harmonic
S 15 balance method
5 1
‘\;- Classical harmonic
= balance method
-
g 4
< 0.5

, Zero level linear solution
5 5 o N

0 0.5 i | 1.5 2 2.5 3 3.5 4
/@, , Normalized excitation frequency

Fig 3. Comparison of the undamped vibration amplitude results from the proposed and classical harmonic
balance methods (7 =2 mm, a = b = 1m, k = 0.1, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g003
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Fig 4. Comparison of the undamped vibration amplitude results from the proposed and old multi-level residue
harmonic balance methods (7 =2 mm, a = b = 1m, x = 0.1, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g004
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Fig 5. Sin(3wt) harmonic component contribution in Fig 2A versus normalized excitation frequency (7 =2 mm,

a =b=1m, x = 0.1, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g005
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Fig 6. Comparison of the damped vibration amplitude results from the proposed and classical harmonic balance
methods (=2 mm, a =b=1m, x = 0.1, § = 0.01, no cavity).

https://doi.org/10.1371/journal.pone.0199159.g006

component to the vibration response in Fig 3. First, in the simple harmonic solution line, the
contribution of sin(3wt) component is very minimal. It is more like a linear solution. Second,
in the zero-level nonlinear solution line, the contribution of sin(3wt) component is detectable,
but not dominant. Third, in the 1st level nonlinear solution line, the contribution of sin(3wt)
component is very significant. It is more like a super-harmonic solution. Fig 6 shows the com-
parisons between the two-mode vibration amplitudes of a single damped panel subject to uni-
form excitation, which are obtained from the proposed method and classical harmonic
balance method. The dimensionless excitation parameter value x = 0.1. The results obtained
from the two methods are generally in good agreement, except for the resonant peak values
around w = 0.6 wg and w = 2.2 wq. The peak value differences are due to the complete coupling
of the damping terms amongst all nonlinear equations in the classical harmonic balance
method, whilst the damping terms are uncoupled from one solution level to higher solution
levels in the proposed method. The 3rd-mode resonant peak values from the two methods are
also in good agreement because the resonant peaks are more linear.

Figs 7 and 8 show the vibration amplitude and insertion loss plotted against the excitation
frequency for various source excitation magnitudes. In Fig 7, the peak frequencies and vibra-
tion amplitude increase with the excitation magnitude. The peaks are caused by the structural
resonances. It is noted that when it is very small excitation, the normalised resonant frequency
of the panel without cavity effect is one. The peak frequencies in Fig 7 are higher than one
because of the structural nonlinearity and cavity stiffness. The acoustic resonant frequencies
are outside the frequency range concerned in Figs 7 and 8. The jump phenomenon occurs at
approximately w/w; = 3. The higher the excitation level, the higher the degree of nonlinearity
and the higher the peak frequency that can be seen at the vibration peak. The three solution
lines converge closely around the zero-level nonlinear resonance. The slope of the solution line
of 37 around the zero-level nonlinear resonance is the shallowest, whilst the slope of the
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Fig 7. Vibration amplitude versus excitation frequency for various source excitation magnitudes (7=3 mm, a’ =
b=c=1m,a=b=15a, £=0.01).

https://doi.org/10.1371/journal.pone.0199159.g007
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Fig 8. Insertion loss versus excitation frequency for various source excitation magnitudes (r=3 mm, a’=b’=
c=1m,a=b=1.5a, £=0.01).

https://doi.org/10.1371/journal.pone.0199159.g008
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solution line of 0.27 varies sharply (i.e., from shallow to deep). Generally, the 1st-mode vibra-
tion peaks are much higher than the 3rd-mode vibration peaks. The 3rd-mode vibration peak
of 0.27 is very small and more symmetric than that of high excitation. Furthermore, there is no
jump phenomenon at the 3rd-mode vibration peak and no 1st-level nonlinear resonance.
Unlike that in Fig 7, the higher the excitation level or degree of nonlinearity, the higher the
insertion loss dip value that can be seen in Fig 8. In the non-resonant frequency ranges from
w/w; = 2.5 to w/w; = 4.5, the three curves in Fig 8 are very close. Figs 7 and 8 show that the reso-
nant bandwidths are wider for higher excitation magnitudes (note that it is a negative effect on
the insertion loss of an acoustic panel). Thus, the linear deign of an acoustic panel may incor-
rectly estimate the noise reduction performance under high excitation.

