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Abstract

Here we describe GoFish, a strategy for single-species environmental DNA (eDNA) pres-

ence/absence assays using nested PCR. The assays amplify a mitochondrial 12S rDNA

segment with vertebrate metabarcoding primers, followed by nested PCR with M13-tailed,

species-specific primers. Sanger sequencing confirms positives detected by gel electropho-

resis. We first obtained 12S sequences from 77 fish specimens for 36 northwestern Atlantic

taxa not well documented in GenBank. Using these and existing 12S records, we designed

GoFish assays for 11 bony fish species common in the lower Hudson River estuary and

tested seasonal abundance and habitat preference at two sites. Additional assays detected

nine cartilaginous fish species and a marine mammal, bottlenose dolphin, in southern New

York Bight. GoFish sensitivity was equivalent to Illumina MiSeq metabarcoding. Unlike

quantitative PCR (qPCR), GoFish does not require tissues of target and related species for

assay development and a basic thermal cycler is sufficient. Unlike Illumina metabarcoding,

indexing and batching samples are unnecessary and advanced bioinformatics expertise is

not needed. From water collection to Sanger sequencing results, the assay can be carried

out in three days. The main limitations to this approach, which employs metabarcoding prim-

ers, are the same as for metabarcoding, namely, inability to distinguish species with shared

target sequences and inconsistent amplification of rarer eDNA. In addition, the performance

of the 20 assays reported here as compared to other single-species eDNA assays is not

known. This approach will be a useful addition to current eDNA methods when analyzing

presence/absence of known species, when turnaround time is important, and in educational

settings.

Introduction

DNA profiling of ecological communities was first applied to terrestrial microbes [1,2]. DNA

extracted from soil samples—amplified with ribosomal RNA gene primers, cloned, and ana-

lyzed by Sanger sequencing—revealed an enormous diversity of uncultured organisms [3].
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Whole genome shotgun sequencing provided an alternative culture-independent approach

[4]. Combining targeted amplification with high-throughput sequencing eliminated cloning

and Sanger sequencing, greatly facilitating microbiome study [5–7]. Around the same time,

ancient DNA techniques began to be applied to environmental samples, with recovery of

10,000 years-old to 400,000 years-old plant and animal DNA from fecal samples and sediments

[8,9]. The earliest reports examining contemporary materials include differentiating human

and domestic sources in sewage-contaminated water [10] and recovery of Arctic fox DNA

from snow footprints [11]. Taberlet and colleagues were the first to apply an environmental

DNA approach to present-day animal ecology, demonstrating pond water eDNA accurately

surveys an invasive frog species [12]. Subsequent work revealed aquatic eDNA detects diverse

vertebrates and invertebrates in multiple habitats [13–17]. Aquatic eDNA assays now routinely

monitor rare and invasive freshwater species [18–21].

Beginning in 2003, the DNA barcoding initiative firmly demonstrated that most animal

species are distinguished by a short stretch of mitochondrial (mt) cytochrome c oxidase sub-

unit 1 (COI) gene [22–24]. This led researchers to assess animal communities by “metabarcod-

ing”, i.e., high-throughput sequencing of mtDNA segments amplified from environmental

samples [25–28]. The sequence differences that make COI a good identifier of most animal

species hobble broad-range primer design [29]. Primers targeting highly conserved regions in

vertebrate mitochondrial 12S or 16S ribosomal genes [30–32] often successfully profile aquatic

vertebrate communities yet frequently cannot resolve species-level distinctions [33–40]. Multi-

gene metabarcoding promises kingdom-wide surveys of eukaryotic diversity [41–45].

Although the growth in technology and approaches have expanded the potential of envi-

ronmental DNA studies, assessing aquatic vertebrate biodiversity presents several challenges

in design and execution. At the lower end of analysis, the development of a single-species

qPCR test typically necessitates obtaining tissue samples of the target organism and potential

confounding species [46,47], and assays require a specialized thermal cycler. At the higher-

throughput end, metabarcoding involves indexing and batching a large number of samples for

each sequencing run, and advanced bioinformatics expertise to decode output files. Both

approaches have drawbacks that are barriers to adoption. To facilitate wider use, we aimed for

an eDNA assay that did not require tissue samples for validation and could be completed in

less than a week.

One potential straightforward technique is species-specific amplification followed by gel

electrophoresis and Sanger sequencing, as in early eDNA reports [12]. However, our prelimi-

nary experiments generated visible products only in samples with a high number of MiSeq

reads, indicating low sensitivity. In addition, multiple bands were frequent, likely to interfere

with Sanger sequencing. Rather than attempt to optimize conditions for each species-specific

PCR, we decided to assess the use of nested PCR, a highly sensitive and specific approach to

identifying genetic variants (e.g., [48]). For example, nested PCR improved detection of earth-

worm eDNA from soil samples archived for more than 30 years [49] and enabled highly sensi-

tive eDNA assays for salmonid fishes and a fresh water mussel [50,51].

