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Abstract

Studies based on a paradigm of free or natural viewing have revealed characteristics that

allow us to know how the brain processes stimuli within a natural environment. This method

has been little used to study brain function. With a connectivity approach, we examine the

processing of emotions using an exploratory method to analyze functional magnetic reso-

nance imaging (fMRI) data. This research describes our approach to modeling stress para-

digms suitable for neuroimaging environments. We showed a short film (4.54 minutes)

with high negative emotional valence and high arousal content to 24 healthy male subjects

(36.42 years old; SD = 12.14) during fMRI. Independent component analysis (ICA) was

used to identify networks based on spatial statistical independence. Through this analysis

we identified the sensorimotor system and its influence on the dorsal attention and default-

mode networks, which in turn have reciprocal activity and modulate networks described as

emotional.

Introduction

Understanding how the human brain processes information in a natural environment reveals

information about its integral functioning during daily life. Under conditions simulating nor-

mal life certain areas of the brain function as networks participating in coding complex stimuli,

such as natural vision [1]. This brain activity reflects characteristics similar to those evoked

in the natural human environment. The vast majority of neuroimaging experiments to date

sought to better understand the neural basis of perception using carefully controlled stimuli

and tasks [1,2]. fMRI has been used to measure brain activity, primarily in the context of highly

controlled experiments using purposefully design stimuli [3]. In these cases, researchers use

pre-determined, static, and isolated-object images that are flashed on the screen in image

acquisition synchronized paradigms [4]. Many contemporaneous experiments reduce the tem-

poral complexity of their visual or auditory stimuli, presenting stimuli for one or two seconds

or less. Yet, in order to sense and act in real-life circumstances, the brain must gather informa-

tion over both long and short time intervals [5]. The use of precisely parameterized stimuli is
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(UNAM) for the masters fellowship (MN)

supported by the National Council of Science and

https://doi.org/10.1371/journal.pone.0198731
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198731&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198731&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198731&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198731&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198731&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0198731&domain=pdf&date_stamp=2018-06-08
https://doi.org/10.1371/journal.pone.0198731
https://doi.org/10.1371/journal.pone.0198731
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/CURS7G
https://dataverse.harvard.edu/dataverse/VideoObservationfMRI
https://dataverse.harvard.edu/dataverse/VideoObservationfMRI
https://doi.org/10.7910/DVN/CURS7G
https://doi.org/10.7910/DVN/CURS7G


critical for isolating the experimentally relevant dimensions from the extremely multidimen-

sional natural stimuli.

Thus, in general, the world seen in the highly controlled fMRI experimental settings seems

to bear little resemblance to our natural viewing experience [4,6]. Because many studies use

simplified static stimuli, surprisingly little is known about how the human brain operates dur-

ing real-world experiences. Exploring brain function with dynamic, naturalistic stimuli is

important for several reasons. First, it is vital to determine whether results obtained in experi-

ments using simplified stimuli hold true under natural conditions. Second, some research

questions can only be addressed with naturalistic tasks where there is little temporal regularity

[7]. For these reasons, using more natural stimuli helps to detect brain activation patterns that

are difficult to observe using simple stimuli and enables us to study the human brain under

ecologically valid, naturalistic stimulus and task conditions [1].

Naturalistic viewing paradigms (e.g. movies) have been used to study both stimulus-evoked

BOLD signal changes and functional connectivity [8]. In order to preserve the dynamic sen-

sory and affective qualities of real events, movies are used as tools closer to ecological vision in

several studies [1,4,9,10].

The use of aversive cinematographic material has been reported as a means to induce brain

related changes associated with acute stress [11,12]. Usually, the word stress is used to describe

experiences that are challenging physiologically and emotionally [13]. Stress refers to a situa-

tion in which demands are perceived to exceed one’s personal resources. Different stressor

types characterize different neurophysiological responses. For example, reactive stressors

(such as pain) tend to implicate brainstem and specific hypothalamic nuclei, and the bed

nucleus of the stria terminalis, which all have direct connections to the paraventricular nucleus

[14]. On the other hand, anticipatory stressors (e.g. unfamiliar situations) seem to engage lim-

bic system regions, namely the hippocampus, the amygdala, and medial prefrontal cortex [14].

