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Abstract

Low amounts of human pharmaceuticals in the aquatic environment can affect bacteria, ani-

mals and ultimately humans. Here, the environmental consequences of a shift in prescrip-

tion behavior from prednisolone to berberine was modeled using an environmental decision

support system based on four consecutive steps: emission, fate, exposure and effect. This

model estimates the relative aquatic and human health impacts of alternative pharmaceuti-

cal prescriptions throughout Europe. Since a Defined Daily Dose (DDD) of berberine has yet

to be formulated, the environmental impacts of berberine and prednisolone were compared

under the assumption of equal DDDs. Subsequently, the relative impact ratio indicates the

extent to which the actual DDD of berberine might be higher to still be environmentally pref-

erable over prednisolone. In fact, berberine can be administered at a six times higher dose

throughout Europe before its impact on the aquatic environment exceeds that of one pre-

scription of prednisolone. On average, the results for impacts on human health are similar,

with the median impact ratio ranging between 5.87 and 22.8 depending on the level of drink-

ing water purification. However, for some regions in Spain, Austria, Baltic States and Fin-

land, berberine can only be considered an environmentally better alternative if it is

administered at a lower dose than prednisolone. We conclude that for most regions in

Europe it is, up until a certain dose of berberine, beneficial for the aquatic environment and

therefore human health to prefer prescription of berberine over prednisolone.

Introduction

Low amounts of human pharmaceuticals in the environment, even below the safety and efficacy

test concentrations, can affect bacteria and animals [1,2]. Especially in the aquatic environment,
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there might be an unacceptable risk due to chronic exposure to pharmaceuticals [3]. In particu-

lar, one of the main problems caused by (human) pharmaceuticals in the environment is endo-

crine disruption. This includes disruption of fertility, development of feminized fish, disruption

of the normal growth of fish, reptiles and aquatic invertebrates [1,4]. Because of their similarity

in structure to endogenous hormones, endocrine disruption is often ascribed to steroidal drugs,

but can be caused by non-steroidal compounds as well [5,6]. There is also a potential risk for

humans and although the environmental concentrations are generally regarded as safe [1], it is

mostly unknown what fraction of pharmaceuticals eventually make their way back to humans

[6]. This can be through accumulation in the food chain [1,5,6] or via drinking water [2]. The

presence of human pharmaceuticals in the environment appears an underestimated problem

[1] with unknown consequences [6].

Already in the 1960s, the presence of human pharmaceuticals in the environment was

anticipated [7] and proven in the 1980s [6]. It took until the 1990s for water contamination by

pharmaceuticals to become an environmental issue [8–10]. In order to halt the potential envi-

ronmental damage caused by human pharmaceuticals, governments may install laws to restrict

their emission into the environment and provide education and return programs [11]. Despite

the increased attention for the environmental impact of human pharmaceuticals since the start

of the millennium [1], little regulation is currently in place [12]. The major programs that are

in place, are the Toxic Substances Control Act (TSCA) [13] of the USA and the Registration,

Evaluation, Authorisation and Restriction of Chemicals (REACH) program [14] of the EU.

However, the TCSA does not involve environmental risk management for hazardous sub-

stances and REACH does not include human pharmaceuticals [12]. Furthermore, the manda-

tory Environmental Risk Assessment (ERA) from the European Medicines Agency (EMA)

[15], says that for all drugs the environmental impact should be assessed: in the first phase, the

substance should be pre-screened for consumption data and for the octanol-water partitioning

coefficient (kow). If the log kow > 4.5, additional persistence, bioaccumulation and toxicity

screenings should be performed. In the second phase, aquatic toxicity, emission and fate

should be assessed in a refined risk assessment. However, from these tests the vitamins, elec-

trolytes, amino acids, peptides, proteins, carbohydrates, lipids, vaccines and natural products

are exempted. Furthermore, tests results cannot be a criterion for refusal for marketing [15].