We reasoned that nested PCR applied to a metabarcoding target could be a more general

approach. Amplification with broad-range metabarcoding primers could provide a “universal”

first round, followed by nested PCR with species-specific primers, taking advantage of

sequence differences within the amplified segment. Here we test whether this approach detects

aquatic vertebrate eDNA in time-series water samples from lower Hudson River estuary and

southern New York Bight and compare results to those obtained with MiSeq metabarcoding.

Because this assay involves querying amplified material one species at a time, we name it after

the children’s card game Go Fish in which a player might ask “do you have any Jacks?”

A nested PCR strategy for marine vertebrate eDNA
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Results

New 12S reference sequences

Regional checklist species [52,53] with absent or incomplete GenBank 12S records were

flagged. For bony fishes, we focused on common species; for the much smaller number of car-

tilaginous fishes we sought specimens from any species with absent or incomplete GenBank

12S records. Seventy-seven specimens representing 36 target species were obtained from

NOAA Northeast Spring Trawl Survey, Monmouth University, fish markets, or beach wrack

(S1 and S2 Tables). Specimen DNAs were sequenced for a 750-base pair (bp) 12S “Li segment”

[54] encompassing three commonly used vertebrate eDNA target sites [31,32,34] (Fig 1), and

for 648 bp COI barcode region. COI sequences confirmed taxonomic identifications, showing

99.4% to 100% identity to GenBank reference accessions, excepting that of Northern stargazer

(Astroscopus guttatus), which at the time of this study had no GenBank COI records (S1 and

S2 Tables).

GoFish nested PCR assay

Of three commonly used vertebrate 12S metabarcoding targets (Fig 1), the MiFish segment is

longer than the other two and has hypervariable regions near the ends, features facilitating spe-

cies-specific nested PCR. In addition, by targeting a different segment than what our labora-

tory uses for MiSeq metabarcoding (12S ECO V5), we aimed to minimize potential cross-

contamination between GoFish and metabarcoding assays. First-round PCR for bony fish was

done with MiFish primer set [32] (Fig 1, Table 1). The resultant reaction mix, diluted 1:20 in

Fig 1. GoFish eDNA assay. Top, schematic of GoFish and MiSeq metabarcoding protocols. Bottom, diagram of 12S

and flanking tRNA genes, with locations and sizes of vertebrate metabarcoding targets (MiFish, ECO, Teleo) and the Li

segment sequenced from reference specimens as indicated. Typical times for assays are shown; a suitably equipped and

staffed laboratory could perform MiSeq metabarcoding in a similar time frame as GoFish.

https://doi.org/10.1371/journal.pone.0198717.g001
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Elution Buffer (10mM Tris pH 8.3, Qiagen) served as input DNA for species-specific PCRs.

GoFish primers were designed for 11 fish species that together account for most (92%) lower

Hudson River estuary fish eDNA reads (Table 2) [55]. The nested primers generated strong,

single bands on gel electrophoresis (Fig 2). In all samples analyzed so far, Sanger sequencing

confirmed that GoFish primers correctly amplified the targeted species.

We applied these GoFish assays to a four-month time series of water samples collected

weekly at two contrasting lower Hudson River estuary locations—a high flow, rocky tidal

channel on the east side of Manhattan, and a low-flow, sandy bottom site in outer New York

harbor (Fig 3). Species detections increased seasonally at both sites, consistent with historical

trawl surveys and a metabarcoding eDNA time series [55]. Despite large tidal flows in the estu-

ary, eDNA differed by site consistent with habitat preferences, with rocky bottom specialists

(cunner, oyster toadfish, seaboard goby) more commonly detected in East River than in outer

New York harbor.

Cartilaginous fishes, marine mammals

We tested this approach on cartilaginous fishes and marine mammals, groups relatively under-

studied by eDNA so far [14,36,38,56–58]. First-round MiFish metabarcoding primers were

Table 1. Broad-range vertebrate 12S primers. PCR parameters and expected amplicon sizes are shown. M13 and Illumina tails in Li primers and ECO V5 primers,

respectively, are highlighted in bold.

