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Abstract

Annatto (Bixa orellana L.) is a tropical American crop, commercially valuable due to its appli-

cation in the food and cosmetics industries as a natural dye. The wild ancestor of cultivated

annatto is B. orellana var. urucurana. Although never cultivated, this variety occurs in open

forests and anthropogenic landscapes, and is always associated with riparian environ-

ments. In this study, we evaluated the genetic diversity and structure of B. orellana var. uru-

curana populations in Brazilian Amazonia using 16 microsatellite loci. We used Ecological

Niche Modeling (ENM) to characterize the potential geographical range of this variety in

northern South America. We analyzed 170 samples from 10 municipalities in the states of

Rondônia, Pará and Roraima. A total of 194 alleles was observed, with an average of 12.1

alleles per locus. Higher levels of expected (HE) than observed (HO) heterozygosities were

found for all populations. Bayesian analysis, Neighbor-Joining dendrograms and PCAs sug-

gest the existence of three strongly structured groups of populations. A strong and positive

correlation between genetic and geographic distances was found, suggesting that genetic

differentiation might be caused by geographic isolation. From species distribution modelling,

we detected that South Rondônia, Madre di Dios River basin, Llanos de Mojos, Llanos de

Orinoco and eastern Ecuador are highly suitable areas for wild annatto to occur, providing

additional targets for future exploration and conservation. Climatic adaptation analyses

revealed strong differentiation among populations, suggesting that precipitation plays a key

role in wild annatto’s current and potential distribution patterns.
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Introduction

Annatto (Bixa orellana L.) is a tropical American crop [1], which probably originated in Ama-

zonia [2–4]. Annatto is commercially valuable due to its application in the food and cosmetics

industries, as a natural dye to be used instead of synthetic ones [5]. Five species are recognized

in the genus Bixa (Bixa orellana L., B. arborea Huber, B. excelsaGleason & Krukoff, B. platy-
carpa Ruiz & Pav. ex G. Don, and B. urucurana Willd.) [6,7], which belong to the Bixaceae

family. The only cultivated species of the genus, B. orellana, is an evergreen shrub that is con-

fined to the frost-free tropics [4,8]. An important distinction among the five species is growth

habit, which can be either a tree or a shrub. B. orellana and B. urucurana are shrubs, while B.

arborea, B. excelsa and B. platycarpa are trees [7,9]. Ducke [10] hypothesized that B. excelsa
might have been the wild ancestor of B. orellana, which was accepted by Schultes [4] and

Meyer et al. [11]. However, B. excelsa is a tree and it is unlikely that domestication during the

Holocene would transform all known populations into a shrub [9]. Analysis of the domestica-

tion syndrome in the shrubby Bixas allowed Moreira et al. [9] to propose that B.urucurana is

the wild ancestor of cultivated annatto, B. orellana. They also accepted Pilger’s proposal, pub-

lished by Kuntz [12], that urucurana is a variety of B. orellana (B. orellana var. urucurana
(Willd.) Kuntze ex Pilg.). The word ‘urucurana’ is derived from the Tupi language in which

“rana” means false, and is often attributed to wild populations of a species with domesticated

populations [9].

B.orellana var. urucurana occurs in open forests and anthropogenic landscapes, although

never cultivated and is always associated with riparian environments [7,9]. While cultivated

annatto always produces abundant pigment around its seeds, urucurana contains variable

amounts. In areas where they co-exist, gene flow between them results in changes in pigment

production, especially in the domesticated types [9]. The exact location where annatto was first

domesticated is still unclear, mainly because of the wide distribution of variety urucurana in

northern South America [9].

In order to make reasoned decisions about sampling procedures to preserve high levels of

genetic diversity, researchers must know how genetic variation is organized and distributed

throughout the geographic range of a species [13]. The assessment of genetic diversity and

structure within and among populations of plants is generally performed using molecular

markers. Microsatellites or SSRs (Simple Sequence Repeats) are among the most important

molecular markers because they are abundant, co-dominant, with ample distribution in the

genome, generally neutral and highly polymorphic [14]. Hence, SSR markers are important

tools to assess genetic diversity and genetic structure of populations, especially for wild species

[14]. There are very few genetic studies in annatto [15–17] and no studies have yet evaluated

population structure and genetic diversity of wild populations of annatto (B. orellana var.

urucurana).

In this study, 170 samples from 10 populations of wild annatto in Brazilian Amazonia were

collected and analyzed using 16 SSR markers, in order to answer the following questions: a)

what are the levels of genetic diversity in these populations?, b) what are the genetic relation-

ships among these populations?, c) is genetic diversity geographically structured across these

populations?, and d) what is the potential distribution of wild annatto in Amazonia? We used

two approaches to answer these questions: neutral genetic variation (SSR markers) for questions

‘a’, ‘b’, ‘c’, and Ecological Niche Modeling (ENM) for question ‘d’ and how it may influence ‘a’,

‘b’ and ‘c’. ENM methods approximate a climatic envelope for the environmental requirements

of a taxon from a set of its occurrence localities, summarizing environmental variation across

those landscapes to develop a quantitative picture of the potential distribution of the species.