To be able to predict the environmental consequences of specific molecules, it is important

to have proper fate and effect assessment protocols in operation in not only rats and mice, but

also in algae, fish and water fleas. These protocols can help to predict whether a compound can

reach hazardous concentrations in the aquatic, terrestrial or atmospheric environment

[6,16,17]. This would complement the safety-testing of pharmaceutical companies since these

tests are of limited duration and therefore do not mimic the environmental conditions [2]. Up

to now, pharmaceutical companies have only to a limited extent included environmental

impact in their selection of active pharmaceutical ingredients. Including this element in the

development and selection of pharmaceutical ingredients is advocated to make the transition

to green pharmacy and chemistry [6,11,18,19].

Corticosteroids are the most potent anti-inflammatory agents and are both prescribed as

over-the-counter drugs in certain countries as well as prescription-only medication in others.

They are extensively used for a variety of conditions. The prescribed dose and administration

route depends on the severity of the inflammatory symptoms and medical condition [20,21].

Prednisolone (Fig 1) is a well-known synthetic corticosteroid, mainly prescribed in inflamma-

tory diseases such as rheumatoid arthritis. Available metabolism data of prednisolone show

that up to 24% is excreted in its unchanged form [22]. Furthermore, prednisolone is the active

metabolite of the synthetic drug prednisone, which is an often used pharmaceutical as well.

Altogether, this implies that a substantial amount of prednisolone ends up in the environment

Environmental impact of prednisolone and berberine
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[22]. Synthetic steroids are designed to have strongly enhanced potencies compared to natural

hormones. As a result, they may be able to induce endocrine disruption in aquatic organisms.

But also immune depression and neurobehavioral changes have been reported [23,24].

Natural products are gaining interest because of their potent anti-inflammatory and anti-

oxidant properties [25–27]. The therapeutic window of natural products might be larger than

for corticosteroids. A promising anti-inflammatory natural product that is currently under

investigation is the isoquinoline quarternary alkaloid berberine [28] (Fig 1). It has been shown

to reduce inflammation in vitro via pathways different than those in case of prednisolone [29].

However, the impact of berberine on the environment has not yet been investigated.

In this study, we aimed to model the environmental consequences of a shift in prescription

behavior from the synthetic corticosteroid prednisolone to the natural product berberine. We

hypothesized that berberine due to its natural source would have less environmental impact

than the synthetic drug prednisolone. Human and aquatic toxicity and fate parameters of the

compounds were fed into a model as previously described by Oldenkamp et al. [17] and used

to assess the environmental impact of pharmaceutical prescriptions throughout Europe. This

model was used to describe the relative impacts of berberine and prednisolone on the environ-

ment and on human health resulting from environmental exposure.

Methodology

Description of the model

The environmental decision support system described by Oldenkamp et al. [17] was used to

model the environmental consequences of a postulated shift in prescription behavior from

prednisolone to berberine. This methodology was originally developed for the location specific

assessment and comparison of the environmental impact of two alternative pharmaceutical

prescriptions, aiming to provide physicians with the opportunity to include environmental

considerations in their prescription practice. The model provides regionalized estimates of the

relative impacts of alternative pharmaceutical prescriptions throughout Europe, for both the

aquatic environment and human health. It is based on the four consecutive steps of emission,

fate, exposure and effect estimation (Fig 2).

As a first step, emissions into wastewater are calculated as the sum of non-compliance and

subsequent disposal via flushing, and of actual consumption and excretion as parent compound

Fig 1. Molecular structures of the synthetic glucocorticoid prednisolone (CAS RN = 50-24-8) and the natural

alkaloid berberine (CAS RN = 2086-83-1).

https://doi.org/10.1371/journal.pone.0199095.g001
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via urine or feces. Pharmaceutical residues in wastewater are estimated at the level of individual

Member States, before they are divided over individual agglomerations, based on their popula-

tion size. Generally, this wastewater is discharged into the surface water after passage through a

sewage treatment plant (STP). However, part of the wastewater might also be discharged into

the surface water directly, depending on the local level of STP-connectivity. Indirect emissions

(i.e. after passage through an STP) are calculated at the level of the individual STPs, and depend

on STP design and active pharmaceutical ingredient (API)-specific removal rates corresponding

with the treatment techniques applied. Furthermore, the model also estimates emissions of

APIs to agricultural soils, which depend on pharmaceutical levels in secondary sewage sludge

and Member State specific sludge disposal practices.