Name Tm (C) (not incl M13

or Illumina tail)

Sequence Amplicon length incl

primers (bp)

Cycles Annealing

temp (C)

Reference

12S Li segment (Reference specimen sequencing)

Bony fish M13Li-F 56.6 TGT AAA ACG ACG GCC AGT GYC GGT
AAA AYT CGT GCC AG

760 35 57 [54]

M13Li-R 60.6 CAG GAA ACA GCT ATG AC YCC AAG
YGC ACC TTC CGG TA

[54]

Cartilaginous

fish

M13Li-S-F 54.6 TGT AAA ACG ACG GCC AGT GTT GGT
HAA TCT CGT GCC AG

760 35 57 This

report

M13Li-S-R 52.1 CAG GAA ACA GCT ATG AC TCC AAG
TRC ACT TTC CAG TA

This

report

12S MiFish segment (GoFish

first-round PCR)

Bony fish MiFish-

U-F

58.7 GTC GGT AAA ACT CGT GCC AGC 220 40 60 [32]

MiFish-

U-R

56.7 CAT AGT GGG GTA TCT AAT CCC AGT
TTG

[32]

Cartilaginous

fish

MiFish-E-F 56.5 GTT GGT AAA TCT CGT GCC AGC 220 40 55 [32]

MiFish-

E2-R

52.2 CAT AGT AGG GTA TCT AAT CCT AGT
TTG

This

report

Mammals MiFish-

W-F

55.1 GTT GGT AAA TTT CGT GCC AGC 220 40 60 This

report

MiFish-

U-R

same as for bony fish

12S ECO V5 segment (MiSeq

metabarcoding)

Bony fish,

mammals

ECO-V5-F 50.1 TCG TCG GCA GCG TCA GAT GTG TAT
AAG AGA CAG ACT GGG ATT AGA TAC
CCC

200 40 52 [31]

ECO-V5-R 49.6 GTC TCG TGG GCT CGG AGA TGT GTA
TAA GAG ACA G TAG AAC AGG CTC CTC
TAG

[31]

https://doi.org/10.1371/journal.pone.0198717.t001

A nested PCR strategy for marine vertebrate eDNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0198717 December 11, 2018 4 / 17

https://doi.org/10.1371/journal.pone.0198717.t001
https://doi.org/10.1371/journal.pone.0198717


Table 2. Species-specific GoFish primers. Amplicon sizes, PCR parameters, and target specificity as shown. M13 tails are highlighted in bold. All primer sets were newly

designed for this study.

Primer

name

Tm species-

specific segment

(C)

Primer sequence Amplicon size incl

primers (bp)

Annealing

temp (C)

Cycles Nontarget

amplification

Bony fish

American eel (Anguilla
rostrata)

M13ameeF 47.7 TGT AAA ACG ACG GCC AGT
GGG CTC AAA TTG ATA TTA
CA

175 60 25 N

M13ameeR 49.5 CAG GAA ACA GCT ATG AC C
GTG AGT TCA AAG GTG T

Atlantic menhaden

(Brevoortia tyrannus)
M13atmeF 48.2 TGT AAA ACG ACG GCC AGT

GAG TGG TTA TGG AGA ACT
174 60 25 N

M13atmeR 48.2 CAG GAA ACA GCT ATG AC
ATC CCA GTT TGT GTC CCG

Bay anchovy (Anchoa
mitchilli)

M13baanF 48.3 TGT AAA ACG ACG GCC AGT
GTG GTT ATG GAA TTC TTT
TCT

128 60 25 N

M13baanR 50.3 CAG GAA ACA GCT ATG AC
GAT AAA GTC ACT TTC GTG
TGA

Black sea bass

(Centropristis striata)

M13blsbF 51.2 TGT AAA ACG ACG GCC AGT
GGG TGG TTA GGA CAT ACT
ATT

150 60 25 N

M13blsbR 51.2 CAG GAA ACA GCT ATG AC
CTT TCG TGG GTT CAG AAT
AAG

Bluefish (Pomatomus
saltatrix)

M13blfiF 54.6 TGT AAA ACG ACG GCC AGT
AGA GTG GTT AAG GAA AGC
CTG

148 60 25 N

M13blfiR 57.1 CAG GAA ACA GCT ATG AC
TCG TGG GGT CAG GAA TGG

Cunner (Tautogolabrus
adspersus)

M13cunnF 54.6 TGT AAA ACG ACG GCC AGT
GTA AAG AGT GGT TAG GGC
AAA CTA

156 65 25 N

M13cunnR 57.5 CAG GAA ACA GCT ATG AC
CTC TCG TGG GGT CAG GTG

Oyster toadfish (Opsanus
tau)

M13oytoF 52.6 TGT AAA ACG ACG GCC AGT
CGC GGT TAC ACG AAT GA

192 60 25 N

M13oytoR 50.3 CAG GAA ACA GCT ATG AC
ATA GTT TAC GTG GTG TCA
AAG

Scup (Stenotomus
chrysops)