They have provided a powerful tool for investigating the ecology and distribution of both plant

Population genetics of wild annatto (Bixa orellana var. urucurana)

PLOS ONE | https://doi.org/10.1371/journal.pone.0198593 June 6, 2018 2 / 19

P. thanks the Coordination for the Improvement of

Higher Education Personnel (CAPES) for a post-

doctoral scholarship. E.A.V. and C.R.C. were

supported by CNPq research fellowships. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0198593


and animal species [18,19], and their possible influences on patterns of genetic diversity of pop-

ulations [20,21]. Therefore, ENM was utilized to characterize the potential geographical range

of B. orellana var. urucurana in northern South America, based on these Brazilian Amazonian

populations and also on online databases.

Material and methods

Plant material

During our field work from 2009 to 2015, 170 plants of wild annatto (Bixa orellana var. urucur-
ana) were located and collected in 10 municipalities in the states of Rondônia, Pará and

Roraima, in Brazilian Amazonia (Table 1, Fig 1). A variety of seed bearing fruits with different

shapes were observed during the field collections, and plants were usually associated with

riparian environments (S1 Fig). From each plant, leaf samples were collected and stored in

plastic bags containing silica gel. Some of the samples were stored in CTAB gels (3% (w/v)

Cetyl Trimethyl Ammonium Bromide and 35% (w/v) NaCl). Each collection site was regis-

tered using Global Positioning System (GPS). No special permission was required for our sam-

pling of annatto plants considering it was conducted according to the resolution 21, from

CNPq (National Council for Scientific and Technological Development), in Brazil, which

allows researchers to collect leaf samples for genetic analysis, as it is characterized as scientific

research on phylogenetic relationships between geographic regions with annatto. Also, we

have not accessed traditional knowledge related to wild annatto plants.

DNA isolation, PCR amplification and genotyping of SSRs

Total genomic DNA was extracted from young leaves following Doyle and Doyle [22] with

CTAB 3%. DNA concentration was determined by comparison with known concentrations of

standard DNA (lambda DNA, Invitrogen) during electrophoresis in agarose gels (1% (w/v))

stained with GelRed (Biotium) under ultraviolet light.

Sixteen SSR markers developed for B. orellana [17,23] were used in this study (Table 2; S1

Table). Three fluorescent dyes (NED, FAM and HEX) were attached to the 5’ end of the M13

universal primer sequence (5'- CACGACGTTGTAAAACGAC-3') following Schuelke [24].

Polymerase chain reaction (PCR) amplification of the DNA samples was done in a MyCycler

Table 1. Geographic location of the 10 populations of Bixa orellana var. urucurana collected in Brazilian Amazo-

nia and used in this study, including sampling size (N), latitude and longitude (in decimal degrees).

Population ID / Municipality, Statea N Latitude Longitude

1 –Cabixi, RO 45 -13.48838 -60.60608

2 –Cerejeiras, RO 32 -13.17171 -60.80942

3 –Corumbiara, RO 26 -12.99158 -60.92277

4 –São Francisco do Guaporé, RO 9 -11.72616 -62.34804

5 –Jı́-Paraná, RO 19 -11.49186 -62.41528

6 –Ariquemes, RO 18 -9.925150 -63.07129

7 –Mucajaı́, RR 5 2.370000 -61.44000

8 –Monte Alegre, PA 5 -1.981198 -54.16811

9 –Almeirin, PA 4 -1.241724 -53.04789

10 –Bom Jesus do Tocantins, PA 7 -5.103889 -48.548889

Total 170 - -

a PA–Pará, RO–Rondônia, RR–Roraima

https://doi.org/10.1371/journal.pone.0198593.t001
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Thermal Cycler (Bio-Rad), and performed in a final volume of 10 μL, consisting of 20 ng of

DNA template, 1X PCR buffer (Fermentas, Vilnius, Lithuania), 0.25 mM of each dNTP, 1.5

mM of MgCl2, 2.5 pmol of forward and M13 labeled primers (FAM, HEX or NED dyes), 5

pmol of reverse primers and 1 U of Taq DNA polymerase (Fermentas).

PCR was carried out according to Schuelke [24] in a two-step process as follows: the first

step consisted of an initial denaturing step of 94˚C for 5 min, followed by 30 cycles of 94˚C for

30 s, annealing temperature (Table 2) for 45 s, and 72˚C for 45 s. The second step consisted of

8 cycles at 94˚C for 30 s, 53˚C for 45 s and 72˚C for 45 s, and a final extension at 72˚C for 10

min. Quality of PCR products was checked by electrophoresis in agarose gels (1.5% (w/v))

stained with GelRed (Biotium) under ultraviolet light. Capillary electrophoresis involved mul-

tiplexed marker panels, based on expected allele size, with two to three markers with at least 80

bp size differences. Fragment separation and detection were performed on an ABI Prism

3130xl capillary sequencer (Applied Biosystems) with the aid of GeneScan 500 ROX Size Stan-

dard (Applied Biosystems). DNA fragment sizes were determined using GeneMapper software

(Applied Biosystems).

SSR data analysis

Possible clusters of wild annatto were simulated using a Bayesian analysis with Structure soft-

ware[25].The number of clusters (K) was estimated by performing ten independent runs for

each K (from 1 to 10, the number of geographic locations, hereafter called populations for con-

venience), using 1,000,000 MCMC repetitions and a 200,000 burn-in period. Correlated allele

Fig 1. Geographic distribution of collection localities of 10 Bixa orellana var. urucurana populations and their assignments to the most likely number of clusters

(K = 3) identified using Structure. Numbers represent collected populations: 1 –Cabixi, RO; 2 –Cerejeiras, RO; 3 –Corumbiara, RO; 4 –São Francisco do Guaporé, RO;

5 –Jı́-Paraná, RO; 6 –Ariquemes, RO; 7 –Mucajaı́, RR; 8 –Monte Alegre, PA; 9 –Almeirin, PA; 10 –Bom Jesus do Tocantins, PA. In orange, the delimitation of the arc of

deforestation.

https://doi.org/10.1371/journal.pone.0198593.g001
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frequencies and admixture were assumed. The most likely number of clusters was evaluated

with the adhocmethod of Evanno et al. [26].