Figs 9-12 show the vibration amplitudes and insertion losses plotted against the excitation
frequency for various cavity lengths and depths. The zero- and 1st-level nonlinear peak ampli-
tudes/insertion loss dip values and frequencies decrease with the cavity length and depth.
Unlike those in Fig 7 around the zero-level resonance, the three curves in Figs 9 and 11 are
very close but intercept at approximately w/w; = 1.5. When w/w; < 1.5, the curves of a = @’ and
¢ =0.5a’ are the highest in Figs 9 and 11, respectively. When w/w; > 1.5, the curves of a = @’
and ¢ = 0.54” are the lowest. The Ist-level nonlinear resonance is not significantly affected by
changing the cavity dimensions. It is obvious that the nonlinearity of the structural acoustic
system depends greatly upon the cavity size. If the cavity size is smaller, the nonlinearity is
higher. A large cavity volume implies a low stiffness or small acoustic pressure transmitted
from the source panel to the nonlinear panel. Unlike those in Fig 8, in the non-resonant fre-
quency ranges from w/w; = 2.5 to w/w; = 4.5, the three curves in Figs 10 and 12 are clearly sepa-
rate. The 2nd structural resonance occurs from w/w; = 5.0 to w/w; = 5.5 in the three cases in
Figs 9-10 and the case of c = 4’ in Figs 11 and 12, whereas the 2nd structural resonance occurs
around w/w; = 5.8 to w/w; = 6.2 for the cases of ¢ = 0.5¢’ and ¢ = 2.54’ in Figs 11 and 12. As
mentioned, in the case of ¢ = 0.54” in Figs 11 and 12, the smaller cavity results in a higher

N w

[y

Vibration amplitude/panel thickness

@/@, , Normalized excitation frequency

Fig 9. Vibration amplitude versus excitation frequency for various cavity lengths (r=3mm,a=b,a’=b"=c=
1m, A,/t=1,&=0.01).

https://doi.org/10.1371/journal.pone.0199159.9009
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Fig 10. Insertion loss versus excitation frequency for various cavity lengths (=3 mm,a=b,a’=b"=c=1m,
A JT=1,§=0.01).

https://doi.org/10.1371/journal.pone.0199159.9010
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Fig 11. Vibration amplitude versus excitation frequency for various cavity depths (=3 mm, a’ = b’ = 1.5m,
a=b=1.5a,A,/t=1,§=0.01).

https://doi.org/10.1371/journal.pone.0199159.9011
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Fig 12. Insertion loss versus excitation frequency for various cavity depths (r=3 mm, @’ = b’ =1.5m,a =b = 1.54’,
AJTr=1,£=0.01).

https://doi.org/10.1371/journal.pone.0199159.g012

nonlinearity so that the resonant peak/insertion loss dip and the corresponding peak and dip
frequencies are higher. In the case of ¢ = 2.54” in Figs 11 and 12 (note that the cavity depth is
very long and it looks like a tube), although the cavity is much bigger, the nonlinear phenome-
non (i.e., jump phenomenon) around the 2nd structural resonance is obvious. The 1st acoustic
resonance around w/w; = 4.7, which is close to and strongly coupled with the 2nd structural
resonance, amplifies the nonlinearity. Note that in the case of ¢ = 2.5a” in Fig 5A and 5B, there
is no solution found from w/w; = 4.7 to 4.8 and thus the solution line is discontinuous there. In
Fig 12, there is an anti-resonant peak at approximately w/w; = 2.7 in the case of ¢ = 2.54’. The
acoustic pressure forces of the zero-frequency cavity mode and the 1st non-zero frequency cav-
ity mode (their mode numbers are I, =1, = I, = 0 and [, = I, = 0; I, = 1) acting on the nonlinear
panel are opposite. Fig 13 shows the two normalised acoustic modal force magnitudes (i.e., |
F,o| and -|F, |) against the normalised excitation frequency. The two curves intercept at
approximately w/w; = 2.7.