M13scupF 48.7 TGT AAA ACG ACG GCC AGT
GGG TGG TTA AGA ATA AAC
TAA G

171 60 25 N

M13scupR 50.1 CAG GAA ACA GCT ATG AC
AAT CCC AGT TTG TGT CTC

Seaboard goby

(Gobiosoma ginsburgii)
M13segoF 52.8 TGT AAA ACG ACG GCC AGT

GCC CAA GTT GAC AAC TCA
176 60 25 N

M13segoR 51.7 CAG GAA ACA GCT ATG AC
CTT TCG TGG GGT CAT ATG
TA

Striped bass (Morone
saxatilis)

M13stbaF 53 TGT AAA ACG ACG GCC AGT
GGT TAA GGG CCC AAC TTT
TAT

148 65 25 N

M13stbaR 57.4 CAG GAA ACA GCT ATG AC
TTT CGT GGG GTC AGG TTT
GAG

(Continued)
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Table 2. (Continued)

Primer

name

Tm species-

specific segment

(C)

Primer sequence Amplicon size incl

primers (bp)

Annealing

temp (C)

Cycles Nontarget

amplification

Tautog (Tautoga onitis) M13tautF 50.4 TGT AAA ACG ACG GCC AGT
GTA AAG AGT GGT TAG GAT
AAA CAT

155 60 25 N

M13tautR 55.7 CAG GAA ACA GCT ATG AC
CTC TCG TGG GGT CAG GTA

Sharks, rays, skates

Sand tiger shark

(Carcharias taurus)
M13stshF 50.8 TGT AAA ACG ACG GCC AGT

CGA GTA ACT TAT ATT AAT
ACT TCC

189 60 35 N

M13stshR 51.6 CAG GAA ACA GCT ATG AC
TGA CAT CAA GAT TTC TAG
TAG

Sandbar shark

(Carcharhinus plumbeus)
M13sbshF 51.3 TGT AAA ACG ACG GCC AGT

CGA GTA ACT CAC ATT AAC
ACA C

190 60 35 N

M13sbshR 50.4 CAG GAA ACA GCT ATG AC
GTG ACA TCA AGG TTC CTT
AG

Smooth dogfish shark

(Mustelus canis)
M13smdoF 50.9 TGT AAA ACG ACG GCC AGT

CGA GTG ACT CAT ATT AAC
ACA C

186 60 35 N

M13smdoR 52.2 CAG GAA ACA GCT ATG AC
GCA TCA AGG CTC CTT GA

Bullnose ray (Myliobatis
freminvillei)

M13buraF 51.4 TGT AAA ACG ACG GCC AGT
AGG GTG ATT AGA ATT AAT
CTC ATC T

159 65 35 N

M13buraR 50.1 CAG GAA ACA GCT ATG AC
TGT CGT GAG GTC AAA AAC

Cownose ray

(Rhinoptera bonasus)
M13coraF 50.2 TGT AAA ACG ACG GCC AGT

GGT GAT TAG AAA TAA TCT
CAC CA

155 60 35 N

M13coraR 51.3 CAG GAA ACA GCT ATG AC
CGT GAG GTC AAA AAT TCT
GTT TA

Roughtail stingray

(Dasyatis centroura)

M13rostF 50.8 TGT AAA ACG ACG GCC AGT
ACG AGT GAC ACA AAT TAA
TAT CC

189 65 35 N

M13rostR 50.8 CAG GAA ACA GCT ATG AC
GTG AGG TCA AAA ACT CTG
TTA A

Spiny butterfly ray

(Gymnura altavela)

M13sbraF 50.9 TGT AAA ACG ACG GCC AGT
TAA GGG TGA TTA GAA AAA
TCT CAT TT

157 65 35 N

M13sbra-R 50.6 CAG GAA ACA GCT ATG AC
AGG TCA AAA ATT CTG TTG
TGT

Clearnose skate (Raja
eglanteria)

M13clskF 49.2 TGT AAA ACG ACG GCC AGT
CGA GTA ACT CAT ATT AAT
ACT TCA C

175 65 35 Y

M13clskR 52.6 CAG GAA ACA GCT ATG AC
GTC GTG AAT TCA AAA GCT
CTA TTG

(Continued)

A nested PCR strategy for marine vertebrate eDNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0198717 December 11, 2018 6 / 17

https://doi.org/10.1371/journal.pone.0198717


modified to favor cartilaginous fish or mammals (Table 1). Species-specific GoFish amplifica-

tions successfully detected three shark species, four rays, and two skates (Table 2). In a nine-

month time series of water samples from southern New Jersey, most (64%) cartilaginous fish

positives were in summer months (p = 0.017 spring vs. summer; p = 0.001 summer vs. fall,

Fisher’s exact test), consistent with seasonal migration patterns (Fig 4) [59]. This statistical

analysis excluded little skate (Leucoraja erinacea), a cold water species [60] which was detected

in spring and fall samples but not in summer. Sanger sequencing confirmed species ID for all

gel-positive amplifications, except that clearnose skate (Raja englanteria) and little skate prim-

ers amplified non-target sequences in some samples. A GoFish assay for bottlenose dolphin

(Tursiops truncatus) was positive in most summer and fall samples; sequencing verified all

(Table 2, Fig 4).

