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Abstract

The emergence and dissemination of carbapenemases, bacterial enzymes able to inacti-

vate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concur-

rent spread of resistance against colistin, an antibiotic of last resort, further compounds this

challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid

and accurate detection/characterization of existing and emergent resistance determinants,

an essential aspect of public health surveillance and response activities to combat the

spread of antimicrobial resistant bacteria. In the current study, WGS data was used to char-

acterize the genomic content of antimicrobial resistance genes, including those encoding

carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan.

These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3),

ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-

relevant antimicrobials were determined by broth microdilution; resistant phenotypes were

observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically,

8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The

blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates,

respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants

for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromo-

somal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were

observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive iso-

lates. The application of WGS to molecular epidemiology and surveillance studies, as exem-

plified here, will provide both a more complete understanding of the global distribution of

MDR isolates and a robust surveillance tool useful for detecting emerging threats to public

health.
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Introduction

The Gram-negative bacterium Klebsiella pneumoniae is a clinically relevant pathogen that

has a propensity to acquire multidrug resistance (MDR), thus limiting therapeutic options

for treating community-acquired and nosocomial infections such as pneumonia, septicemia,

wound, and urinary tract infections (UTIs) [1]. MDR and extensively drug-resistant (XDR)

strains are defined as non-susceptible to at least one agent in three or more antimicrobial

classes or non-susceptible to at least one agent in all but two or fewer antimicrobial classes,

respectively [2]. The rapid worldwide spread of MDR K. pneumoniae, as well as other Entero-
bacteriaceae, poses a serious threat to global health [3]. K. pneumoniae, the most common

Klebsiella species causing human infections, is one of the top three pathogens of international

concern documented in the 2014 World Health Organization (WHO) Global Report on Sur-

veillance of Antimicrobial Resistance [4].

Extended-spectrum β-lactamases (ESBLs) are bacterial enzymes that hydrolyze and inacti-

vate most β-lactam antibiotics such as penicillins, broad-spectrum cephalosporins, and mono-

bactams, but not cephamycins or carbapenems. Their production by bacterial pathogens

confers resistance against a number of commonly used classes of β-lactam antibiotics and pri-

marily restricts the choice of antimicrobial therapy to carbapenem antibiotics [5]. Thus, carba-

penems are often employed as last resort antibiotics for the treatment of severe infections

caused by MDR bacterial pathogens [1]. The acquisition of carbapenemases by Enterobacteria-
ceae has thus been especially worrisome as it threatens the clinical utility of these important

therapeutic agents [1]. Indeed, the United States Centers for Disease Control and Prevention

(CDC) has identified carbapenem-resistant Enterobacteriaceae (CRE) as one of the most

urgent MDR threats [6].

The most common carbapenemases identified in K. pneumoniae to date are: i) class A β-lac-

tamases (e.g., K. pneumoniae carbapenemase; KPC); ii) class B β-lactamases/metallo- β-lacta-

mases (e.g., New Delhi metallo-β-lactamase-1 [NDM-1]), and iii) class D β-lactamases (e.g.,

oxacillinase-48; OXA-48-like carbapenemases) [1]. While these plasmid-encoded carbapene-

mases have been increasingly reported worldwide, their prevalence varies geographically [1,3].

Therapeutic options to treat infections caused by MDR carbapenemase-producing K.

pneumoniae strains are limited to drugs that are less effective, more toxic, and/or not widely

available, such as colistin (polymyxin E), polymyxin B, fosfomycin, tigecycline, and select ami-

noglycosides [1]. In the last few years, resistance to colistin has emerged due, in part, to its

extensive use in livestock feed [7]. Endogenous resistance to colistin in K. pneumoniae can

result from any of several genetic changes, including alteration of the mgrB gene and several

non-synonymous point mutations in the genes encoding the two-component regulatory sys-

tems PhoPQ and PmrAB [8–10].

The continued emergence of antibiotic resistance in K. pneumoniae, and more broadly

Enterobacteriaceae, presents a considerable clinical challenge. The steep decline in the dis-

covery of effective antibiotics by pharmaceutical companies further exacerbates the threat

posed by MDR pathogens. Rapid, accurate detection and characterization of antimicrobial

resistance determinants and genomic mutations conferring resistance are crucial to counter-

ing the mounting burden of infections caused by MDR bacteria. Such information could

help direct hospital resources to prevent nosocomial spread of MDR organisms and

guide best-choice antimicrobial therapy to improve patient outcomes [11]. Unfortunately,

some phenotypic detection methods can be unreliable for the detection of carbapenemase-

producing bacteria, depending on the test used and the carbapenemase produced. For

instance, the Modified Hodge Test (MHT) is a simple and easy laboratory test based on

the inactivation of a carbapenem by a carbapenemase-producing isolate. While this culture-
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based test, originally the only Clinical Laboratory Standards Institute (CLSI)-recommended

carbapenemase screening method [12], performs well for the detection of KPC and OXA-48

producers, it often fails to detect NDM-producing organisms [13]. Since 2017, CLSI has rec-

ommended two additional phenotypic tests (Carba NP, and mCIM) and removed MHT

early 2018 [14].

Hospital laboratories are increasingly using whole genome sequencing (WGS) for the

unambiguous identification of previously identified and characterized genes encoding antimi-

crobial resistance determinants [11]. This method can be used to identify resistance genes

located on both the bacterial chromosome and on mobile genetic elements, as well as to

track the emergence and persistence of resistance in previously susceptible bacterial pathogens

[11]. Additionally, WGS provides a wealth of data that can be used for multiple analyses (e.g.,

concurrently determining sequence types or the presence of both virulence and resistance

genes), thus helping to optimize resources and support appropriate clinical intervention. It is

imperative to track the spread of existing determinants of antimicrobial resistance to previ-

ously susceptible organisms and recognize the emergence of new or novel combinations of

determinants [15].