Physical stressors would engage more heavily the limbic system (amygdala), while psychologi-

cal acute stressors would emphasize the hippocampus [15]. Acute stress has an important

impact on higher-order cognitive function, whose effects are believed to result from stress-

induced alterations of large-scale brain networks [12]. Studies about the impact of stress on

resting state networks (RSNs) show that stressed participants exhibited greater activation in

the RSNs -Default Mode, Ventral Attention, Dorsal Attention, Primary Visual, and Sensori-

motor networks- than non-stressed participants (Soares, Sampaio, Ferreira, et al., 2013a;

Soares, Sampaio, Marques, et al., 2012b). Also, participants in a stressful condition have dis-

played deficiencies in the deactivation of RSNs vs. non-stressed participants [16]. Similarly,

brain connectivity during acute stress is related to alterations in brain areas related to percep-

tion, vigilance, and deactivation of the Default Mode Network (DMN), suggesting the promo-

tion of focused attention that optimizes threat detection [17]. Hermans et al. 2011, investigated

changes in brain interconnectivity after exposure to a fear related acute stressor (through a

movie clip), resulting in noradrenergic neuromodulatory activity that leads to a relocation of

neural responses related to attentional reorienting, vigilant perceptual intake, and autonomic

control findings that agree with a causal link between the salience network and stress-induced

noradrenergic activity.

In Independent Component Analysis (ICA), the BOLD signal is treated as a mixed signal

that is mathematically divided into several, statistically separate signals known as independent

components. These independent components can then be related back to the stimuli to under-

stand the relationship between brain activity and stimuli [7]. In fMRI studies, ICA has been

used to extract networks of brain activity during resting state studies. In the field of emotions,

functional connectivity has been used to estimate the stress on the connectivity networks [1].

There are few studies in which ICA has been used to estimate the neural networks in the
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course of emotion processing [18–21]. Also, ICA has been applied to analyze fMRI data col-

lected during movie watching [9,10]. Specifically, there is a lack of studies that describe the

connectivity networks associated with resting state conditions under a stressful or emotionally

disturbing setting [22,23]. Through this perspective it is proposed that the connectivity pat-

terns evaluated reflect brain-environment interactions rather than responses to stimuli [24] as

observed in fMRI experiments on stress processing. Therefore, it is possible to consider the

ICA approach as a valuable tool for revealing novel information about functional brain con-

nectivity related with the stress processing phenomena.

Given the nature of the ICA approach, the present work proposes studying the neuronal

bases of the emotional processes in natural and free conditions without establishing a con-

trolled variable a priori. The aim is to validate an induced-stress method using functional neu-

roimaging paradigms. We propose an ICA connectivity approach to characterize the brain

networks implicated during the view of a stress-inducing video in order to explore the brain

networks implicated during the perception of an emotionally aversive condition. We also aim

to identify the main connectivity networks and to elucidate their contrasts and the modulation

that takes place during aversive emotional processing during a free-viewing paradigm. We

approached this question by studying the functional organization of the human cortex when

free-viewing a continuous sequence (4.54 minutes) taken from an original film. We reasoned

that such rich and complex visual stimuli are much closer to an ecological vision than the con-

trolled stimuli usually used in fMRI. Using behavioral tests, we also evaluated whether the

video observation was a valid model for inducing psychological stress within an fMRI environ-

ment [25]. This video clip has been used in previous studies to induce acute psychological

stress [26–28]. Likewise, the present stress induction method is consistent with the exogenous

determinants of human stress response: unpredictability, uncontrollability and novelty [29].

Therefore, in the present study we also link the behavioral responses (perceived stress) derived

from specific parts of said clip with increase connectivity in specific brain structures.