Table 2. (Continued)

Primer

name

Tm species-

specific segment

(C)

Primer sequence Amplicon size incl

primers (bp)

Annealing

temp (C)

Cycles Nontarget

amplification

Little skate (Leucoraja
erinacea)

M13liskF 51.2 TGT AAA ACG ACG GCC AGT
CGA GTA ACT CAC ATT AAT
ACT TCA C

191 65 35 Y

M13liskR 52.7 CAG GAA ACA GCT ATG AC
TGT CGT GAG GTC AAA AGC

Marine mammals

(Tursiops truncatus)
Bottlenose dolphin M13bodoF 49.2 TGT AAA ACG ACG GCC AGT

TGA CCC AAA CTA ATA GAC
AC

187 60 25 N

M13bodoR 49.6 CAG GAA ACA GCT ATG AC
TCT TAG TTG TCG TGT ATT
CAG

https://doi.org/10.1371/journal.pone.0198717.t002

Fig 2. Representative GoFish amplifications visualized on 2.5% agarose gel with SYBER Safe. Lanes bracketed by

dates are time series samples from East River site; the last three lanes in each panel are negative controls detailed in

Materials and Methods. Marker indicates dye front at approximately 150 bp. Gel positives were sent for Sanger

sequencing to confirm target species amplification.

https://doi.org/10.1371/journal.pone.0198717.g002
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Comparison to Illumina metabarcoding

The New York City time series samples were analyzed by an Illumina MiSeq metabarcoding

protocol targeting 12S ECO V5 segment (Fig 1). The apparent sensitivity (method detections/

total detections) for both protocols was about 80% (Fig 5). As expected, the proportion of

detections negative by GoFish but positive by metabarcoding differed by metabarcoding read

number—more abundant eDNAs were detected more consistently than were rarer eDNAs

(Fisher’s exact test p = 0.0175 for 0.1K vs. 1K; p = 0.001 for 0.1K vs. 10K).

Discussion

Here we report species-specific nested PCR eDNA assays for 20 marine fishes and one marine

mammal. The GoFish assay can potentially be adapted to detect any vertebrate with a 12S

Fig 3. GoFish detections at two lower Hudson estuary locations sampled weekly from March to August 2017. At

top, collection dates are shown; black and white rectangles indicate detection and no detection, respectively, with

species arranged by decreasing number of positives; at bottom, number of species detected on each date is shown.

https://doi.org/10.1371/journal.pone.0198717.g003

Fig 4. GoFish detections of cartilaginous fishes and bottlenose dolphin eDNA. Water samples were collected at

one- to two-week intervals from April to December 2017 in southern New York Bight. Black indicates a GoFish

detection, white or gray indicates no detection. The gray shading is added to help visualize demarcation of seasons.

https://doi.org/10.1371/journal.pone.0198717.g004
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reference sequence; tissue specimens are not necessary. It can be completed in less than a week

with standard molecular biology equipment and interpreted with Sanger sequencing-level bio-

informatics. A single broad-range amplification suffices for multiple species-specific assays.

To facilitate primer design we sequenced a 12S fragment, covering three commonly ana-

lyzed vertebrate eDNA metabarcoding targets, from 77 specimens representing 36 local spe-

cies, boosting GenBank 12S coverage to 95% of lower Hudson River estuary checklist species

[55]. We chose 12S rather than COI barcoding gene because there are excellent broad-range

vertebrate primers for several targets in this gene (Fig 1), which is why 12S is standard for ver-

tebrate metabarcoding. A relative disadvantage to this choice is that coverage of vertebrates in

GenBank is less for than for COI. However, available metabarcoding COI primers have signifi-

cant biases against multiple taxa [29], making the gene less suitable for a GoFish strategy,

namely, broad-range followed by species-specific amplification.