In the current study, we have characterized the resistome of carbapenem- and colistin-resis-

tant clinical isolates of K. pneumoniae that were isolated in Pakistan between 2010 and 2013.

Our findings provide important insight into the genetic diversity of these challenging MDR

bacterial pathogens in a high prevalence area of the world. The characterization of these histor-

ical isolates will help facilitate an understanding of the emergence and spread of antimicrobial

resistance in K. pneumoniae. Further, WGS-based context will help inform hospital infection

control measures and aid the elucidation of contributing factors that promote the development

of antimicrobial resistance in the non-hospital environment. Such information provides an

essential foundation to support the development of novel diagnostic and therapeutic strategies

for detecting and treating infections caused by MDR bacteria.

Material and methods

Samples

Ten MDR clinical isolates of K. pneumoniae that were cultured from blood, urine, or other

sites (e.g. wound) between 2010 and 2013 (Fig 1) were obtained from the Department of

Pathology and Laboratory Medicine at the Aga Khan University Hospital (AKUH) in Karachi,

Pakistan. Limited clinical information was available for all isolates. Initial species identification

and antimicrobial susceptibility testing (AST) were performed at AKUH using Vitek 2 (bio-

Mérieux, France). To get a snapshot of the resistome of MDR K. pneumoniae in Pakistan, iso-

lates had been randomly selected among those resistant to at least one carbapenem. Of the 10

selected isolates resistant to at least one carbapenem, 7 were resistant to colistin while 3 were

susceptible (Table 1). Three of the isolates (CFSAN044564, CFSAN044572, CFSAN044573)

were from the same patient who had been hospitalized multiple times.

The 10 selected isolates were sent to University of Virginia (Charlottesville, VA, USA

[UVA]) for further studies [16]. DNA was extracted using the Qiagen DNeasy Blood & Tissue

Kit (Germantown, MD, USA). DNA samples prepared at UVA were sent to the Center for

Food Safety and Applied Nutrition of the US Food and Drug Administration (College Park,

MD, USA) where WGS was carried out. K. pneumoniae ATCC 43816 (CFSAN044574) was

included as a sequencing control. All 10 isolates were sent to the Centers for Disease Control

and Prevention (Atlanta, GA, USA) for confirmation of AST testing using the reference BMD

method.
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Antimicrobial susceptibility testing (AST)

The MIC values for 25 antimicrobial agents were determined by BMD, according to CLSI

guidelines [12,14,17]. Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853

were used as control strains for antimicrobial susceptibility testing. Susceptibilities were

Fig 1. Cladogram of the Kmer distance tree derived from the NCBI Pathogen Detection database comprising 5169 Klebsiella pneumoniae isolates at time of

writing. The tree also shows MLST, wzi typing, and the presence of blaOXA-48 and blaNDM-1 genes for the 10 clinical isolates and sequence control strain (ATCC

43816), as well as their closest relatives. For space optimization, all other isolates were collapsed into straight lines comprising different numbers (aka leaves).

Colistin susceptibility is indicated with different colored dots: green (susceptible); red (resistant); and white (no information). The identification for the BioSample

and SNP cluster (when available) is also provided. The complete tree file from NCBI Pathogen detection (PDG000000012.284.reference_target.tree.asn—as of

March 24th, 2018), can be downloaded at https://doi.org/10.6084/m9.figshare.5708347.v2 and can be opened with NCBI software Genome Workbench (https://

www.ncbi.nlm.nih.gov/tools/gbench/). Given that the kmer tree only includes a reference isolate from each SNP clusters plus singleton isolates, CFSAN044573

(marked in gray) is not included in the original tree but it is listed here for completeness of information.

https://doi.org/10.1371/journal.pone.0198526.g001
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interpreted using clinical breakpoints established by the CLSI for 23/25 drugs. The European

Committee for Antimicrobial Susceptibility Testing (EUCAST) breakpoints [18] were used for

colistin and tigecycline, since CLSI breakpoints are not currently available. Table 1 indicates

the antimicrobials agents tested, as well as isolates susceptibilities.

Sequencing and assembly of genomes

DNA libraries and genomic assemblies were prepared as previously described [19]. Briefly,

DNA was prepared using the Nextera XT DNA Library Preparation Kit (Illumina, San Diego,

CA, USA), and WGS was carried out on a MiSeq platform using the 2 × 250 bp paired-end

MiSeq Reagent Kit v2 (Illumina, San Diego, CA, USA). SPAdes Genome Assembler (version

3.9) was used to obtain de novo assemblies, which are available under accession numbers

MAG(C/E/F/G/H/I/J/K/L/M)00000000 [19]. To support global distribution and provide epi-

demiological linkages, all genomes in this study were uploaded to the publicly available NCBI

Pathogen Detection website (https://www.ncbi.nlm.nih.gov/pathogens/).

Table 1. Antibiotic susceptibility profiles of MDR K. pneumoniae isolates subjected to resistome analysis.

ID CFSAN0

List of antibiotics (n = 25 agents) 44563 44564 44565 44566 44568 44569 44570 44571 44572 44573

Penicillins Ampicillin R R R R R R R R R R

β-lactam/ β-lactamase inhibitor combinations Amoxicillin-clavulanic acid R R R R R R R R R R