To enable the second step of multimedia fate calculations with the model SimpleBox (e.g.

Hollander et al., 2009 [30]), emissions to surface water and agricultural soils are aggregated at

the level of 100 � 100 km environmental grid cells, spatially parameterized with data from Pis-

tocchi et al. [31]. These calculations result in yearly averaged steady-state surface water and soil

concentrations. Relative aquatic risk quotients are calculated as the ratio between these concen-

trations and API-specific HC50 values (i.e. the concentration at which 50% of the individuals in

50% of the aquatic species are being affected). Finally, these risk quotients are used to derive a

grid cell-specific prioritization of the APIs assessed, based on their relative aquatic impacts.

Fig 2. Schematic visualization of the processes used for the calculations. STP = sewage treatment plant. Adjusted

from Figure A1 from Oldenkamp et al., 2014 [17].

https://doi.org/10.1371/journal.pone.0199095.g002
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The calculation of relative human health risk quotients in the third step requires additional

exposure calculations, including estimations of the transfer of pharmaceutical residues into

foodstuffs and drinking water, and age- and location-specific behavioral and consumption pat-

terns. Human contact media taken into account are drinking water, fruits and vegetables, meat

products, milk products, fish, surface water, and soil. The degree of exposure is determined by

the concentrations in these contact media as well as the intensity of the contact with them.

Concentrations in food were estimated from those in surface water and agricultural pore water

using bioconcentration factors (BCFs) for fish [32], root concentration factors (RCFs) for

fruits and vegetables [33] and biotransfer factors (BTFs) for meat and milk products [34].

Concentrations in drinking water depend on the source of the water and the purification

techniques applied. While data on the first were available at the level of the individual EU

Member States [35], spatially explicit data on drinking water purification levels were not. The

model addresses this by formulating different purification scenarios: conventional, advanced

and no treatment. The conventional purification scenario was regarded as the minimum sce-

nario in order for the EU Member States to meet the European quality standards (EU Council

Directive 98/83/EC), and it consists of in series application of coagulation, powdered activated

carbon (PAC), chlorination and sand filtration. In addition to these techniques, the advanced

treatment scenario also includes the application of membrane bioreactor (MBR), UV-treat-

ment, ozonation, reverse osmosis and nanofiltration. The scenario of no treatment was specifi-

cally formulated to address small scale groundwater sources and was excluded from the

present study.

Then, in the last step, the model derives average daily human exposure estimations for a

range of exposure groups, characterized by age, nationality and other factors (e.g. drinking

water purification level and food origin). In a previous study, infants (0–1 years) that con-

sumed locally produced foodstuffs were identified as the most sensitive human exposure

group [16]. Therefore, we selected them as the human exposure group most suitable for the

calculation of the impact on human health. Human health risk quotients were calculated simi-

lar to those for the aquatic environment: as the ratio between the average daily exposure and

API-specific HD50 values (i.e. the dose at which 50% of the individuals in 50% of mammalian

species is being affected).

The environmental decision support system described by Oldenkamp et al. [17] compares

two alternative pharmaceutical prescriptions on the basis of their Defined Daily Doses

(DDDs). The study presented here, however, aims to estimate the environmental conse-

quences of a shift in prescription behavior from prednisolone to berberine. However, DDDs

have yet to be formulated for berberine. Therefore, the environmental impact of one DDD of

prednisolone is compared with one DDD of berberine, assuming that their DDDs would be

equal. This is done for each environmental grid cell throughout Europe. The ratio between the

impacts of the two prescriptions then indicates how many times higher the actual DDD of ber-

berine could be while still being an environmentally better alternative for prednisolone.