Based on the original populations and the clusters identified by Structure, we estimated

parameters for genetic diversity, including number of alleles per locus (A), effective allele num-

ber (Ne), allelic richness (AR) [27], observed (HO) and expected heterozygosity (HE), in addi-

tion to Wright’s [28] inbreeding coefficient (f). The apparent outcrossing rate (̂ta) was

estimated considering the inbreeding coefficient (f) for each population [29], so that t̂ a = (1-f)/
(1+f). The genetic diversity indices A, Ne,HO andHE were estimated with GenAlEx 6.5 [30],

and estimations of AR and f, with confidence intervals based upon 1,000 bootstrap replicates,

were obtained with diversity [31] and poppr [32] for R [33].

In order to represent the relationships between individuals and populations, neighbor-join-

ing [34] dendrograms were constructed with Phylip 3.5 [35], based on Cavalli-Sforza and

Edwards’chord distance (DCE) [36] obtained with MSA 4.05 [37]. The chord distance is a geo-

metric distance and performs well for the reconstruction of relationships among populations

[38]. Confidence of relationships was assessed with 1,000 bootstrap replicates. Final trees were

formatted in FigTree 1.4.1 (http://tree.bio.ed.ac.uk/software/figtree/). A principal coordinate

analysis was used to visualize the dispersion of samples as a function of genetic variation using

GenAlEx 6.5 [30].

Hierarchical distribution of genetic variation within and among populations of wild

annatto, and within and among groups according to the Structure analysis was evaluated using

“locus-by-locus” AMOVA with GenAlEx 6.5 [30]. Gene flow (Nm) among populations was

estimated by calculating Nm = (1—FST)/4FST [39]. In addition, the Mantel test was used to eval-

uate the correlation between Nei’s genetic distance and geographic distance (km) among pop-

ulations using Adegenet [40] for R [33]. Significance was assessed by conducting 9,999

permutations.

Table 2. Genetic diversity estimates for 16 microsatellite (SSR) loci used to analyze wild annatto (Bixa orellana
var. urucurana) collected in Brazilian Amazonia. Genetic diversity is described as number of alleles (A), observed

(HO) and expected (HE) heterozygosities, and Shannon’s information index (I).

Loci A HO HE I
BorA2 5 0.354 0.438 0.712

BorA3 17 0.391 0.463 0.916

BorA5 12 0.401 0.525 0.968

BorB1 17 0.311 0.641 1.268

BorB4 17 0.352 0.609 1.111

BorB5 12 0.379 0.458 0.834

BorB12 14 0.421 0.508 1.015

BorC5 12 0.668 0.712 1.286

BorD1 8 0.357 0.423 0.752

BorD2 10 0.468 0.434 0.841

BorF9 12 0.231 0.629 1.220

BorG4 14 0.465 0.569 1.102

BorG11 19 0.426 0.679 1.354

BorH3 4 0.158 0.292 0.472

BorH7 5 0.494 0.443 0.692

BorH10 16 0.239 0.540 1.066

Total 194 - - -

Mean 12.125 0.382 0.522 0.975

https://doi.org/10.1371/journal.pone.0198593.t002
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Potential distribution of B. orellana var. urucurana
The potential distribution of B. orellana var. urucurana was estimated using the maximum

entropy algorithm of Maxent v. 3.3.3e [41]. Maxent estimates the potential distribution of a

taxa from a maximum entropy probability distribution using presence-only data [42]. The

resulting model is a geographical projection of habitat suitability for the target species where

values close to 0 indicate sites that do not match with the niche requirements of the species,

and values close to 1 indicate sites that fully match the niche requirements. A total of 184 pres-

ence-only records were compiled from field work and from georeferenced herbarium data

extracted from the speciesLink project (http://splink.cria.org.br) and Global Biodiversity

Information Facility (GBIF) portal. All geographic coordinates were manually verified and

incomplete or imprecise records were discarded. For each occurrence record, we obtained 19

bioclimatic variables derived from monthly temperature and rainfall from the WORLDCLIM

database with resolutions of 2.5’ [43]. The 19 bioclimatic variables are: BIO1 = Annual Mean

Temperature; BIO2 = Mean Diurnal Range (Mean of monthly (max temp—min temp));

BIO3 = Isothermality (BIO2/BIO7) (� 100); BIO4 = Temperature Seasonality (standard devia-

tion �100); BIO5 = Max Temperature of Warmest Month; BIO6 = Min Temperature of Cold-

est Month; BIO7 = Temperature Annual Range (BIO5-BIO6); BIO8 = Mean Temperature of

Wettest Quarter; BIO9 = Mean Temperature of Driest Quarter; BIO10 = Mean Temperature

of Warmest Quarter; BIO11 = Mean Temperature of Coldest Quarter; BIO12 = Annual Pre-

cipitation; BIO13 = Precipitation of Wettest Month; BIO14 = Precipitation of Driest Month;

BIO15 = Precipitation Seasonality (Coefficient of Variation); BIO16 = Precipitation of Wettest

Quarter; BIO17 = Precipitation of Driest Quarter; BIO18 = Precipitation of Warmest Quarter;

BIO19 = Precipitation of Coldest Quarter.