Results

Behavioral data

The results show the statistically significant differences in the groups before (t1) and after

watching the stressful video (t2). The scores (Mdn = 2.10) at t2 are those with the highest stress

subscale intensity (Z = -2.89, p = .00) when compared with t1 scores (Mdn = 1.60); this indi-

cates that the stress-induction manipulation was successful. No statistically significant differ-

ences in perceived stress were found in the group control before (t1; Mdn = 1.55) and after

seeing the movie´s segments (t2; Mdn = 1.66) Z = -0.56, p = .96 indicating no influence of the

control stimulus in the stress levels.

fMRI ICA data

An estimated total of 31 components were observed by ICA (31 spatial maps with their corre-

sponding time course) and ordered by the extent to which they explain the total variation in

data. Five components were excluded (C17, C23, C24, C28 and C29) because they contained

elements characteristic of a typical artifact [4]. The explained variance percentage value for the

first component was around 6%, and it decays for later components, with the value for the last

component being 1.13%. On the other hand, in the average power spectrum of the time course

of all the components, a predominant frequency was identified at 0.05 Hz, indicating the reli-

ability of the components [30].

The common components resulting of the join activity show the variety of relative

responses in the whole session/subject analysis. The components have been ordered according
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to the mean response per decreasing component, without considering artifact components

(17, 23, 24, 28 and 29), and all adjustments were significant (p< 0.00) for all except 30

(p< 0.00278) and 31 (p< 0.00268); the significance test was not corrected. Therefore, the

trustworthiness of each component is known with regard to its representation of the joint

activity.

Network dynamics

A matrix correlation was built from time courses of every component (27) (Fig 1). We took the

components whose most correlations were significant among them p<0.002 (of a 0.05 Bonfer-

roni corrected for 25 pairwise comparisons) for further analysis. These represent diverse net-

works. C1, C2, C3 and C5 were identified as the same network (dorsal attention network), by

having a similar hemodynamic pattern in their spatial courses and having this high correlation.

These four signals were averaged, obtaining a unique network for further analysis (Fig 2). Net-

works previously described as resting state [31], as sensorimotor (SMN), default mode (DMN)

and dorsal attention network (DAN) (Figs 2 and 3) were identified. The networks represented

by these components are shown in Fig 2.

We took the DMN and the DAN as time series references, since their activity has been

better characterized in fMRI studies [32–36]. For demonstration purposes, two groups were

formed based on their time courses. One group, comprising C12 and C20 (group A) has

reciprocal activity to DMN. The other group, formed by C7, C8, C10 and C14, (group B),

has activity reciprocal to DAN (Fig 3). The time courses of each group were averaged,

resulting in two unique signals (group A mean = 0.1060 SD = 2.3151; group B mean = 0.1122

SD = 1.9606). By splicing these signals, a remarkable negative correlation between them was

observed (r = -0.8452, p< 0.01) (Fig 4).

As we know, changes in these time courses depend on the video display; thus, we asked

what movie frames elicited the highest activation in these two signals. Fig 5 shows the movie

frames from the highest activation peaks. The frames were ordered according to descending

signal amplitude. Group a) was triggered mainly by scenes from the time prior to hurting the

animal, whereas group b) was activated by scenes where the animal was dying.

Intersubject correlation analysis (ISC) revealed that the high correlation is mostly present

in posterior areas, mainly the precuneus surface cortex, fusiform gyrus, followed by the lateral

occipital areas, lingual gyrus, as well as parts of the dorsal limbic system (Fig 6).

We can observe two clusters with higher correlation, the precuneus cortex and the lingual

gyrus. That means the activity in those areas was present in a most synchronized manner in all

subjects across the time. Comparing with ICA results the lingual gyrus appears in three of the

networks (components 7, 10 and 20). Precuneus is part of component 7, also an important

part of the DMN, together with the posterior cingulate cortex, involved in visual, sensorimo-

tor, and attentional information.