GoFish is likely not advantageous in cases where a verified single-species qPCR, digital

droplet PCR, or real-time PCR assay and appropriate equipment are available. More generally,

the performance of the 20 assays reported here as compared to other single-species eDNA

assays is not known. A potential concern is that nested PCR, which involves pipetting PCR

products to use as templates in new PCRs, is susceptible to contamination. In this regard we

note that pipetting PCR products to use as templates in new PCRs is a routine step in metabar-

coding—it is how PCR products are typically indexed prior to Illumina sequencing. To date

we have performed more than 400 GoFish assays without evidence of contamination, includ-

ing in work with closely-supervised students. Another potential issue is assay specificity, given

that we did not use tissue samples in assay design or verification. Single-species qPCR assays

are typically developed by first selecting candidate species-specific primers in silico and then

testing these against tissue samples from target and related organisms (e.g., [46,47]). GoFish

instead uses bioinformatics—Sanger sequencing of positive amplifications—to document

specificity. This is equivalent to metabarcoding—a Sanger sequence of a nested PCR product

is as specific as an Illumina MiSeq-generated FASTQ sequence. This bioinformatic approach

enable us to design and test 20 species-specific assays in a relatively short time—approximately

six months—without the tissue samples and resources that other single-species PCR assays

typically require. To our knowledge, 20 single-species assays for marine vertebrates is more

than have been reported in the combined literature so far.

Fig 5. Comparison of GoFish and metabarcoding. A. Number of detections by method for the 11 species and 34

samples shown in Fig 3. A detection refers to a positive GoFish or metabarcoding result for a single species in a single

sample, which corresponds to one cell in Fig 3 grid. Of the 161 GoFish detections shown in Fig 3, 120 were also

positive by metabarcoding for the same species in the same sample. In addition, there were 28 metabarcoding

detections for one of the 11 target species in samples that were negative by GoFish. B. GoFish detections for the 148

metabarcoding positives, sorted by metabarcoding reads per detection.

https://doi.org/10.1371/journal.pone.0198717.g005
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The main limitations so far are species lacking sequence differences in the target segment

(assays require species-specific substitutions in both primer sites and in amplified segment)

and inconsistent amplification of rarer eDNAs, which are shortcomings shared with metabar-

coding [61]. Several pairs or sets of local species have insufficient MiFish segment sequence

differences for GoFish assays. Of note, these include Alosa herrings, of commercial and conser-

vation interest: alewife (A. pseudoharengus), American shad (A. sapidissima), blueback herring

(A. aestivalis), and hickory shad (A.mediocris). With the single amplification protocol

employed in both assays, GoFish sensitivity was equivalent to that of MiSeq metabarcoding,

with dropouts in both assays (Fig 5). As expected, GoFish dropouts were mostly those with

lower MiSeq read numbers, and presumably represent rarer eDNAs. Inconsistent amplifica-

tion of low abundance DNAs was recognized as a hazard early on [12]. If desired, replicate

amplification or other PCR enhancement strategies [62] could be applied to GoFish. False-

negatives may be inherent to broad-range primers, which “rarely detect lineages accounting

for less than 0.05% of the total read count, even after 15 PCR replicates” [63] (also [42]).

Looked at more broadly, all ecological survey methods generate false-negatives; site occupancy

modeling can help infer true presence/absence [64–67].

We assumed that sequences matching regional species indicated the presence of that species.

This could lead to overlooking extralimital occurrences of taxa that possess shared sequences.

For instance, the locally abundant Atlantic menhaden (Brevoortia tyrannus) shares GoFish tar-

get sequences with Gulf menhaden (B. patronus), found in Gulf of Mexico. More generally, the

performance of the assays reported here in other marine regions is not known. Although likely

impractical to apply GoFish to the hundreds of fish species typically resident in any given

marine region, it may be possible to characterize communities by targeting the smaller number

of species that account for the majority of biomass (e.g., Fig 3). The non-labor costs for a GoFish

assay were about $15 per sample for one species, and $8 per sample per additional species. One

difficult-to-quantify advantage is constrained cross-contamination. Because it is cost-effective

to test small sets of samples, a GoFish assay puts fewer results at risk than does high-throughput

sequencing. This feature could be particularly valuable in educational settings with less expert

performers, instead of putting “all your eggs in one basket” in a MiSeq run.

eDNA promises to help better understand and appreciate ocean life. We believe that GoFish

will be a useful addition to eDNA tools when species of interest are known and are relatively

few in number, when turnaround time is important, and in educational settings.