Fifteen model replicates were run with 75% of occurrences used for calibration and differ-

ent subsets (25%) used for validation. A logistic threshold value of 10 percentile training pres-

ence was retained to separate climatically favorable areas from marginally fit areas. The

accuracy of model prediction was evaluated using the area under the curve (AUC), where 1

was the maximum prediction and 0.5 suggested a random prediction [44]. Permutation proce-

dure was used to define contributions of the variables to the models.

Because we observed a high correlation between genetic and geographic distances, we tested

the assumption that most of the variability is due to environmental factors.To compare the

environmental characteristics of the different areas, we performed principal components anal-

ysis (PCA) with ade4 [45] for R [33].

Results

Genetic diversity

All the 16 SSR markers were polymorphic, with a total of 194 alleles. The number of alleles per

locus ranged from four (BorH3) to 19 (BorG11) with an average of 12 alleles per locus

(Table 2). The observed heterozygosity (HO) ranged from 0.158 to 0.712 across loci, with a

mean of 0.385, while the expected heterozygosity (HE) ranged from 0.292 to 0.679, with a

mean of 0.520. All loci had heterozygote deficits greater than 10%. The mean Shannon diver-

sity index (I) was 0.975, ranging from 0.472 to 1.354 (Table 2).

Genetic diversity estimates of the 10 populations showed a mean number of alleles per

locus (Ā) of 3.86 (Table 3). Forty-one private alleles were observed, representing 21% of all

alleles. The population from Bom Jesus do Tocantins (Population 10 in Table 1 and Fig 1)

showed the highest number of private alleles (15) (Table 3). The mean values of observed (HO)

and expected (HE) heterozygosities for all populations were 0.382 and 0.522, respectively.
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Significant inbreeding coefficients (f) were detected in most populations, ranging from 0.047

to 0.565. The mean apparent outcrossing rate (̂ta) was 0.609. When disregarding the popula-

tions with small sampling sizes, such as Monte Alegre (N = 5), Mucajaı́ (N = 5) and Almeirim

(N = 4), the mean value of this parameter increased to 0.690.

Genetic structure

The 170 wild annatto plants of 10 populations were grouped into genetic clusters by the Struc-

ture simulations, with a clear ΔKmaximum at K = 3, and possible subtructure at K = 2 and

K = 7 (Fig 2, S2 Fig). According to K = 3, group I (hereafter South RO) included the popula-

tions from Cabixi, Cerejeiras and Corumbiara in the Guaporé River basin in southern Rondô-

nia State. Group II (hereafter Central RO) included the populations from Ariquemes and Jı́-

Paranain the Jı́-Parana River basin, and São Francisco do Guaporé, from the Guaporé River

basin, located in central Rondônia State. The groups of South RO and Central RO meet and

mix at Corumbiara, in southern Rondônia. Group III (hereafter PA and RR) included all the

other populations, both north of the Amazon River in Roraima and Pará, and south of the

Amazon River in eastern Pará (Fig 1). At K = 2, South RO was allocated in one group and Cen-

tral RO was clustered together with populations from PA and RR. At K = 7, the PA and RR

Table 3. Genetic diversity estimated for 10 populations of Bixa orellana var. urucurana, including mean number of alleles per locus (Ā), alellic richness (AR), mean

number of effective alleles per locus (NE), observed (HO) and expected (HE) heterozygosities, inbreeding coefficient (f = 1—HO/HE), and apparent outcrossing rate

(̂t a).

Population, Statea Ā(private aleles) AR NE HO HE f t̂ a

1.Cabixi, RO 5.813 (1) 1.582 3.000 0.449 0.577 0.217� 0.643

2.Cerejeiras, RO 4.875 (1) 1.558 2.845 0.442 0.554 0.181� 0.693

3.Corumbiara, RO 4.750 (1) 1.577 3.127 0.445 0.571 0.196� 0.672

4.S. F. do Guaporé, RO 3.625 (3) 1.564 2.512 0.437 0.548 0.168� 0.712

5. Jı́-Paraná, RO 5.000 (3) 1.645 3.379 0.426 0.636 0.309� 0.528

6. Ariquemes, RO 3.875 (3) 1.565 2.566 0.453 0.553 0.166� 0.715

7. Mucajaı́, RR 3.438 (9) 1.631 2.816 0.268 0.596 0.565� 0.278

8. Monte Alegre, PA 1.813 (2) 1.338 1.653 0.313 0.321 0.047 0.910

9. Almeirin, PA 2.063 (3) 1.353 1.865 0.146 0.327 0.508� 0.326

10. B.J.Tocantins, PA 3.313 (15) 1.535 2.596 0.471 0.516 0.081� 0.850

Mean 3.856 1.535 2.636 0.385 0.519 0.243 0.609

a PA–Pará, RO–Rondônia, RR—Roraima

� Significant based upon 1,000 bootstrap replicates

https://doi.org/10.1371/journal.pone.0198593.t003

Fig 2. Assignment of each of 170 Bixa orellana var. urucurana plants collected in Brazilian Amazonia to groups

simulated by Structure at K = 2, K = 3 and K = 7 based on 16 SSR loci.

https://doi.org/10.1371/journal.pone.0198593.g002
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group was subdivided, with the north of the Amazon River in one group, and eastern Pará in

another group; groups South RO and Central RO were also subdivided, confirming the high

diversity observed within bothgroups (Table 3). Also, a separate group was formed at Corum-

biara, in southern Rondônia, where we found mixed populations from South and Central Ron-

dônia at both K = 2 and K = 3 (Fig 2).