Ampicillin-sulbactam R R R R R R R R R R

Piperacillin-tazobactam R R R R R R R R R R

Cephalosporins Cefazolin—C1Ga R R R R R R R R R R

Cefoxitin—C2Gb R R R R R R R R I I

Cefotaxime -C3Gc R R R R R R R R R R

Ceftazidime—C3G R R R R R R R S R R

Ceftriaxone—C3G R R R R R R R R R R

Cefepime—C4Gd R R R R R R R I R R

Monobactams Aztreonam R R R R R R R S R R

Carbapenems Imipenem R R R R R R R R I I

Doripenem R R R R R R R R S S

Meropenem R R R R R R R R S S

Ertapenem R R R R R R R R R R

Aminoglycosides Amikacin R R R R R R R S R R

Gentamicin R R R R R R R I R R

Tobramycin R R R R R R R I R R

Fluoroquinolones Ciprofloxacin R R R R R R R R R R

Levofloxacin R I R S S S R R R R

Folate Pathways inhibitors Trimethoprim-sulfamethoxazole R R S R R R R S S S

Polymyxins Colistin R R R S S R S R R R

Chloramphenicol Chloramphenicol R S S S S S R I S S

Tetracyclines Tetracycline R S S R R S S S S S

Tigecycline S S S S S S S S S S

β-lactam antibiotic class are shaded grey. Red/R indicates resistance, green/S susceptibility, and yellow/I intermediate. Strains from the same patient are underlined.
aC1G: first generation cephalosporin
bC2G: second generation cephalosporin
cC3G: third generation cephalosporin
dC4G: fourth generation cephalosporin

https://doi.org/10.1371/journal.pone.0198526.t001
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DNA sequences were analyzed using the IS finder web resource (https://www-is.biotoul.fr/

blast.php), to identify insertion sequences (ISs) and IS fragments [20]. Potential integrons

were further annotated using INTEGRALL (http://integrall.bio.ua.pt) [21]]. Identified amino

acid substitutions were checked in the Protein Variation Effect Analyzer tool (PROVEAN—

http://provean.jcvi.org/index.php) to predict their effect on the biological function of the pro-

tein (i.e. neutral or deleterious) [22]. Average nucleotide identities (ANIs) between genomes

of interest were calculated using JSpeciesWS (http://jspecies.ribohost.com) [23]. Progressive

Mauve was used to align genomes to identify conserved or disparate regions and/or SNPs

(http://darlinglab.org/mauve/mauve.html) [24]. PHASTER (PHAge Search Tool Enhanced

Release) was used for the identification and annotation of prophage sequences within obtained

genomes (http://phaster.ca) [25].

Molecular typing of isolates and plasmid profiling

The Bacterial Isolate Genome Sequence Database (BIGSdb) (http://bigsdb.web.pasteur.fr/perl/

bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef_public) was used to characterize each of the

K. pneumoniae isolates by determining the ST (multi-locus sequence type) and capsular sero-

type. In particular, to predict the capsular (K) types of the examined isolates (among the cur-

rently identified 79 K types), we used the sequences of the wzi gene, one of the six conserved

genes in the cps locus [26]. PlasmidFinder (https://cge.cbs.dtu.dk/services/PlasmidFinder/)

was used to type plasmids via the identification of major incompatibility (Inc) groups in Enter-
obacteriaceae species [27]. The minimum percentage of sequence identity was set at 100%,

with an alignment length of>98%.

To increase the size of our analysis, we have included comparisons of the 10 isolates

sequenced herein with more than 5100 other K. pneumoniae isolates obtained worldwide,

using the NCBI Pathogen Detection tool (https://www.ncbi.nlm.nih.gov/pathogens/). This

pipeline uses WGS data to: i) produce a phylogenetic tree based on Kmer distance; ii) perform

single-linkage clustering (with a SNP distance of 50 SNPs) to find closely related isolates, and

iii) determine the antibiotic resistance (AMR) profiles of isolates. A Kmer distance tree was

obtained from NCBI Pathogen Detection on March 24th, 2018. This Kmer tree includes a ref-

erence isolate from each SNP clusters plus singleton isolates, which are not currently included

in SNP clusters.

Identification of resistance determinants

Three different approaches were used to identify antimicrobial resistance genes and select

efflux pumps: ResFinder, the Comprehensive Antibiotic Research Database (CARD), and

NCBI Pathogen Detection. Assembled genomes were uploaded to the web resource ResFinder

v2.1 (http://cge.cbs.dtu.dk/services/ResFinder/) for the identification of acquired antimicrobial

resistance genes [28]. The minimum percentage of sequence identity threshold was set at 98%,

with an alignment length of at least 80%. Assemblies were also analyzed with the tools available

at CARD for strict and perfect hits, with identity >96% (http://arpcard.mcmaster.ca) [29], and

using the NCBI Pathogen Detection tool. When conflicting nomenclatures were encountered,

the NCBI nomenclature was used. The presence of acquired colistin resistance genes (i.e. mcr
variants) was determined using the database resources described above. Disruptions or alter-

ations of chromosomal loci conferring colistin-resistance (e.g. mgrB, pmrAB, phoPQ) were

determined in silico using CLC Genomics Workbench v.9 (CLC Bio, Aarhus, Denmark)

[8–10]. Chromosomal point mutations in the Quinolone Resistance Determining Region

(QRDR) of gyrA, gyrB and parC, parE genes were investigated for characterization of quino-

lone resistance using PointFinder [30].
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Results

Antimicrobial susceptibility profiles

Isolate-specific antimicrobial susceptibilities are shown in Table 1. One of the blaNDM-produc-

ing isolates, CFSAN044563, was resistant to 24/25 antibiotics tested, and susceptible to only

tigecycline. Conversely, one of the blaOXA-48-producing strains, CFSAN44571, exhibited the

highest number of intermediate and susceptible results (n = 10 antibiotics). Interestingly,

CFSAN044572 and CFSAN044573 were susceptible to meropenem and doripenem but inter-

mediate to imipenem.

All isolates were resistant to the same 9 antibiotics (8 β-lactams and ciprofloxacin). Non-

susceptibility to 3 other β-lactam antibiotics was observed in 70% of the isolates, including two

isolates (CFSAN044572 and CFSAN044573) which were intermediate to cefoxitin and imipe-

nem and one strain (CFSAN044571) intermediate to cefepime (Table 1). For carbapenems,

80% of the strains were resistant to all four carbapenems tested. Of the remaining antibiotics,

90% of the strains were resistant to all aminoglycosides; 70% to colistin; 60% to trimethoprim-

sulfamethoxazole; 30% to tetracycline and 40% to chloramphenicol (Table 1). All isolates were

susceptible to the tetracycline derivative tigecycline.