Parameterization of the model

Substance-specific parameters were consistently parameterized according to a four-step pref-

erence approach:

1. Experimental or measurement data (green);

2. Extrapolation from related data (e.g. from degradation rates in other environmental media)

(yellow);

Environmental impact of prednisolone and berberine
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3. Structure or property based predictions (e.g. the use of quantitative structure activity rela-

tionships (QSARs)) (orange);

4. Worst-case assumptions (red).

This enables an interpretation of the results through an analysis of the input data for pred-

nisolone and berberine (Table 1). When important data gaps exist for prednisolone (i.e. worst-

case assumptions are used), its environmental impact might be overestimated and the suitabil-

ity of berberine as environmentally better alternative might then also be overestimated. Simi-

larly, when important data gaps exist for berberine, the model might underestimate its

suitability as environmentally better alternative for prednisolone.

Results

Aquatic environment

The ratios between the aquatic impacts of prednisolone vs. berberine for Europe are given in

Fig 3. A value of 1 indicates that, at equal dose, a prescription of berberine and a prescription of

prednisolone have equal impacts on the aquatic environment. A value< 1 indicates that berber-

ine might only be an environmentally beneficial alternative for prednisolone if its prescribed

dose were lower. A value> 1 indicates that berberine could still be considered an environmen-

tally beneficial alternative for prednisolone, even if it were prescribed at a higher dose.

In all grid cells throughout Europe, the ratio between aquatic impacts of prednisolone and

berberine exceeds 1, with a median of 24.54 and 2.5th percentile of 6.09 (Table 2). This means

that, regardless of location, as long as the equivalent therapeutic dose of berberine is approxi-

mately 6 times that of prednisolone or less, this compound has less damaging impact on the

aquatic environment and is the environmentally preferred choice for prescription. However, if

the specific prescription location is known, the dosage of berberine might be up to three orders

of magnitude higher than that of prednisolone, while still being beneficial.

Human health

Similar to the aquatic environment, the health impact on infants after consumption of water

after conventional drinking water treatment (DWT) is given as the ratio of impacts of prednis-

olone vs. berberine (Fig 4). In most EU member states, at equal dosage, berberine has a lower

impact on infants’ health than prednisolone with a median ratio of 5.87 (Table 2). This means

that the therapeutic dose of berberine can be almost 6 times higher than prednisolone and still

be beneficial. However, the 2.5th percentile of the ratios throughout Europe is below 1 (0.61),

meaning that for at least 1 in 40 grid cells, berberine would only be environmentally beneficial

with a prescribed dose below that of prednisolone. This holds for some regions in Spain, Aus-

tria, Baltic States and Finland. Prescription of berberine over prednisolone is most beneficial

in Sweden and The Netherlands.

The impact on infants after consumption of water after advanced DWT is again lower for

berberine than for prednisolone in most EU member states (Fig 5). The impact ratios even

decreased throughout Europe compared with the conventional DWT scenario. Advanced

water treatment enhanced the favoring position of berberine over prednisolone in all coun-

tries, although this is not deducible from Figs 4 and 5 for Austria. Again, Sweden and The

Netherlands stand out. The therapeutic dose of berberine can now generally be 22.8 (median)

times higher than prednisolone (Table 2).

Environmental impact of prednisolone and berberine
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Discussion

Although several chemical substance regulation programs are in place (TSCA in the USA,

REACH and ERA in Europe), these programs are incomplete when it comes to protection of

the (aquatic) environment and human health due to exposure to this environment [12]. It is

important to look beyond the impact of pharmaceuticals on individual patients and include

the environmental impact as well, also because humans might be indirectly affected due to

environmental exposure. Therefore, in this study, we modeled the environmental conse-

quences of a shift in prescription behavior from the synthetic corticosteroid prednisolone to

the natural product berberine using an environmental decision support system [17].