Relationships among populations in the dendrogram (Fig 3) generally agreed with Structure
and PCoA (not shown data). The relationship among individuals in the dendrogram (S3 Fig)

also agreed with Structure and PCoA results. In the dendrogram of individual plants (S3 Fig),

the Central Rondônia populations have a slightly greater relationship with the non-Rondônia

populations, rather than with the South Rondônia populations, suggesting a difference that

may be due to adaptation to the more savanna-like climate of South Rondônia.

According to Mantel’s test, 74% of the genetic divergence among populations was due to

the geographic distances among them. A strong and positive correlation between genetic and

geographic distances (r = 0.860, p = 0.003) suggests that genetic differentiation among the 10

populations is due to isolation by distance, not surprising given the long distances between

Rondônia and Roraima, especially.

Fig 3. Unrooted neighbor-joining dendrogram of 10 Bixa orellana var. urucurana populations collected in Brazilian Amazonia based on Cavalli-Sforza &

Edwards chord distance [36] estimated from 16 SSR. Colors are according to the probability of occurrence of Bixa orellana var. urucurana simulated by Ecological

Niche Modeling (Fig 5). Red = very high probability, yellow = high probability and green = moderate probability.

https://doi.org/10.1371/journal.pone.0198593.g003
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AMOVA revealed that 21% of the genetic variation was among populations, and the remaining

79% was within populations (p = 0.000), showing that, although most of the diversity is within pop-

ulations, the variation due to sub-division of the populations is significant (Table 4). The microsatel-

lite data also showed low levels of gene flow among populations (Nm = 0.545). However, when

analyzed by the a priori populations, we observed an average gene flow of 1.878 among populations

from Rondônia, while the other regions presented lower values (Nm = 0.65). The populations from

south Rondônia separately showed a high gene flow amongthem (Nm = 4.843).

Species distribution modelling and climatic adaptation

The result of the PCA using the 10 populations sampled in this study and 174 presence-only

records with the 19 bioclimatic variables generated three main components that explained

more than 91% of the variation. Graphical representation of climate space associated with the

first two PCA axes revealed high climatic differentiation between populations from Rondônia,

and Pará and Roraima along the second PCA axis (Fig 4). There was also a moderate degree of

climatic overlap between Central Rondônia and South Rondônia groups, indicating evidence

of incomplete separation between the Rondônia groups according to the bioclimatic variables.

The relative contributions of climatic variables to the PCA axes show that niche differentia-

tion along Components 1 and 2 was driven primarily by precipitation requirements (S2

Table 4. Analysis of molecular variance (AMOVA) performed for 16 SSR and 170 Bixa orellana var. urucurana plants collected in Brazilian Amazonia.

Source of variation Degrees of freedom Sum of squares Mean square Variance %

Among populations 9 415.758 46.195 1.301 21

Within populations 330 1611.165 4.882 4.882 79

Total 339 2026.924 6.183 100

https://doi.org/10.1371/journal.pone.0198593.t004

Fig 4. Principal component analysis (PCA) performed on 19 bioclimatic variables extracted from the Worldclim

database for 10 wild annatto (Bixa orellana var. urucurana) populations sampled and 174 presence-only records

from online databases. Colors are according to the Structure analysis at K = 3 and online databases: Pink = South

Rondônia accessions; Blue = Central Rondônia accessions; Green = accessions from the states of Pará and Roraima;

and Gray = online databases occurrences.

https://doi.org/10.1371/journal.pone.0198593.g004
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Table). Principal component 1 (PC1) represented 71% of the variation and was mostly

explained by variable Bio12 (Annual Precipitation). The annual precipitation varied from

1,309 mm (on the left) to 3,644 mm (on the right). Our sampled populations presented annual

precipitations ranging from 1,669 mm to 2,192 mm. While variable Bio12 contributed posi-

tively, variable Bio15 (Precipitation Seasonality) contributed negatively in the first axis. On the

other hand, the second axis explained 20% of the variation and variable Bio19 (Precipitation of

Coldest Quarter) was the most informative variable in this axis (S2 Table), ranging from 87

mm (on the top) to 1,388 mm (on the bottom). Our sampled populations ranged from 94 to

917 mm of precipitation in the coldest quarter. Variables Bio16 (Precipitation of Wettest

Quarter) and Bio17 (Precipitation of Driest Quarter) also played important roles in the

analysis.

Over 15 replicate runs, the potential distribution of B. orellana var. urucurana was esti-

mated with a high area-under-the-curve (AUC) value (0.941) implying very low rates of false

negative and positive suitability predictions (Fig 5). The climate envelope of wild annatto is

largely determined by precipitation, and the most important variables for the model were

Bio19 (Precipitation of coldest quarter, 23.5%), Bio13 (Precipitation of wettest month, 12.4%)

and Bio12 (Annual precipitation, 11.5%). Temperature seasonality (Bio4, 17.5%) also plays a

substantial role in the niche.