Molecular typing and plasmid profiling

The 10 K. pneumoniae clinical isolates analyzed here were determined to belong to 5 different

sequence types (STs): ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and

ST307 (n = 1) (Fig 1 and Table 2). CFSAN044574 (ATCC 43816) belonged to ST493, as previ-

ously reported in the Bacterial Isolate Genome Sequence Database (BIGSdb). Examination of

the wzi sequences identified 7 alleles, which were associated with specific capsular types (Fig

1). The most common capsular type was K2 (n = 3 isolates); followed by K17 (n = 2); K24,

K47, and K60 (n = 1 each). The K2 capsular type was present in multiple STs (ST14, and

ST15). Two isolates possessed wzi alleles that, based on BIGSdb, were either associated with

multiple capsular serotypes (allele 50, CFSAN044570) or not yet assigned to a specific capsular

serotype (allele 173, CFSAN044564) (Fig 1).

None of the 10 strains was grouped in a SNP cluster with any other K. pneumoniae strains

in the NCBI Pathogen Detection database, containing 5169 strains at time of writing. How-

ever, 2 pairs of strains (CFSAN044572/CFSAN044573 and CFSAN044566/CFSAN044568)

were found to be closely related to each other and grouped in a SNP cluster. Specifically,

CFSAN044572 and CFSAN044573 were grouped in SNP cluster PDS000019060.1, with a cal-

culated distance between them of an average of 800 SNPs. CFSAN044566 and CFSAN044568

were grouped in SNP cluster PDS000019486.1, with a calculated distance of 1 SNP. Addition-

ally, CFSAN044574 (ATCC 43816) was grouped in SNP cluster PDS000019285.1 with KPPR1,

a spontaneous rifampin-resistant isolate derived from ATCC 43816 [31], confirming the accu-

racy of sequencing and assembly (Fig 1). The list of isolates, their AMR genotypes, overall

results, and Kmer tree are available at the K. pneumoniae species webpage at NCBI Pathogen

Detection (https://www.ncbi.nlm.nih.gov/pathogens/). The isolates reported here represent a

diverse population, based on the spectrum of observed STs and differences in resistomes. In all

cases, K types were clearly defined based on either the ST or cluster, except for ST15 and a sub-

set of ST11 in which four and two different capsular types were observed, respectively (Fig 1).

Among the ST11 isolates, CFSAN044570 (ST11, 2010, positive for both blaNDM-1 and

blaOXA-48) clustered with a ST11 strains isolated in 2013 from stool in Greece (16_GR_13) and

two other ST11 isolates linked to a blaOXA-48-positive K. pneumoniae outbreak in Germany in

2013–2014 (SNP cluster PDS000009780.1, n = 2). These latter two isolates were obtained from
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Table 2. List of antimicrobial resistance genes and plasmid replicon-types.

ID CFSAN0

ST11 ST307 ST14 ST15 ST101

Class Gene 44570 44563 44571 44564 44569 44566 44568 44565 44572 44573

A armA x x x x x

rmt F1 C F1 F1

aadA 2 1 1 1

aac(3)- IIa IIa II IIa IIa IIa IIa IIa

aph(3')- Ia VI

aph(3'')-Ib x x x x x x x

aph(6)-Id x x x x x

aac(6')-Ib x xa x

aac(6')-Ib-cr x x x x x x x

B blaCTX-M-15 x x x x x x x x x

blaSHV- 11 11 11 28 28 28 28 28 1 1

blaOXA-1 x x x x x x x x

blaOXA-10 x x x

blaOXA-48 x x x x x

blaNDM-1 x x x x x x x

blaTEM-1 x x x x x x

blaCMY- 16 16 6

C cmlA5 x x x

catA1 x

F qnr S1 B1 B1 B1

G ble x x x x x x x

M mph A E E E E

Mrx x

R arr x x x x x x

S sul 1 1 1 1,2 1 1,2 1,2 1 2 2

Te tet(A) x x x

Tr dfrA 12 1 14 14 14 14

Efflux pumps qacEdelta1 x x x x x x x x

msr(E) x x x x x

Plasmid replicon types IncL/M x x x x x

IncFIB(pQiL) x x x x

IncFIB(Mar) x

IncFIB(K) x

IncFII(pKPX1) x x x

IncFII(K) x

IncHI1B x

IncA/C2 x x x x

Classes of antimicrobial resistance genes are indicated as follows: A (Aminoglycosides); B (β-lactams); C (Chloramphenicol); F (Fluoroquinolones); G (Glycopeptides);

M (Macrolide); R (Rifampicin); S (Sulfonamides); Te (Tetracycline); Tr (Trimethoprim). An x or an allele designation indicates the detection of the gene using NCBI

Pathogen Detection, ResFinder (98%ID threshold, 80% minimum length), and/or CARD (perfect and strict hits, with identity >96%). A bolded x or allele designation

indicates 100% identity. Possible gene duplications are underlined. For the plasmid replicon analysis, an x indicates the presence of a replicon type as determined using

by PlasmidFinder (%ID threshold: 100% and a query vs. HSP length ratio of >98%). The oqxAB genes, which were present in all isolates, are not listed in the Table. In

CFSAN044572, aac(6’)-lb is annotated as a partial sequence.

https://doi.org/10.1371/journal.pone.0198526.t002
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skin and rectal swabs and each was associated with colonization in refugees from North Africa

(Fig 1). CFSAN044571 clustered with two ST11 strains isolated in Norway: 50625602 from

urine (2012) and 50806829 from blood (2013) (Fig 1). CFSAN044563 grouped with blaKPC-2

positive isolates from Brazil belonging to ST437 (SLV—single locus variant of ST11): Brazil-

2009b (belonging to SNP cluster PDS000015953.1, n = 4); CCBH17440 (2014, sepsis/blood);

and B30 (2016, blood). Of the three ST14 isolates, the genomes of CFSAN044566 and