Cross correlation

The results of cross correlation analysis were significant in most of comparisons p<0.0125

(of a 0.05 Bonferroni corrected for 8 pairwise comparisons) with estimation error bounds

2.7 standard deviations from 0, (Fig 7), show a tendency for most of the networks to be one

lag against the other. As it shows DMN vs C10, SMN vs DAN, DAN vs C12 and C7 vs C8,

their highest value is in lag 0, however the next value is in lag -1 which indicates a tendency

to be ahead, i.e. DMN tends to be ahead C10 but not in a fully way. Standing out among

these findings is the SMN, which predict directly the group of networks on the left side

(DMN), and in an inverse way those in the right column (DAN) (Fig 8). These two networks
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positively predict other networks, whose areas include posterior cingulate gyrus, lingual

gyrus and precuneus; b) anterior cingulate cortex, lingual gyrus, postcentral gyrus and

posterior insula; and c) SMN, whose connectivity changed immediately after the animal-

slaughtering scenes were shown. On the other hand, areas of networks with increased activ-

ity during scenes that predated the time of death were a) medial frontal gyrus, precuneus,

medial temporal gyrus and fusiform gyrus; and b) lingual gyrus, supramarginal gyrus and

postcentral gyrus.

Fig 1. Correlation matrix of the BOLD signal. Correlation matrix of the BOLD signal time courses for the 26 ICA

components. The matrix elements (I, j) represent the Pearson’s coefficient resulting from the cross correlation of the BOLD

signal time course between the i and j components. The axes represent each of the component indices, the color scale shows the

Pearson’s value. Associated network activity is depicted in Fig 2. Outline box contains the components which most of their

correlation were significant (p<0.002 corrected) taken for further analysis.

https://doi.org/10.1371/journal.pone.0198731.g001
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Discussion

The present study was designed to locate the main networks, their dynamics, and the modula-

tion that takes place in aversive emotional processing using model free neuroimaging analysis

[11]. Using ICA we were able to document the dynamics that exist between the BOLD activity

of each network detected while a stressful video was being viewed. What stood out the most in

this study was the identification of the DAN and the DMN. Our findings are consistent with

previous research, especially the determination that these networks are intrinsically inversely

correlated [37,38]. Furthermore, the signal of each network is also associated with the recipro-

cal activity of other networks among the six networks whose areas have been associated to

emotional processing. Based on the correlation of their time courses, these six networks

formed two subgroups, where the average signal of each subgroup had a high negative correla-

tion value (r = -0.8452). The first subgroup, made up of components 12 and 20, contained

networks that involve regions, such as the medial frontal gyrus, precuneus, middle temporal

gyrus, fusiform gyrus, lingual gyrus, supramarginal gyrus, and postcentral gyrus, that have

Fig 2. Brain networks included in the correlation matrix. Some of the networks taken from the correlation matrix in Fig 1 (outlined box) based on its order: A) C1,

C2, C3 and C5; Dorsal Attention Network (DAN). B) C14; Sensory motor Network (SMN). C) C6; Default Mode Network (DMN). D) C7 posterior cingulate gyrus,

lingual gyrus, precuneus. E) C12 Medial frontal gyrus, precuneus, medial temporal gyrus, fusiform gyrus. F) C20 Lingual gyrus, supramarginal gyrus, postcentral

gyrus. G) C8 cerebellum anterior right lobe VIII-B area, angular bilateral gyrus.

https://doi.org/10.1371/journal.pone.0198731.g002
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reciprocal activity with the DAN and are observed in moments of preparation before killing an

animal. This response coincides with processes associated with this specific network, which

include expectation and fixed attention when knowing that something is going to happen

soon, marking a striking difference from other processes related to attention [39]. This activity

begins to decline the moment the expected event occurs. From this point on, activity begins

for the following group of networks. The ICA components 7, 8, 10, and 14 include regions 7

(posterior cingulate, lingual gyrus, and precuneus), 8 (right frontal lobe of the cerebellum area

III-B and bilateral angular gyrus), 10 (anterior cingulate, lingual gyrus, post-central gyrus and

posterior insula), and 14 (sensorimotor system, pre- and post-central gyrus). The correspond-

ing BOLD activity involves the DMN. Despite the fact that the DMN is characterized as being

present mostly during a resting state, its activity also persists during states of sensory process-

ing that impose a minimum cognitive demand [40,41]. A modular focus of the brain tells us

about its capacity to assemble quickly and robustly, in order to segregate an infinity of pro-

cesses. This idea has been developed more tangibly using computer mechanisms that