Discussion

Genetic diversity

This is the first genetic study with wild populations of annatto. The levels of heterozygosity aver-

aged over all loci (HE = 0.520;HO = 0.385) among the 10 populations were considerably higher

Fig 5. Potential distribution as probability of occurrence of Bixa orellana var. urucurana simulated by Ecological

Niche Modeling. Black crosses are the presence records used for the simulation.

https://doi.org/10.1371/journal.pone.0198593.g005
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than those in a germplasm bank (HE = 0.470;HO = 0.170) with 63 cultivated varieties of annatto

using the same 16 SSR loci [46]. It is expected that wild populations exhibit higher levels of

diversity in relation to cultivated populations, as the latter have passed through a domestication

bottleneck [47] and generally further bottlenecks due to distribution and diversification [48],

including different selection pressures for yield [49].

The high levels of inbreeding coeficient (f) observed in our study, the estimated apparent

outcrossing rate (̂ta = 0.609) and the apparent selfing rate (0.391) indicate a mixed mating sys-

tem for wild annatto. The existence of crosses between related individuals increases homozy-

gosity [50]. These results are in agreement with other studies on cultivated annatto, such as

those obtained by Rivera-Madrid et al. [51], who conducted controlled pollinations in annatto

accessions in an experimental field in Mexico, suggesting that annatto can tolerate both types

of pollination, showing cross-pollination values of 57% and self-fertilization of 31%. Vilares

et al. [52] also concluded that there is natural selfing in annatto. Valdez-Ojeda et al. [16] found

high multilocus outcrossing rates (0.75) based on 50 SRAP markers and concluded that B. orel-
lana has a mixed mating system. A recent study compared the mating system of annatto under

different agronomic systems in Mexico using SRAP markers [51], showing a mixed mating

system for annatto cultivated in backyards, while those cultivated under polyculture (milpa

system) and monoculture systems showed predominantly outcrossing mating systems. Con-

sidering that most of the above results have shown mixed mating system for cultivated annatto,

we may conclude that domestication of annatto did not include modifications in the mating

system.

Genetic structure

Plant populations are not randomly arranged assemblages of genotypes but are structured in

space and time. Genetic structure results from the action of migration, mutation, selection,

and drift, that operates within the historical and biological context of each plant species [13].

In this study, most of the genetic variability was observed within populations (79%), as shown

in the AMOVA results. However, the high value of FST (0.201) indicates the existence of strong

structure among populations. Dick et al. [53] reviewed the genetic structure among popula-

tions of 42 different tropical species separated by more than 50 km and found high levels of

population differentiation (FST = 0.177). This may be due to the fact that tropical species are

experiencing moderate to high levels of inbreeding, as a result of the association between low

population density, density-dependent animal pollination, and mixed mating systems, factors

that may be restricting gene flow [53].

The mean level of gene flow among B. orellana var. urucurana populations was low in this

study (Nm = 0.545), since many of the populations were very distant apart, especially those

from Rondônia and the ones from Roraima and Pará, but also between those from Roraima

and Pará. According to Wright [54], a migration rate of Nm = 1.0 is theoretically necessary to

counteract the effect of genetic drift. In this sense, our results suggest that genetic drift may

have been a dominant factor determining the genetic structure of B. orellana var. urucurana
populations. Gene flow among wild annatto populations may occur by seed dispersal along

riversand streams [9], but also through cross-pollination by bees [55]. All wild annatto popula-

tions we found in Amazonia occurred in open forests and anthropogenic landscapes, although

never cultivated, and always associated with riparian environments, suggesting that gene flow

among distant populations may have occurred by the transport of fruits, and consequently

seeds, along rivers. The differentiation between the Rondônia and the Pará/Roraima popula-

tions is also due to the fact that the distances among these populations are very large, in addi-

tion to the existence of many barriers that can prevent or slow gene flow (see discussion
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below). In fact, what is surprising is that the Amazon River did not prove to be a major barrier

between the northern populations (Roraima and northern Pará) and the southeastern Pará

population until K = 7.

The structure of the Rondônia populations in two groups may occur because the southern

populations of this state (Cabixi, Corumbiara and Cerejeiras) are in the Guaporé River basin,

while the populations from the center of Rondônia state (Ariquemes and Jı́ Paraná) are in the

Jı́-Paraná River basin, so that gene flow by the transport of seeds along the rivers between these

populations is infrequent. However, mixed populations between the two groups were found at

Corumbiara, in southern Rondônia, classified as a separate group at K = 7, indicating an inter-

mediate area with a higher gene flow between the two groups.

The significant correlation values obtained between genetic and geographic distances indi-

cate isolation by distance for the wild annatto populations. In the cluster analysis, based on

Cavalli-Sforza and Edwards [36] chord distance and the neighbor-joining method, as well as

in the PCoA and the Bayesian analysis, three genetically distinct and consistent groups were

identified. The groups were formed based on the geographical location of the collected popula-

tions. Carvalho et al. [56], using isozymes, also found that genetic differences in cultivated

annatto accessions correspond to distinct geographical locations. However, Medina et al. [57]

evaluated 36 genotypes of cultivated annatto collected in Venezuela and Brazil, also using iso-

zymes, and found no correlation between geographic and genetic distances. The explanation

given by the authors was the anthropogenic influence in this crop´s cultivation. Menezes et al.