CFSAN044568 were most closely related as they were grouped in a SNP cluster, and differed

by 1 SNP. CFSAN044569 grouped with HICF439, a ST14 strain from the UK (2011, blood/bac-

teremia). The ST15 isolate CFSAN044565 grouped with other ST15 strains: DHQP1501990

(2015, urine, USA); DHQP1605752_NV (2016, wound, USA, SNP cluster PDS000005543.4,

n = 5); KP36 (2007, urine, Taiwan, 2007) [32]; and 3189STDY5864822. DHQP1605752_NV

has been recently described as one of the first K. pneumoniae isolates in the US to be non-sus-

ceptible to all 26 drugs tested, including all ß -lactams, colistin, and tigecycline. The isolate

carried two plasmids (IncA/C2 and IncFIB), and four ß-lactamase genes (plasmid-mediated

blaNDM-1 and blaCMY-6, and chromosomal blaCTX-M-15 and blaSHV-28) [33]. 3189STDY5864822

belongs to SNP cluster PDS000012628.9, comprising 40 clinical isolates from Pakistan, col-

lected between 2010 and 2012, and of which 4 were blaNDM-1 positive. The two ST101 isolates

were highly related, sharing an average ANI of 99.9% and belonged to the same SNP cluster, as

described above. This observation is consistent with their isolation from different sites of the

same patient, blood for CFSAN044572 and catheter tip for CFSAN044573. The same patient

was also infected with another strain (CFSAN044564) that belonged to a different ST (ST307),

which is located on a separate branch on the phylogenetic tree (Fig 1). The closest relatives for

this isolate were two ST307 clinical isolates: KPN11 from the US (2011), and k2602 from the

BSAC Resistance Surveillance program (Fig 1).

Eight plasmid replicon-types were observed with a percent ID of 100%: IncL/M(pOXA-48)

(n = 5 isolates), IncA/C2 and IncFIB(pQil) (n = 4); IncFII(pKPX1) (n = 3); and IncFIB(Mar),

IncHI1B, IncFII(K) and IncFIB(K) (n = 1 each) (Table 2). The IncL/M(pOXA-48) replicon

was present in the five K. pneumoniae strains in which the blaOXA-48 gene was detected

(Table 2). No clear relationship between replicon type and ST was observed, except for the two

ST101 isolates that shared the same plasmid profile (Table 2). No replicon-types were detected

in the control strain K. pneumoniae ATCC 43816 (CFSAN044574), since that strain does not

contain any plasmid [30]. Overall, the highest number of different replicon-types was observed

in ST11 strains (n = 8 types), followed by ST14 (n = 3), ST101 (n = 2), and ST307 and ST15

(n = 1 each) (Table 2).

Antimicrobial-resistance determinants

In most cases, ResFinder, CARD and NCBI Pathogen Detection were in agreement in identify-

ing the predominant antibiotic resistance genes; however, some differences in nomenclature

and reference sequences were noted. Table 2 shows a selection of the antimicrobial resistance

determinants that were identified using the three platforms (n = 41 genes). Overall, ResFinder

and the NCBI pipeline detected, on average, a smaller number of genes (19 per strain) than

CARD (78 per strain). This discrepancy is due to the former two primarily identifying plas-

mid-associated resistance determinants and not chromosomal loci associated with antibiotic

resistance.

According to all three platforms, the highest diversity of resistance genes was observed for

aminoglycosides (n = 13 genes) and β-lactams (n = 11), with at least two resistance determi-

nants present for each antibiotic class present in every isolate (Table 2). Consistent with BMD

results, CFSAN044563 had the highest number of resistance determinants (n = 23 genes),
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while CFSAN044571 had the fewest (n = 6); both were identified as ST11 isolates. Among

the genes present in multiple isolates, 4 were associated with a specific ST: blaSHV-1 in ST101;

blaSHV-11 in ST11; qnrB1 and blaCMY-16 in ST14. The remaining genes were found in isolates

belonging to different STs (Table 2).

Two ESBL genes were identified (blaCTX-M-15 and blaSHV-28). blaCTX-M-15 was the most

frequent ESBL gene detected (n = 9 isolates) and was present in combination with blaSHV-28

(n = 5) or the following non-ESBL genes: blaTEM-1 (n = 6) and other blaSHV genes (n = 5).

No blaKPC genes were found. blaNDM-1 was the most frequently detected carbapenemase

gene (n = 7 isolates), followed by blaOXA-48 (n = 5). In two isolates (CFSAN044570 and

CFSAN044569), both blaNDM-1 and blaOXA-48 were present (Table 2). CFSAN044571 possessed

the fewest β-lactam and carbapenem resistance genes, and was susceptible to ceftazidime

(C3G) and aztreonam (monobactam), but had intermediate susceptibility to cefepime (C4G).

None of the ten strains analyzed possessed any of mcr genes, the plasmid-borne determi-

nants of colistin resistance [34]. In all cases, chromosomal mutations associated with colistin

resistance were identified. Specifically, while no amino acid substitutions were observed in

mgrB; disruption of mgrB and point mutations within prmB were observed in colistin-resistant

strains (Table 3). The mgrB of strains CFSAN044564, CFSAN044565, and CFSAN044569 was

disrupted by three different classes of IS families (ISKpn25, IS5, and IS1) inserted at different

nucleotide positions (mgrB23, mgrB38, and mgrB45, respectively) (Table 3). In one isolate

(CFSAN044563), no mgrB gene sequence could be identified, indicating the possible loss of

the entire mgrB locus. No substitutions were observed in phoP, while only changes encoding

neutral amino acid substitutions were found in pmrA and phoQ (S1 Table). In contrast, multi-

ple non-synonymous substitutions were observed in pmrB (n = 14 substitutions), with most of

them (n = 10) being considered deleterious to protein structure/function. A mutation resulting

in a Thr157Pro amino acid substitution, previously confirmed to be responsible for colistin

resistance [9], was found in all (n = 3) of the colistin-resistant strains with an intact mgrB gene

(Table 3).