Fig 3. BOLD signal components with signitican correlations. Shown are components with significant correlation (see Fig 1). Average signals (black) obtained from

BOLD signals. (group A mean = 0.1060 SD = 2.3151; group B mean = 0.1122 SD = 1.9606) a) Components 12 and 20. b) Components 7, 8, 10 and 14.

https://doi.org/10.1371/journal.pone.0198731.g003
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demonstrate its high efficiency and functioning by modulating multiple processes of complex

information and developing tasks in a changing environment [42]. The main networks for

the modular control on a resting state brain, have been demonstrated before and include the

occipital, sensorimotor, and default mode networks [43,44]. These same networks were found

at the hierarchical level of modulation [45], whereas at the voxel level researchers found visual,

auditory, and default mode networks. As was made visible in our results of crossed correlation,

the SMN precedes both of these groups and its activation in the absence of pain or physical

sensation is associated with the perception of others’ pain, as suggested by other studies [46].

At the moment when the before-injury scene starts in the movie, DAN is fully activated, at the

injury scene moment SMN begins to activate and DAN begins to deactivate. Afterwards, this

same network (SMN) gives way to the DMN (after injury scene), which modulates other net-

works with areas such as the lingual gyrus, which has numerous connections with the amyg-

dala, central lobe, (associated with the perception of unpleasant stimuli), the anterior and

posterior cingulated cortex, part of the limbic system, cerebellum, postcentral gyrus, and angu-

lar gyrus.

The basic brain processes are the result of a series of events that occur in certain pathways

through in the brain. For a stimuli processing in a complex environment, which combine top-

down / bottom-up process, is necessary a network which emphasizes the behavior of a com-

plex system probably shaped by the interactions between its constituents [47]. We think this is

the first description of a path that operates in a complex network environment in response of

complex stimuli. The present study also showed that the same modulating networks are main-

tained in both a stable state [44] and a stimulus-triggered altered state, leading to the possibility

that these networks act as part of the general modulation of brain activity, regardless of the

stimulus or process. However, this conclusion must be confirmed by studies made under the

same model with different types of stimuli that provoke responses related to other cognitive

processes. There are some studies with positive valence movies used in naturalistic behavioral

paradigms [48]. However, the studies of processing of stress during free movie viewing are

scarce [11]; movie film with interpersonal violence evaluated with neuroendocrine and affec-

tive measures of affect; with Salience Network related activation).

Fig 4. Plots of time signal components average. Two signal examples. The red line represents the average of component time courses 12 and 20 group A; the blue line

of components 7, 8, 10 and 14, group B. The axes indicate the normalized BOLD signal (X) over time (Y).

https://doi.org/10.1371/journal.pone.0198731.g004
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Fig 5. Types of scenes corresponding to high BOLD activity. A) Scenes corresponding to the highest BOLD signal peaks,

from group A (C12 and C20 signal); these images are related to the slaughtering actions and are images where the animals

are prepared to be hurt. B) Images from group B (C7, C8, C10 and C14 signal) while the animal is hurting (in the dying

process). Note that due to copyright reasons, the images showed in this figure are not the actual images used in the study.

However, all the images used in this figure represent similar situations observed in the original video. All the images used

in this figure were constructed from images acquired and processed in our laboratory.

https://doi.org/10.1371/journal.pone.0198731.g005
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Here we have chosen a negative valence movie in order to create an ecological valid model

for studying some neurocognitive process elicited by an acutely stressful experience [29].