Since the actual therapeutic dose of berberine is yet unknown, it can in principle not be

concluded that the environmental impact of a prescription of berberine is less severe than one

of prednisolone, even at impact ratios > 1. However, as long as the ratio of the therapeutic

Table 1. API-specific input parameters.

Parameter Berberine Prednisolone

Value [ref] # Value [ref] #

Physico-chemical characteristics
Vapor pressure (Pa) 1.4�10−7[36] 3 1.6�10−12 [37] 3

Water solubility (mg�L-1) 0.354 [38] 3 223 [39] 3

Octanol-water partitioning coefficient logKow (-) 2.1 [40] 3 1.62 [39] 1

Human pharmacokinetic parameters
Excretion as parent compound (-) 0.00014 [41] 1 0.24 [22] 1

Chemical fate during sewage treatment
kbio,STP (h-1) 0 4 0.0070 [42] 1

N-removal efficiency (-) 0 4 0 4

P-removal efficiency (-) 0 4 0 4

UV-treatment removal (-) 0.32a [43] 1 0 4

Ozonation removal (-) 0.50 [43] 1 0 4

Chlorination removal (-) 0 4 0 4

Sand filtration removal (-) 0 4 0 4

Microfiltration removal (-) 0 4 0 4

Environmental fate
Biodegradation in water (s-1) 0 4 0 4

Photolysis in water (s-1) 0 4 4.15�10−5 [44] 1

Hydrolysis in water (s-1) 0 [45] 3 0 4

Biodegradation in soil (s-1) 0 4 0 4

Biodegradation in sediment (s-1) 0 4 0 4

Human exposure–drinking water treatment
Conventional removal (-) 0.35 [46] 1b 4b 0 4

Advanced removal (-) 0.93 [46,47] 1b 4b 0 4

Effect
Aquatic toxicity—HC50 (mg�L-1) 14.26 [48–54] 1 2.26 [44] 1

Mammalian toxicity—HD50 (mg�kgbw-1�d-1) 763.50 [55,56] 1 496.95 [57–59] 1

a Calculated as the fraction removed during combined UV- and O3 treatment, minus the fraction removed after O3 alone
b For the majority of drinking water treatments steps, worst-case no removal was assumed. For conventional treatment, these were the steps of coagulation, chlorination

and sand filtration; for the advanced treatment, these were the steps of coagulation, chlorination, sand filtration, UV-treatment, ozonation, reverse osmosis and

nanofiltration. Available information on removal during treatment with PAC (conventional and advanced treatment) and MBR (advanced treatment) were included in

the calculations.

https://doi.org/10.1371/journal.pone.0199095.t001
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doses of prednisolone/berberine does not exceed the ratios of their environmental impacts,

berberine is indeed the environmentally friendly alternative. Similarly, berberine could still be

the environmentally friendly alternative if the impact ratio < 1, provided that the therapeutic

dose of berberine is then lower than that of prednisolone.

Fig 3. Ratios between the aquatic risk impacts of prednisolone and berberine in Europe. In white grid cells, the region is either sparsely populated without emission or

are below 2000 p.e. (population equivalents) in size, which are not included in the model. In all grid cells prednisolone/berberine is larger than 1, which means that

prescribing berberine is beneficial to prescribing prednisolone, even at a higher dosage. (Europe base map was generated using ArcMap [60].

https://doi.org/10.1371/journal.pone.0199095.g003

Table 2. Ratios of impacts of prednisolone and berberine on the aquatic environment on infants’ health after consumption of water after conventional or advanced

drinking water treatment (DWT). Sparsely populated grids without emissions are not taken into account in these calculations.