For quinolone-resistant isolates, three different genotype profiles were observed: i) a gyrA
mutation (S83I) and a parC mutation (S80I) in 3 isolates (CFSAN044563, CFSAN044564

and CFSAN044570); ii) 2 gyrA mutations (S83F/Y) and a parC mutation (S80I) in 4 isolates

(CFSAN044565, CFSAN044571, CFSAN044572, and CFSAN044573); and no mutations at all

Table 3. Disruptions/insertion in the mgrB gene and point mutations causing neutral and deleterious amino acid substitutions (in pink) in the pmrB gene.

mgrB pmrB
ID CFSAN0 T93P N110T T112P T127P T128P L130P L141P V151G T157P L159P L164P L213M A246T R256G

44563 deletion x x x x

44564 ISKpn25 at mgrB23 x

44565 IS5-like at mgrB38 x x x x x x

44569 IS1-like at mgrB45 x x

44571 intact x

44572 intact x x

44573 intact x x x x x x x

44570 intact

44566 intact x x x

44568 intact x x

Colistin-resistant strains are underlined, and amino acid substitutions known to be associated with colistin resistance are in bold. The genome sequence for K.

pneumoniae HS11286 was used as a reference (GenBank assembly accession GCA_000240185.2).

https://doi.org/10.1371/journal.pone.0198526.t003
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in 3 isolates (CFSAN044566, CFSAN044568, and CFSAN044569). The following plasmid-

mediated quinolone resistance genes were identified: aac(6’)-lb-cr (6 isolates), qnrB1 (all ST14

isolates), and qnrS1 (1 ST11 isolate), along with the oqxAB efflux pump (all isolates). The 3 iso-

lates (CFSAN044566, CFSAN044568, and CFSAN044569) with no mutations in the topoisom-

erase type II enzymes, both carried qnrB1 and aac6’-Ib-cr. Additional genes detected included

the tet(A) gene in the three tetracycline-resistant strains; and dfrA/sul1 in the 6 trimethoprim-

sulfamethoxazole resistant-strains (Table 2).

blaNDM-1 common region and gene duplication

In the seven blaNDM-1-positive isolates, the regions immediately flanking the blaNDM-1 locus

were conserved and included the bleomycin resistance protein (bleMBL) and the N-(5’-phos-

phoribosyl)anthranilate isomerase (trpF) genes (Fig 2). In four isolates, the interrupted

sequence of the left end of ISAba125 was located upstream of the blaNDM-1 gene, while the

complete sequence of ISAba125 was present only in one isolate (CFSAN044563). In two of the

isolates (CFSAN044566 and CFSAN044568), the original ISAba125-bracketed blaNDM-1 region

seems to have been further mobilized by an ISEC28-mediated event downstream of a class 1

integron, thereby generating an extended multidrug-resistance scaffold and a duplication

event (Fig 2).

Two copies of a gene cassette comprising blaOXA-10, aadA1, qacEdelta1, and sul1 were pres-

ent in CFSAN044566 and CFSAN044568 (Fig 2). The latter three genes were identical in both

repeats and in both isolates. In the assembled genome of CFSAN044568, the first repeat of

blaOXA-10 shows a non-synonymous mutation (G663A) that results in a premature stop codon.

However, when reads were mapped back to the assembly, this mutation was not observed, pos-

sibly due to an assembly error caused by repetitive nucleotide sequences in this region. In both

isolates, the insertion of a partial ISAba125 element truncates the first 33 nucleotides of the sec-

ond copy of blaOXA-10.

To evaluate the number of reads specific for the genes seen in duplicate copies and therefore

estimate the sequence coverage in CFSAN044566 and CFSAN044568, CLC Genomics Work-

bench v.9 was used to map raw sequence reads to reference sequences for the blaNDM-1,

blaOXA-10, aadA1, qacEdelta1 and sul1 genes (NG_049326.1, NG_050979.1, NG_052030.1,

NG_048042.1, NG_048100.1, respectively). CFSAN044563 was used as a control as all 5 genes

were present without duplication. We observed a higher average coverage for blaOXA-10, aadA1,

qacEdelta1, and sul1 in CFSAN044566 (80X, 80X, 85X, 81X, respectively) and CFSAN044568

(127X, 114X, 117X, 94X) compared to blaNDM-1 (40X and 58X). In CFSAN044563, the cover-

ages were the following: blaOXA-10 (39X), aadA1 (43X), qacEdelta1 (58X) and sul1 (46X), and

blaNDM-1 (37X).

Discussion

WGS data for 10 MDR K. pneumoniae strains isolated between 2010 and 2013 in Pakistan

were analyzed to provide a comparative genetic context for carbapenem and colistin resistance

Fig 2. Schematic representation of the genetic environment of the blaNDM-1 common region and gene duplication organization in ST14 isolates

CFSAN044566 and CFSAN044568. blaNDM-1 is in red, other genes in blue, duplicated copies in green, and insertion sequences are in light blue. The blaNDM-1

common region includes a truncated ISaba125, the blaNDM-1 gene, the bleomycin resistance protein (bleMBL) and phosphoribosylanthranilate isomerase (trpF)

genes. Duplicate copies of four genes (blaOXA-10, aadA1, qacEdelta1, and sul1) were found. The tat gene is present in two copies split in the middle in one instance.

A straight line indicates gaps between the ORFs.

https://doi.org/10.1371/journal.pone.0198526.g002
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that will help inform infectious diseases epidemiology and the identification of antimicrobial

resistance determinants. Knowledge of the genomic content of these historical isolates will also

be useful for elucidating the spread of antimicrobial resistance in K. pneumoniae. The analyzed

isolates represent a diverse population as indicated by the Kmer distance tree, assigned ST and

capsular types, and the resistomes.