Some alternative explanation for the amygdala activation absence could be considered, includ-

ing: a) the variability of type of stressors and its engaging physiological and psychological

activity [14]. Psychological acute stressors show high variability on the physiological systems

[15,49]. b) psychological stress commonly involves ambivalent signals that require consider-

able integration and evaluation before a response stress has been started [15]. Since there is

not much previous evidence of emotional studies with a free viewing stimulation, some of the

results presented here lead to interpretations and questions of brain activity. One of them is

the absence of amygdala activity in spatial maps, since its activity has not been reported in the

analysis of long time windows under emotional stimuli, it can be considered the fact that there

is no significant sustained temporal activity of it over other areas / networks, when viewed in

a longer time window than those commonly used in fMRI block studies. This evidence has

been proven only with dynamic stimuli [50,51]. We have explored the human brain’s response

under stress induced by a dynamic naturalistic stimulus. Our technical and methodological

approach differs from previous studies of psychological and physical stress paradigms suitable

for neuroimaging environments [52,53]. Further, using more natural stimuli will probably

allow us to detect patterns of brain activation that are difficult to observe using simple stimuli,

and enable us to study a “stressed human brain” under ecologically valid naturalistic stimulus

and task conditions [1]. Future studies would consider additional measures (physiological) of

stress together with this method.

Methods

Participants

Twenty-four right-handed healthy male subjects were enrolled in the study. All subjects gave

their written informed consent, and the experimental protocol was approved by the Bioethics

Fig 6. Areas with higher correlation. Areas with higher correlation between subjects during the visualization of the video. Precuneus surface cortex, fusiform gyrus,

lateral left occipital areas, lingual gyrus, and posterior cingulate cortex.

https://doi.org/10.1371/journal.pone.0198731.g006
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Review Board of the Institute of Neurobiology, UNAM, and was performed in accordance

with the Declaration of Helsinki. Subjects had an average age of 36.42 (SD 12.14) and a mini-

mum of 12 years of schooling. All subjects were mid-to-high socioeconomic level. Individuals

who met any of the following criteria were excluded: history of head injury, treatment with

psychotropic medications, use of narcotics, steroids, or any other medication that affects the

central nervous or endocrine systems, having had a medical illness within 3 weeks prior to test-

ing, self-reported substance use or mental disorders (SCL R-90 [54]), daily tobacco use, regular

nightshift work, current stressful episode or major life event, and regularly viewing extremely

Fig 7. Highest values of cross correlation analyses. Results from cross correlation analysis showing the highest values for each

comparison. For some (DMN-C10, SMN-DAN, DAN-C12, C7-C8) it shows also the next to the highest values. Eight

comparisons, from which seven were significant (p<0.0125 corrected), the red lines correspond to the upper and lower

confidence bounds.

https://doi.org/10.1371/journal.pone.0198731.g007
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violent movies or playing violent computer games. One subject was excluded during the analy-

sis due to numerous motion artifacts. Women were excluded from this study since the hor-

monal cycle may influence emotional responses and may cause a bias in the study [55].

Stimuli and procedure

Prior to entering the scanner, subjects received thorough instructions about the scanning pro-

cedure and the tasks to perform. Perceived stress (aversive stimuli) was tested immediately

after entering the scanner to obtain a baseline level (t1) and again after viewing 4.54 minutes

of the stressful movie (t2). To show that the results are specific to our particular experimental

condition and do not merely reflect generic modulations in the audio-visual stimulation, a

control experiment was carried out with a comparable set of "neutral" movie segments in an

independent group of subjects.

Psychological measures

Perceived stress. The computerized version of the Stress and Activation Adjectives

Checklist-SAACH [56] was employed, considering only the stress dimension (11 adjectives

with four points answer format: absolutely true, probably true, not sure and absolutely not). In

the present study the scale was adapted to be administered in the scanner environment. To

respond to the test, subjects had a magnetic resonance (MR) compatible ResponseGrip

Fig 8. Network organization in temporal delay and correlation. Networks organized based on the temporary delay and correlation (positive or negative) that

exist amongst them, according to Fig 7. They are set out in levels according to their activation point in time.

https://doi.org/10.1371/journal.pone.0198731.g008
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(NordicNeuroLab) with their left and right index fingers and thumbs each placed on one of

four buttons. All sentences and instructions were presented on a graphical interface pro-

gramed in house where participants were instructed to rate their present emotional state, all

the items presented were randomized. The sentences were printed in lower case letters, dis-

played in approximately 18-mm tall Arial, white on a black background, providing high legi-

bility. Prior to the scanning session, each subject was instructed in the performance of SAACH

and the use of the computer mouse by practicing a shortened version outside of the scanning

environment on a desktop computer with verbal instruction from the researcher.