[58] found similar patterns to those obtained in this study when assessing wild cotton (Gossy-
pium mustelinum Miers) in the state of Bahia, the only cotton species native to Brazil. These

authors found high correlation between the genetic and geographic distances using Mantel’s

test (r = 0.87, p = 0.05).

Our results provide relevant information for conservation of annatto germplasm. Wild

annatto populations may be a source of new alleles, which might be useful to increase the

genetic basis of annatto in breeding programs and for conservation strategies. According to

Moreira et al. [9] and also our field observations, when wild annatto grows near commercial

annatto fields, farmers tend to remove the existing wild types, because they naturally cross,

generating production losses in the progenies. As occurrences of wild annatto are mainly in

the peripheries of Amazonia, and in most cases, in anthropogenic areas [9], these practices

may lead to a decrease of wild annatto populations, fragmentation of the native habitat of the

species, and overall genetic diversity of the species.

Distribution and climatic adaptation of wild annatto populations

The high global FST value (0.201), identifying strong structure among populations, is partially

due to our sampling effort, but may also reflect the real and modeled distribution of wild

annatto. According to the ENM, wild annatto is not uniformly distributed throughout Amazo-

nia, with a large area in Central Amazonia (Fig 5) unsuitable for the species. If this ENM is

accurate, it may be very difficult to find large natural populations of wild annatto in this wide

area. This fragmented distribution may be a major barrier for gene flow among populations,

which may explain the high genetic differentiation and also the pattern of isolation by distance

suggested by the Mantel test. This model also helps explain the lack of observation of wild

annatto in these areas during our field collections, or the observation of smaller populations,

and the low number of herbaria registers. Comparing the Southern Rondonia populations

with the Central Rondonia populations, there were an abundance of plants to be sampled in

Southern Rondônia, while the wild annatto populations found in Central Rondônia had fewer

plants. As a matter of fact, we collected all of the plants from the center of Rondônia
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populations that we came across with. South Rondônia is an area of high suitability for wild

annatto (Fig 5), according to the ENM, which may explain the higher sampling obtained in

this area.

In addition, we may consider that the high divergence among populations may be due to

what is known as the “arc of deforestation”, a region where the agricultural frontier advances

towards the forest [59]. There are 500 thousand km2 of land that goes from the east and south

of Pará towards the west, passing through the States of Mato Grosso, Rondônia and Acre (Fig

1). The arc of deforestation has the highest rates of deforestation of the Amazon forest, which

is also probably causing the fragmentation of wild annatto populations. The possible occur-

rence of small isolated populations of wild annatto across Amazonia also agrees with the

higher levels of intrapopulation inbreeding coefficients, suggesting the action of genetic drift

coupled with inbreeding within the populations included in this study.

Temperature and precipitation are considered as major factors in determining species dis-

tributions [60]. Our ENM model suggests that precipitation plays a key role in wild annatto’s

current and potential distribution pattern. In general, favourable habitats are drier or season-

ally drier areas, which suggest the species tolerance to drought conditions, even though we

observe a wide variation in levels of precipitation in the regions with occurrence of the species.

Although temperature variables did not contribute much to the distribution of the species, we

observed a wide variation in temperature averages. The large intervals of temperature and pre-

cipitation suggest that the species has ample adaptation. Temperature and precipitation have

been identifed as major selective pressures driving plant adaptation because they are very

important for plant growth, development, and reproduction [61,62]. Adaptation to new habi-

tats is also a potential plant response to shifts in environmental conditions, which is also cru-

cial in the context of climate change [63].

Not surprisingly, the potential distribution coincided approximately with the current

occurrence reported in online distribution databases, but also suitable localities were predicted

outside the presently known range of the species. These localities could be targeted with field

surveys that might identify unknown populations. However, a considerable number of occur-

rences are in very low probability areas, suggesting that this large-scale analysis did a poor job

of capturing urucurana’s adaptation to riparian conditions in drier climates. The species is

mostly confined to the periphery of Amazonia, but also to areas in the drier parts of western

Central America. According to Clement et al. [3], the periphery of Amazonia appears to be the

area where the majority of Amazonian crops were domesticated. The upper Madeira River

basin, in southwestern Amazonia, is an important part of the periphery and has been recog-

nized as a probable region of crop origins for some time [64]. Levis et al. [65] also found higher

abundance and richness of domesticated species in southwestern Amazonia.

Piperno and Pearsall [66] also highlighted the importance of the periphery, mainly in

extreme northwestern Amazonia and the adjacent Llanos of the Orinoco River basin, the Gui-

ana shield, as well as in southwestern Amazonia, especially the Llanos de Mojos, in Bolivia.

The potential distribution map predicted moderately suitable habitat in the Llanos de Mojos.

The Llanos de Mojos is a tropical savanna in Bolivian Amazonia, shaped by cycles of drought

and flood [67]. This grassland environment presents a 2- to 7-month dry season and a total

annual rainfall varying between 1,500 and 1,800 mm. The dry season lasts from May through

September, when weeks pass without precipitation [67]. Complex societies inhabitated this

region at the time of the European conquest, and managed dozens of species, leading Clement

[68] to propose a micro-center of diversity of crop genetics resources in Llanos de Mojos. Also,

the only archaeological record of annatto in Amazonia comes from this area, and is dated to

2,400 years before present [69].
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The Madre de Dios Basin is also a highly suitable area for B. orellana var. urucurana.