WGS findings reflect the considerable antimicrobial resistance displayed by these isolates to

multiple antibiotics, with resistance to β-lactams (including carbapenems) and aminoglyco-

sides, fluoroquinolones, and colistin ranging from 60% to 100%. Only 30–40% of the isolates

exhibited resistance to tetracycline and non-susceptibility to chloramphenicol, which may

reflect the reduced clinical use of these agents in Pakistan [35]. Indeed, a previous study

reported that cephalosporins were the first option for empirical treatment of bacterial infec-

tions caused by MDR-pathogens in Pakistan and that there was limited use of carbapenems

due to their high cost [36]. However, sales of carbapenems almost tripled between 2005 and

2010 [35], possibly in response to a rise in infections caused by ESBL-producing pathogens.

The isolates examined in this study belong to either established (ST11, ST15, and ST14) or

emerging (ST101 and ST307) antibiotic resistant high-risk clones of K. pneumoniae [5]. K.

pneumoniae ST258 emerged in the middle 2000s in the US and has become a worldwide-

propagated clone, along with its related variants belonging to clonal group 258 (CG258) [5].

ST11, a SLV of ST258, can capture multiple plasmids and is typically associated with MDR

pathogens [5]. This ability is reflected by the different antimicrobial resistance and plasmid

profiles of the 3 ST11 isolates we examined. Specifically, the three ST11 strains were highly

diverse as they were represented by a NDM-1-producer (CFSAN044563), an OXA-48-pro-

ducer (CFSAN044571), and one carrying both the blaNDM-1/blaOXA-48 genes (CFSAN044570).

These 3 ST11 strains were either colistin-susceptible (CFSAN044570) or colistin-resistant

through different chromosomal mechanisms of resistance (mgrB deletion or T157P mutation

in pmrB for CFSAN044563 and CFSAN044571, respectively). The plasmid replicon-type and

AMR profiles also differed within ST11, comprising between 3 and 4 different plasmid repli-

con-types (IncFIB, IncFII, IncL/M and IncA/C2) and sharing only 3 common AMR markers:

aac(3)-IIa, SHV-11, and qacEdelta1. Non-susceptibility to chloramphenicol was observed in

only two ST11 strains; one strain (CFSAN044563) which harbored both cmlA5 and catA1; and

one (CFSAN044570) which did not carry any genes associated with phenicol-resistance, thus

suggesting the involvement of another mechanism (e.g.: overexpression of efflux systems).

After alignment with MAUVE, a large region (contig MAGJ05, 110951 bp) was observed to be

present in CFSAN044563 but absent in both CFSAN044570 and CFSAN044571. This contig

contains a replicon with 95.73% identity to IncFIB from pKPHS1, but carries no resistance

genes and is recognized by PHASTER as an intact phage, with a length of 110821 bp, attL and

attR attachment sites, 117 proteins and a GC content of 48.92%. The most common related

phage is listed as SSU5 from Salmonella [37], which has been described as a temperate phage

with a circular plasmid prophage, as it is homologous to circular plasmids in several Enterobac-
teriaceae genomes [38]. Blasting of the MAGJ05 sequence showed different percentages of

identity and query coverage vs.: SSU5 (83% identity with 48% coverage); and plasmids

pKPHS1 (98% identity with 88% coverage), and pPMK1-B and p1605752FIB_2 (both 99%

identity and 91% coverage). Additionally, the DEAD/DEAH box helicase gene (BAY54_20090

and BAY54_20675) in the MAGJ05 contig overlaps for 127 bp. Future research with long read

sequence will be needed to confirm the genomic location and characteristics of this region.

Both ST14 and its SLV ST15 frequently carry and disseminate resistance determinants, such

as multiple β-lactamases [1,5]. ST14 strains have been associated with pediatric and neonatal

infections, sometimes carrying blaNDM-1 or blaOXA-48 [39–42], and ST15 strains have been

reported in intensive care facilities [43]. Of the three ST14 strains, two blaNDM-1- possessing
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strains (CFSAN044566 and CFSAN044568), were susceptible to colistin and are closely related

as they belong to the same SNP cluster and share a similar plasmid profile (IncA/C2), compris-

ing 24 different AMR markers for 6 different antibiotic families: β-lactams (blaCTX-M-15,

blaSHV-28, blaOXA-1, blaOXA-10, blaTEM-1, blaCMY-16); aminoglycosides (armA, aadA1, aac(3)-IIa,

aph3”-Ib, aph6-Id, aac6’-Ib); chloramphenicol (cmlA5); cotrimoxazole (sul1&sul2), trimetho-

prim (dfrA14); macrolides (msrE); along with class 1 integron markers (qacEdelta1, sul1). The

third ST14 strain (CFSAN044569), co-possessing blaNDM-1 and blaOXA-48, was colistin-resistant

due to an IS1-like insertion at mgrB45, with a different plasmid profile and shared 14 out of the

24 detected AMR genes. The absence of the tet(A) gene in CFSAN044569 and the presence of

alterations in either mgrB or pmrB in CFSAN044566/68 likely explains differences in suscepti-

bility to tetracycline and colistin, respectively.

Beginning in 2014, ST307 has emerged in Italy replacing the predominant hyper-epidemic

ST258 clone of K. pneumoniae [44]. A 2017 US study showed that, between 2011 and 2015,

strains of CG307 were more prevalent than those belonging to CG258 [45]. ST307 has also

been reported to be a major blaCTX-M producing clone in Pakistan (2009–2010) [46], the US

(2010) [47], Morocco (2012) [48], Serbia (2013–2016) [49], South Korea (2015) [50], and

Colombia (2012–2014) [42], where it has been associated with infections with a mortality rate

>50%. ST307 strains have been associated with capsular type wzi-173 [44], as also observed

here.

ST101 has been described as an emerging pandemic clone found in several countries e.g.