Aversive stimuli

We use fMRI coupled with the eye tracking technology to confirm attentive viewing of all

projected stimulus and movie fragments as suggested by other studies [57–59], where it is

recognized that the monitoring of eye movements during fMRI is something essential in

research on natural stimulation paradigms [60]. The eye tracker was calibrated for each par-

ticipant before the experiments began. A MR-compatible NNL eye-tracking camera was

used to record video data of the subject’s eyes during the fMRI task-related scanning (Visual

System NNL EyeTracking Camera, and ViewPoint eye tracker software, Arrington Research

Inc., Scottsdale AZ). Subjects watched 4 min and 54 sec. of the movie “Faces of Death #1”

(dir. John Alan Schwartz, 1978, original length 105 min) in the fMRI scanner. Three short

movie fragments were used to create the proper context (1 × 60s, 1 × 120s, 1 × 114s). This

shorter version was re-edited with computer software. Selected fragments were comparable

in amount of speech, human presence, luminance, and language. The aversive movie clips

contained scenes of a woman on a farm decapitating a rooster, images of a slaughterhouse

where sheep and cattle are being sacrificed in a brutal manner and video fragments of a

group of actors pretending to eat the brain of a monkey that they had to kill themselves. Par-

ticipants were instructed to carefully watch the video and feel free to stop the video if the

images were disturbing them. Participants were informed before the experiment that watch-

ing the film might be stressful and that they could terminate the experiment at any point.

The video clip image contents were classified with negative valence and high arousal content

according to Bradley and Lang [61].

Functional magnetic resonance imaging

During projection of the video, the sequence of images was captured with a 3.0 Tesla Discovery

MR750 MRI unit, using the 32-channel reel for cranium, at the Neurobiology Institute of the

UNAM. The functional images were acquired with a sequence of Eco Planar (EPI) pulses for

heavy images at T2�, GE-EPI of TR / TE = 2000 / 40 ms in a 64 × 64 matrix over a FOV of 25.6

cm in 36 slices with a width of 4 mm per slice. This resulted in isometric voxels with a spatial

resolution of 4 × 4 × 4 mm3. The high-resolution structural images were acquired using a T1

weighted SPGR pulse sequence with 1 × 1 × 1 mm3 of spatial resolution.

Data analysis

fMRI data. All data were transferred to offline work stations to convert them from

DICOM to NIfTI format (dcim2nii, Ch. Rorden, http://www.nitrc.org/projects/dcm2nii);

afterwards they were processed using the MELODIC ICA module of the FSL program,

which runs an algorithm of independent components per voxel in the stack of images for the

whole group of subjects. All the functional studies were processed using the typical pre-sta-

tistics pipeline that includes timing correction for interleaved slice acquisition, for motion

correction, normalization to standard space MNI with a 12 degrees linear transformation,
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resampled to 2mm spatial resolution, finally a smoothing of 6mm Gauss kernel at FWHM.

The statistical analysis was estimated in to steps, single- and multi-session. The first analysis

was made using the Single-session ICA mode that makes up a standard of each entrance file

(23 subjects) to a two-dimensional matrix (time and space) in order to decompose them later

into two-dimensional matrixes (time and components, space and components). The result

estimates the independent components for each subject without taking others into account.

The results of the “single session” were used to identify the components that corresponded

to each subject’s noise, and these were eliminated (between four and five per subject), thus

arriving at a more reliable database [30]. For the second level of analysis in MELODIC,

“Multi-session Tensor-ICA” was used, which takes the entry data as a three-dimensional

matrix (time, space, and subjects) and breaks it down into triplet, two-dimensional matrixes:

time courses-ICA components and spatial maps-ICA components. The final observable

product describes common components in all or most of the subjects and orders them

according to the highest percentage of variation explained by the model, optimized by a dis-

tribution of non-Gaussian spatial sources, using fixed point iteration. The resulting compo-

nents went through Pearson correlation tests and linear regressions were calculated; to

determine the network dynamics and the modulation between networks [62], linear regres-

sion was used to measure the strength and direction of the linear relationship between two

joint signals [63]. All these analyses were processed using our own written programs in

MATLAB (Mathworks, Natick, MA, USA).