Materials and methods

New 12S, COI reference sequences

DNA was extracted from tissues using the PowerSoil kit (MoBio). 12S primer sequences and

PCR parameters applied to reference specimen DNAs are shown in Table 1. Amplifications

were confirmed by agarose gel electrophoresis with SYBER Safe dye (Thermo Fisher Scien-

tific), and PCR clean-up and bidirectional sequencing with M13 primers were done at GENE-

WIZ. Consensus sequences were assembled in MEGA, using 4Peaks to assess trace files

[68,69]. For COI, COI-3 primer cocktail [70], 35 cycles and 55˚C annealing were used. Substi-

tute forward primers were employed for specimens that failed to generate high-quality

sequences with the COI-3 cocktail [hickory shad, American shad (M13alosaCOI-F, 5’-TGT
AAA ACG ACG GCC AGT TCA ACT AAT CAT AAA GAT ATT GGT AC-3’); window-

pane flounder (M13wiflCOI-F, 5’-TGT AAA ACG ACG GCC AGT CTA CCA ACC ACA
AAG ATA TCG G-3’)]. The newly obtained 12S and COI reference sequences (S1 and S2

Files) are deposited in GenBank (Accession nos. MH377759-MH377835 and MH379020-

MH379090, respectively).
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Water collection, filtration, DNA extraction

Water sampling was done under permit from New York City Department of Parks and Recre-

ation at two locations: East River (40.760443, -73.956354), a rocky, high-flow tidal channel on

the east side of Manhattan, and Steeplechase Pier, Coney Island (40.569576, -73.983297), a

sandy bottom, low-flow location in outer New York Harbor (Fig 3). One-liter surface water

samples were collected weekly at both sites from March 31, 2017 to August 3, 2017 (34 samples

in total). With authorization from New Jersey Department of Environmental Protection, sur-

face water samples were collected on a barrier island beach (39.741641, -74.112961) about 110

kilometers south of New York City and halfway to Cape May, the southern border of New

York Bight (Fig 3). 22 one-liter samples were collected at one- to two-week intervals from

April 2, 2017 to December 23, 2017.

Samples were filtered within 1 h of collection or stored at 4˚C for up to 48 h beforehand.

Water was poured through a paper coffee filter to exclude large particulate matter and then

into a filtration apparatus consisting of a 1000 ml side arm flask attached to wall suction, a frit-

tered glass filter holder (Millipore), and a 47 mm, 0.45 μM pore size nylon filter (Millipore).

Filters were folded to cover the retained material and stored in 15 ml tubes at -20˚ C prior to

DNA extraction. As negative controls, one-liter samples of laboratory tap water were filtered

and DNA extracted using the same equipment and procedures as for environmental samples.

DNA was extracted with PowerSoil kit with modifications from the manufacturer’s protocol to

accommodate the filter [55]. DNA was eluted with 50 μl Buffer 6 and concentration measured

using a Qubit (Thermo Fisher Scientific). Typical yield was 1 μμg to 5 μg DNA per liter water

filtered. No animals were housed or experimented upon as part of this study. No endangered

or protected species were collected.

GoFish overview

GoFish protocols were designed for persons familiar with basic molecular biology techniques

and access to essential molecular biology laboratory equipment. To facilitate use, we utilized

commercial kits and open source software, and standardized PCR and sequencing protocols.

Procedures were performed on an open bench following routine molecular biology precau-

tions. Particulars include gloves worn for all laboratory procedures and changed after handling

water samples and PCR reactions, filtration equipment scrubbed and rinsed thoroughly after

each use with tap water, and pipettors and workspace areas wiped with 10% bleach after use.

Unfiltered pipette tips were employed; after each procedure used tips were discarded and col-

lection containers rinsed with 10% bleach. Our aquatic eDNA methods are posted online at

protocols.io site (https://dx.doi.org/10.17504/protocols.io.p9gdr3w).

GoFish first-round 12S amplification with metabarcoding primers

Materials and conditions were as follows: GE Illustra beads in 0.2 ml tubes (8 tube strips); 25 μl

reaction volume; 5 μl input DNA; 250 nM each primer; and thermal cycler program of 95˚C

for 5 m, 40 cycles of [95˚C for 20 s, (55˚C or 60˚C) for 20 s, 72˚C for 20 s], and 72˚C for 1 m.

Primers were obtained from Integrated DNA Technologies (IDT). Different MiFish primer

sets targeted bony fish, cartilaginous fish, or marine mammals. Primer sequences and anneal-

ing temperatures are shown in Table 1. Tap water eDNA and reagent-grade water were

included as negative controls on all amplification sets. After PCR, 5 μl of reaction mixture

were run on a 2% agarose gel with SYBER Safe to assess amplification. Rather than affinity

bead purification, we diluted the reaction mix 20-fold in Elution Buffer and used 5 μl for

nested amplifications, effecting a 100-fold dilution of first-round reaction products. With this

protocol, a single broad-range amplification sufficed for 80 species-specific assays.
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GoFish species-specific nested PCR