Aquatic environment Infants–conventional DWT Infants–advanced DWT

Average 663.27 174.73 775.56

2.5 percentile 6.09 0.62 0.62

median 24.54 5.87 22.80

https://doi.org/10.1371/journal.pone.0199095.t002
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We showed that throughout Europe, the aquatic impact ratios of prednisolone/

berberine> 1, with a median of 24.54 (Fig 3, Table 2). This means that as long as the therapeu-

tic dose of berberine< 6 times the dose of prednisolone, it is indeed less damaging for the

aquatic environment in 97.5% of the EU regions modeled.

With respect to its impact on infants’ health, berberine is an environmentally alternative for

prednisolone up to a defined dose (respectively 5.5 and 22 times the dose of prednisolone,

depending on the DWT level) except for some regions in Spain, Austria, The Baltic States, and

Finland (Figs 4 and 5, Table 2).

There are two main explanations for the relatively low impact of berberine compared to

prednisolone. The first is its very low excretion fraction. After consumption only 0.01% of

berberine is excreted into the sewerage, which is approximately 2400 times lower than the

24% for prednisolone. Consequently, the normally negligible influence of non-compliance

Fig 4. Ratios of human health impacts of prednisolone vs. berberine after conventional drinking water treatment. In white grid cells, the region is either sparsely

populated without emission or are below 2000 p.e. (population equivalents) in size, which are not included in the model. Where prednisolone/berberine is smaller than 1

(red grid cells), berberine might only form an environmentally beneficial alternative for prednisolone, if its therapeutic dose would be lower. Where prednisolone/

berberine is larger than 1, prescribing berberine is beneficial to prescribing prednisolone, even at higher dosage. (Europe base map was generated using ArcMap [60].

https://doi.org/10.1371/journal.pone.0199095.g004
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with treatment and subsequent direct disposal of leftover pharmaceuticals into the sewerage

becomes large for berberine. This is reflected in the relatively high impact ratios for Sweden

and the Netherlands compared with the other countries assessed (Figs 3–5). Because in

these two countries leftover pharmaceuticals are disposed of relatively little via direct flush-

ing through sink or toilet [61], berberine remains environmentally beneficial over predniso-

lone at higher doses.

The second main explanation for the relatively low impact of berberine lies in its estimated

aquatic and human health effects which are approximately 6.3 and 1.5 times less toxic than pred-

nisolone, respectively. It is important to note, however, that the HC50 and HD50 values used in

the calculations are measures of acute toxicity. As such, they do not reflect effect concentrations

relevant for the long-term chronic exposure we are interested in. They were thus applied under

Fig 5. Ratios of human health impacts of prednisolone vs. berberine after advanced drinking water treatment. In white grid cells, the region is either sparsely

populated without emission or are below 2000 p.e. (population equivalents) in size, which are not included in the model. Where prednisolone/berberine is smaller than 1

(red grid cells), berberine might only form an environmentally beneficial alternative for prednisolone, if its therapeutic dose would be lower. Where prednisolone/

berberine is larger than 1, prescribing berberine is beneficial to prescribing prednisolone, even at higher dosage. (Europe base map was generated using ArcMap [60].

https://doi.org/10.1371/journal.pone.0199095.g005
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the assumption that the relative difference between berberine and prednisolone in terms of their

acute effects is the same as the relative difference in terms of their chronic effects.

In order to predict the environmental impact of prednisolone and berberine, the model was

fed with API-specific parameters (Table 1). To get to the most realistic results, experimental

and calculated data should be used to parameterize the model. However, only few data were

available for this and several worst-case assumptions had to be made to model the fate of both

APIs during STP and DWT, and in the environment. Each of these worst-case assumptions

might have caused an under- or overestimation of the actual impact ratio of prednisolone vs.
berberine. Parameters for which prednisolone data were available, but for which worst-case

assumptions had to be made for berberine, might have led to an underestimation of the actual

impact ratios. For example, information on environmental photolysis of prednisolone was

available, but for berberine a worst-case no degradation assumption had to be made. Since

photodegradation is the most important environmental degradation pathway for various

drugs [62], it is likely that in reality berberine is at least partly degraded under solar radiation.