We used Inter-subject correlation analysis, which is highly comparable with GLM [64]. ISC

analysis allows visualizing selective and time-locked activity across a wide network of brain

areas, under some natural stimuli, comparing the whole neural response across all subjects,

without a model [65]. We used the same data of the 23 subjects, normalized into an MNI coor-

dinate system, spatially smoothed and realigned. The ISC analysis was performed using ISC-

toolbox [66] (http://code.google.com/p/isc-toolbox/). Since ICA is a method that has been

used mainly in blind signal separation unrelated to an external stimulus, in order to study the

neural correlates of the extrinsic stimulus-evoked component of the brain activity, ISC was

used to complement the analysis. For instance, inter-subject correlation has been proven effec-

tive in localizing cortical regions activated across subjects during free-viewing of movies [64],

which in this study showed high consistency with our ICA results.

Cross correlation. The results of cross correlation were significant in most of compari-

sons p< 0.0125 (of a 0.05 Bonferroni corrected for 8 pairwise comparisons) with estimation

error bounds 2.7 standard deviations from 0 (Fig 7), show a tendency for most of the net-

works to be one lag against the other. As it shows DMN vs C10, SMN vs DAN, DAN vs C12

and C7 vs C8, their highest value is in lag 0, however the next value is in lag -1 which indi-

cates a tendency to be ahead, i.e. DMN tends to be ahead C10 but not in a fully way. Standing

out among these findings is the SMN, which predict directly the group of networks on the

left side (DMN), and in an inversely way those in the right column (DAN) (Fig 8). These

two networks positively predict other networks, whose areas include posterior cingulate

gyrus, lingual gyrus and precuneus; b) anterior cingulate cortex, lingual gyrus, postcentral

gyrus and posterior insula; and c) SMN, whose connectivity changed immediately after the

animal-slaughtering scenes were shown. On the other hand, areas of networks with increased

activity during scenes that predated the time of death were a) medial frontal gyrus, precu-

neus, medial temporal gyrus and fusiform gyrus; and b) lingual gyrus, supramarginal gyrus

and postcentral gyrus.

Behavioral data. To test whether the video caused aversive psychological effects, behav-

ioral data was analyzed with the Wilcoxon signed-rank test comparing stress measures

between t1 and t2.
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Neutral movie condition

Participants. The participants were 31 students (21 women, 10 men; M age = 20.90 yr.,

SD = 5.32) from the Psychology Department of Universidad de Guanajuato, who gave their

informed consent to being part of the study. One participant lacking complete data was omit-

ted (final n = 32).

Psychological measures. Perceived stress was measured with the pencil-paper version of

the Stress and Activation Adjectives Checklist.

Neutral stimuli. The subjects watched 17 neutral fragments of the same movie projected

in the previous study with 4 min and 53 sec length (1–17 x 16 s). This neutral version of the

movie was re-edited and implemented thorough Java software. The neutral movie clips con-

tained colored emotionally neutral scenes (e.g. hands, one house, sheep and cows in their ordi-

nary context and scenes of people in abstract or trivial circumstances).

Procedure. Perceived stress was tested before (t1) and after viewing (t2) the neutral frag-

ments. All video stimuli were presented via a video projection system in a semi-darkened

experimental room isolated from noise and distractions. This system projected a 1.2 x 1.8

image onto a reflexive white screen. For all experimental stimuli, the picture took up 80% of

the screen on a black background. The stimuli were evaluated in one single experimental ses-

sion and 15 minutes of length.

Data analysis. Behavioral data for the neutral movie condition was analyzed with the

Wilcoxon signed-rank test comparing stress measures between t1 and t2, same as in the fMRI

movie condition.
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