An alignment of 12S MiFish segment sequences from regional fish species including those

obtained in this study, marine mammals, and commonly detected non-marine vertebrates

(human, pig, chicken, cow, dog, rat), was generated in MEGA using MUSCLE [68,71], sorted

according to a neighbor-joining tree, exported to Excel, and used to generate a matrix showing

differences from the consensus [72]. Primers were selected by eye according to desired criteria:

two or more nucleotide mismatches against other species at or near the 3’ end, a Tm not

including M13 tail of 50.0˚C to 52.0˚C according to IDT website, and diagnostic differences

within the amplified segment that confirmed target species detection. G-T or T-G primer-tem-

plate mismatches were considered relatively permissible and thus less useful for conferring

specificity [32]. M13 tails enabled a single primer set to sequence all detections and improved

5’ end reads; the latter was particularly helpful given the short amplicons generated by GoFish

primers (Table 2).

Limited customization of cycle number and annealing temperature was applied (Table 2),

otherwise amplification parameters were same as for first-round PCR. Default annealing

temperature was 60˚C; if non-target amplification occurred, primers were tested at 65˚C.

Three negative controls were included in all runs: the two negative controls from the broad-

range PCR, and a reagent-grade water blank; these were negative in all assays. A 5 μl aliquot

of each PCR reaction was run on an agarose gel with SYBER Safe (Fig 2); positives were sent

to GENEWIZ for cleanup and bidirectional sequencing with M13 primers. Sanger-generated

sequences were matched to a local file of 12S reference sequences. This file included 12S

sequences of local species already in GenBank and new 12S sequences generated from fish

specimens reported in this study. All species assignments were based on 100%, full-length

matches.

Metabarcoding

As a comparison, eDNA samples were also analyzed by MiSeq metabarcoding protocol previ-

ously described (Fig 1) [55]. Briefly, DNA samples from PowerSoil extraction were further

purified with AMPure XP (Beckman Coulter) and suspended in 50 μl of Elution Buffer. 5 μl of

each sample were amplified using broad-range primers that target 12S ECO V5 segment in

bony fish and mammals. Primer sequences and customized amplification parameters are

given in Table 1. Tap water eDNA and reagent-grade water negative controls were included in

all sets. 5 μl of each reaction were run on a 2% agarose gel with SYBR Safe dye. Some negative

controls gave faint bands; with MiSeq, these turned out to be human or domestic animal

DNA, commonly observed in eDNA work [73] (S3 Table). PCR products were diluted 1:20 in

Elution Buffer and Nextera index primers (Illumina) were added following the standardized

amplification protocol with 12 cycles and annealing temperature 55˚C. 5 μl of each reaction

were run on a 2% agarose gel with SYBR Safe dye to confirm amplification. Indexed PCR

libraries were pooled, treated with AMPure XP, and adjusted to 5.4 ng/μl (30 nM assuming

270 bp amplicon) according to Qubit. Sequencing was done at GENEWIZ on an Illumina

MiSeq (2 x 150 bp). 34 experimental and 13 control libraries, plus other samples not reported

here, were analyzed in two runs with 92 and 96 libraries per run, respectively. PhiX spike-in

was not employed. Original FASTQ files with metadata are deposited in NCBI Sequence Read

Archive (NCBI BioProject ID PRJNA358446).

Bioinformatic analysis was performed using DADA2, which identifies all unique sequences

rather than lumping according to threshold criteria [74]. DADA2-generated OTU tables and

FASTA files of unique sequences are in Supporting Information (S3 Table, S3 and S4 Files).

All OTU species assignments were made by 100%, full-length BLAST matches to a local file of
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reference sequences already in GenBank and reference sequences generated from fish speci-

mens reported in this study. In addition, all OTU sequences, including those without matches

to local reference file, were submitted to GenBank using BLAST and alignments checked by

eye to confirm assignments. Detections representing less than 0.1% of total reads for that OTU

sequence were excluded to minimize mis-assigned reads. After filtering, average total reads/

marine sample were 68,241 (range 4,110 to 238,042); average fish reads were 24,598 (range 0 to

138,187) (S3 Table). Tap water eDNA and reagent-grade water controls were negative for fish

reads after filtering.

Supporting information

S1 Table. Bony fish specimens analyzed for 12S, COI.

(TIF)

S2 Table. Cartilaginous fish specimens analyzed for 12S, COI.

(TIF)

S3 Table. DADA2 OTU tables.

(XLSX)

S1 File. New 12S reference sequences.

(FAS)

S2 File. New COI reference sequences.

(FAS)

S3 File. DADA2 FASTA file for MiSeq run jun2017.

(FAS)

S4 File. DADA2 FASTA file for MiSeq run oct2017.

(FAS)
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