According to Leal and Clavijo [70], the genus Bixa probably originated between the Huallaga-

Ucayali River, and the Madre de Dios-Madeira River, along the slopes of the eastern Andes.

The Madre de Dios River joins with the Mamore River to become the Madeira River, also an

important area for crop domestication [64]. The Madre de Dios Basin drains an area of

approximately 90,000 km along the eastern flank of the Andes in southeastern Peru, ranging in

elevation from 200 m to over 4,000 m [71]. The vegetation is predominantly evergreen or

semi-evergreen forest [72]. It presents a humid tropical climate with annual rainfall varying

from 1,200 mm to 3,300 mm, generally increasing from east to west, and the rainy season

occurring from October to April [72].

We also found highly suitable habitat for wild annatto in the Llanos del Orinoco, in western

Venezuela and northeastern Colombia. This is an area of extensive plains, covered mainly by

savanna vegetation. This ecoregion has a strongly seasonal climate, with a single dry season

extending between November and May, and a single rainy season between May and October.

The temperature prevailing in these tropical American lowlands is macrothermic, with mean

anual temperatures ranging from 26˚C to 28˚C and monthly average maximum temperatures

between 34˚C and 37˚C. The rainfall of the Llanos region shows a regime characterized by

very pronounced differences during the months of the year, with annual rainfall ranging from

850 mm to 1,800 mm [73].

The areas of the Llanos de Orinoco, Llanos de Mojos, Madre de Dios and also South of

Rondônia have very similar climatic characteristics, which make all of them areas suitable for

the occurrence of the species. These are drier or seasonally drier areas, and are located in the

peripheries of the Amazon, consistent with the favorable areas identified by Moreira el al. [9].

In Rondônia, our sampled populations in the savannas of South Rondônia are in an area of

very high probability in the potential distribution map, while Central Rondônia populations

are in an area with much less probability, and this may suggest differential adaptation.

On the other hand, an interesting result of the ENM model was the high probability area in

eastern Ecuador.The eastern lowlands in Equador experience abundant rainfall, sometimes

exceeding 5,000 mm per year and mean temperatures ranging from 25˚C to 28˚C. These find-

ings also suggest adaptation of B. orellana var. urucurana to different niches.

According to our ENM model, we noticed that the distribution of our wild annatto sam-

pling was made in quite marginal populations (suitability for Central Rondônia, Pará and

Roraima is less than 0.7) and therefore, the picture of the genetic diversity is quite partial. We

also observed that in the area between the two regions, there are no predicted populations (low

suitability). Therefore, the gene flow among these two different regions could not be recent,

but historical, and also probably due to some other historical factors of the populations. We do

not know if there are populations in Ecuador that could clarify the relationship among the two

main regions studied. The ENM model results in this study implies the recommendation that

further collection expeditions should be made sampling B. orellana var. urucurana populations

from eastern Ecuador, western Venezuela, northeastern Colombia and the Llanos de Mojos,

Bolivia, as well as the State of Mato Grosso and Northeast Brazil.

Conclusions

The microsatellite loci used in this study revealed high levels of genetic diversity in populations

of wild annatto and this diversity is highly structured according to the geographic origin of

populations. Wild annatto appears to have a mixed mating system, which may contribute to

the patterns of genetic structure observed. Our map of the potential distribution of the species

allowed the identification of other potential areas of occurrence in Amazonia and in northern
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South America. Interestingly, our ENM predicted a wide area of low suitability for wild

annatto across Central Amazonia. This predicted occurrence plus increasing population frag-

mentation resulting from Amazonia deforestation contribute to the low genetic connectivity

among disjunct populations of wild annatto. Therefore, our study demonstrates how ecologi-

cal and anthropic factors may have an impact on the genetics of a native Amazonian species.

New plant collections will add to a better understanding of the genetic diversity and structure

of wild annatto, as well as the understanding of the crop’s domestication from these wild

populations.
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urucum em Vitória da Conquista, BA. Ciência Rural. Universidade Federal de Santa Maria; 2008; 38:

534–537. https://doi.org/10.1590/S0103-84782008000200039

56. Carvalho JFRP de, Robinson IP, Alfenas AC. Isozymic variability in a Brazilian collection of annatto
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domestication in the upper Madeira River basin. Bol do Mus Para Emilio GoeldiCiencias Humanas.

2016; 11: 193–205. https://doi.org/10.1590/1981.81222016000100010

65. Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, et al. Persistent effects of

pre-Columbian plant domestication on Amazonian forest composition. Science. 2017; 355: 925–931.

https://doi.org/10.1126/science.aal0157 PMID: 28254935

66. Piperno DR, Pearsall DM. The origins of agriculture in the lowland neotropics. Academic Press; 1998.

Available: http://www.sciencedirect.com/science/book/9780125571807

67. Walker JH. The Llanos de Mojos. The Handbook of South American Archaeology. New York, NY:

Springer New York; 2008. pp. 927–939. https://doi.org/10.1007/978-0-387-74907-5_46

68. Clement CR. 1492 and the loss of amazonian crop genetic resources. I. The relation between domesti-

cation and human population decline. Econ Bot; 1999; 53: 188–202. https://doi.org/10.1007/

BF02866498

69. Erickson C. Archaeological methods for the study of ancient landscapes of the Llanos de Mojos in the

Bolivian Amazon. In: Stahl P, editor. Archaeology in the lowland American tropics: Current analytical

methods and applications. Cambridge: Cambridge University Press; 1995. pp. 66–95.
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