This thus has led to an overestimation of berberine concentrations and an underestimation of

actual impact ratios. Vice versa, actual impact ratios might have been overestimated due to

parameters for which berberine data were available but prednisolone data were not. The latter

parameters are of specific interest in light of the validity of our model results. Indeed, filling

knowledge gaps for berberine will even further increase impact ratios between the two APIs,

while filling knowledge gaps for prednisolone might decrease them.

Based on the above, two modeling steps deserve attention. The first relates to the fate of

prednisolone during tertiary (advanced) wastewater treatment. Berberine is removed to quite

an extent during wastewater treatment with ozonation and UV radiation techniques (with

removal efficiencies of 0.32 and 0.50, respectively; Table 1), while we assumed these techniques

to have a worst-case zero removal efficiency for prednisolone. In reality, the efficiency of these

techniques to remove prednisolone is potentially substantial, leading to an overestimation of

the impact ratios for regions with STPs that apply these advanced STP techniques. However,

UV-treatment and ozonation are only scarcely applied in European wastewater treatment (3%

and 0.2% of all European STPs, respectively), limiting the overall influence of these worst-case

assumptions. Moreover, the rate constant for biodegradation during (far more widely applied)

secondary treatment was assumed zero for berberine, while this information was available for

prednisolone (0.0070 h-1; Table 1). This further reduces the influence of these worst-case

assumptions on the modeled impact ratios for prednisolone.

Removal during DWT is a second modeling step that deserves attention, because of the lack

of information on the removal of prednisolone during DWT in comparison with berberine.

Especially since human health impact ratios are <1 in some grid cells in Europe, the fate of

prednisolone during DWT is a topic relevant for future research. It is, however, important to

realize that drinking water is only one of multiple routes via which humans might be exposed

to berberine and prednisolone. Consumption of food products such as vegetables, fish, meat

and dairy products, form other potentially important routes of exposure. API residues

adsorbed to sludge might become available for uptake in vegetables in countries where this

sludge is (partly) applied to agricultural soils. Both the sorption to sewage sludge as well as

transfer into vegetables, fish, and meat and dairy products increase with increasing KOW.

Because berberine has a 1.3 times higher KOW than prednisolone (Table 1), it also ends up

more easily in aforementioned food products. This limits the relative importance of drinking

water as exposure route, and consequently limits the influence of worst-case assumptions

made for prednisolone during DWT.

Finally, it should be noted that environmental degradation processes were barely incorpo-

rated in the assessment, with the exception of the aforementioned photolysis of prednisolone,
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because data on these were almost entirely lacking for both prednisolone and berberine

(Table 1). As a consequence, impact ratios hardly vary between grid-cells within one country

and most spatial variability in impact ratios can be attributed to differences between countries,

such as levels of non-compliance, leftover APIs disposal, and consumption behavior. Impact

ratios for human health (Figs 4 and 5) show slightly more within-country variation than those

for the aquatic environment (Fig 3). This relates to between-grid cell variation in emissions to

agricultural soils and between-grid cell variation in environmental parameters influencing

uptake into food products.

Conclusion

This study was performed to raise awareness in the pharmaceutical community on the impact

of pharmaceuticals on the (aquatic) environment and that changing from one drug to another

could be beneficial for both aquatic as well as human health. As an example, the synthetic cor-

ticosteroid prednisolone was compared to the natural alkaloid berberine. We showed that in

most regions in Europe, it is up until a certain dose of berberine, beneficial for both the aquatic

environment as well as for human health to prescribe berberine over prednisolone. To

strengthen the validity of these results, we strongly recommend further research into the fate

of both APIs during wastewater and drinking water treatment. The filling of these knowledge

gaps will decrease the extent of worst-case assumptions required in model parameterization,

and as such will increase the confidence that can be attributed to the results. Additional to the

attention for adverse effects in patients and socio-economic considerations, regulations on

prescription of alternative drugs taking into account their environmental impact, should be

encouraged.
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