Figs 14 and 15 show the insertion loss dip frequencies and values plotted against the excita-
tion magnitude for various damping ratios. It can be seen that the insertion loss dip values and
the corresponding dip frequencies of the three cases increase monotonically with the excitation
magnitude. When the excitation magnitude is low, the insertion loss dip frequencies in the
three cases converge and the slopes of the three curves deepen. A low excitation magnitude
results in linear panel vibrations in the system; the resonant frequency is not significantly
affected by the damping. When the excitation magnitude is high, the three curves are almost
linear and far from each other. Unlike the resonant frequency, the insertion loss dip value
always highly depends on the damping ratio in the system. Thus, the three dip value curves are
separate for the entire range of excitation magnitude. Figs 16 and 17 show the insertion loss
dip frequencies and values plotted against the cavity depth for various cavity lengths. The
insertion loss dip frequencies and values decrease and increase with the cavity depth,
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Fig 13. Acoustic modal force magnitude versus excitation frequency(r =3 mm, a’ = b’ = 1.5m,a=b=1.5a’, A,/7 =
1,£=0.01).

https://doi.org/10.1371/journal.pone.0199159.g013
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Fig 14. Insertion loss dip frequency versus source vibration amplitude ratio for various damping ratios (=3
mm,a’ =b’=c=1m,a=>b=1.5a).

https://doi.org/10.1371/journal.pone.0199159.g014
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Fig 15. Insertion loss dip value versus source vibration amplitude ratio for various damping ratios (=3 mm, a’ =
b =c=1m,a=>b=1.5a).

https://doi.org/10.1371/journal.pone.0199159.g015
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Fig 16. Insertion loss dip frequency versus cavity depth ratio for various cavity lengths (r=3 mm, @’ = b = 1m,
a=b,A,/T=1,§=0.01).

https://doi.org/10.1371/journal.pone.0199159.g016
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Fig 17. Insertion loss dip value versus cavity depth ratio for various cavity lengths (7=3mm,a’=b"=1m,a="b,

AJTr=1,§=0.01).
https://doi.org/10.1371/journal.pone.0199159.g017

respectively. It is found that if the cavity volume is bigger (i.e., the depth or length is greater),
the insertion loss is higher. Furthermore, if the cavity depth is longer, the dip frequencies of
the three cases get close. Finally, if the dip frequencies are lower, then the corresponding inser-
tion loss values are higher. A larger cavity results in a smaller nonlinearity or a lower resonant
frequency in the system. Thus, the vibration amplitude or the insertion loss dip value is higher.

4 Conclusions

This study analyses the insertion loss of a nonlinearly vibrating panel backed by an extended
cavity. The proposed harmonic balance method is applied to this nonlinear structural acoustic
problem. The structural/acoustic modal formulation has been developed from partial differen-
tial equations, which represent the large amplitude structural vibration of a flexible panel cou-
pled with an extended cavity. The results obtained from the proposed harmonic balance
method and classical harmonic balance method are generally consistent. The effects of excita-
tion magnitude, damping ratio, cavity depth and length are investigated. The results show that
the nonlinearity of a structural acoustic system depends greatly upon the cavity size. If the cav-
ity size is smaller, the nonlinearity is higher. A large cavity volume implies a low stiffness or
small acoustic pressure transmitted from the source panel to the nonlinear panel. Thus, the
additional volume in an extended cavity would affect the nonlinearity, sound and vibration
responses of a structural acoustic system. Furthermore, if acoustic resonance couples with
structural resonance, the nonlinearity is amplified, adversely affecting the insertion loss.
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