Romania, 2012 [51]; Japan, 2012 [52]; Spain, 2012–2014 [53]; Algeria, 2014–2015 [54]; and

others [1]. The two ST101 strains from the same patient (blood and catheter) were closely

related and showed a similar plasmid profile, except for the aac6’-lb gene which was not identi-

fied in the assembly for CFSAN044572. However, the aac6’-lb gene was annotated as incom-

plete and when raw reads from CFSAN044572 were mapped to the aac6’-Ib sequence from

CFSAN044573, the full gene was observed. The Mauve alignment showed 1194 SNPs in 543

regions (annotated genes, hypothetical proteins and unannotated/intergenic regions), with

n = 505 showing between 1–5 SNPs; 32 between 6–10 SNPs, and 6 with>10 SNPs. In particu-

lar, the highest numbers of SNPs were observed in a glutamate dehydrogenase (n = 17,

BAY53_19965); followed by 2 unannotated regions (n = 13 and 12, respectively); and 3 genes

with 11 SNPs each (a multidrug RND transporter, BAY53_01340; the competence/damage-

inducible protein A, BAY53_20960; and the exodeoxyribonuclease V subunit alpha A,

BAY53_6365). Additionally, their phage profile appears to be identical, with one incomplete,

two questionable, and two complete phages identified by PHASTER (S2 Table). The two

ST101 strains were likely resistant to colistin due to a T157P mutation in pmrB; however, there

were 7 additional SNPs in pmrB between CFSAN044572 and CFSAN044573, 6 of which are

non-synonymous: L130P, L141P, V151G, T157P, L159P, L164P. Three neutral substitutions

(L213M, A246T, and R256G) have been previously observed, but they do not appear to be

associated with colistin resistance. In fact, complementation with the wild-type pmrB gene in

isolates with these substitutions did not restore colistin susceptibility. Additional reports also

suggest that these pmrB mutations are not related to colistin resistance [55–57]. In particular,

R256G has been observed in both colistin-resistant (13 out of 17) and colistin-susceptible (10

out of 20) isolates [58]. Overall, the 7 colistin resistant isolates had different chromosomal

mutations associated with colistin resistance and belonged to 5 different sequence types, con-

firming that colistin resistance is multifactorial and chromosomal determinants are indepen-

dent of the sequence types [59].

The isolates analyzed herein grouped largely based on their ST in the Kmer distance tree.

Given the presence of different mobile elements, the Kmer distance tree could potentially be

confounding for the tips of the tree; however, Kmer analysis is able to capture differences
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across genomes (e.g. mutations, insertions/deletions, recombination, and differences in gene

content) [60]. WGS results are consistent with the average short-term evolutionary rate for the

two ST101 isolates from the same patient, suggesting that diversity within individual patients

is low. While CFSAN044572 and CFSAN044573 are indeed closely related, given the observed

number of SNPs and considering the potential artifacts introduced by short reads technology

and assembly, it is difficult to determine if some evolution events occurred within the patient

or that the patient was concurrently infected by two closely related strains. Future research

with long-read sequencing will be necessary to better elucidate the relationship between these

two isolates. However, the isolation of a different strain (ST307) from the same patient clearly

indicates a non-clonal relationship that may have resulted from a subsequent infection with a

different strain or the presence of diverse pathogen populations within the same individual,

each of which complicates empirical treatment.

Capsular polysaccharide (CPS) is one of the main virulence factors of K. pneumoniae and

capsular types are related to the clinical severity of the infections [61]. Wzi encodes for an

outer membrane protein involved in capsule attachment to the surface of the cell [26]. The

identification of distinct ST15 lineages, as suggested by the different capsular types associated

with this ST, has been linked to the circulation of distinct lineages with differences in relative

occurrence, geographical, niche distribution, and/or host susceptibility [62]. A similar finding

was observed herein for the capsular type related to wzi-109 of ST437 (Fig 1), a ST belonging

to the same clonal complex of ST11 and frequently observed between 2007 and 2009 in Brazil

[63].

The variety of AMR genes was higher among the blaNDM-1-positive isolates (up to 23

genes), than among the blaOXA-48-positive isolates (up to 11 genes). All 7 blaNDM-1-positive iso-

lates identified herein are carrying both blaCTX-M-15, with either blaSHV-28 (n = 5) or blaSHV-11

(n = 2), along with additional β-lactamases (blaOXA-1, blaOXA-10 or blaOXA-48). The main AMR

genes identified in most blaNDM-positive isolates of that study were sul1 (n = 6), armA, aph3”-
Ib, aph(6)-Id (n = 5), mphE (n = 4), dfrA14 (n = 4), qacEdelta1 (n = 7), and msrE (n = 5). All

the blaOXA-48 positive isolates were resistant to colistin except one strain. Of the 5 blaOXA-48-

positive isolates, 4 carried both blaCTX-M-15 and one isolate carried both blaCTX-M-15 and

blaSHV-28. The only additional β-lactamase identified was blaOXA-1 (n = 4) for blaOXA-48-posi-

tive isolates. Other AMR determinants associated with blaOXA-48 were rmtF1 (n = 3), aac(3)-
IIa (n = 4), aph3”-Ib, sul1 (n = 5), qacEdelta1 (n = 3). The plasmid replicon-type IncL/M was

identified in all blaOXA-48-positive isolates along with additional types: IncFIb (n = 1), IncFII

(n = 2), IncFIB + IncFII (n = 1), IncFIB + IncA/C2 (n = 1).

Overall, clonal diversity was observed in blaNDM-1- and blaOXA-48-positive K. pneumoniae
isolates, as they belonged to four and three different STs, respectively, and the bla genes were

harbored on different plasmids, except for CFSAN044566 and CFSAN044568 which likely

carry the same plasmid. This finding is in contrast to blaKPC-positive K. pneumoniae, which

historically have been linked to ST258 and its related variant in CG258 [5]. Differences in geo-

graphical distribution likely explain the absence of blaKPC genes; KPC K. pneumoniae isolates

maybe be rare in Pakistan as no KPC-associated isolates/cases were reported in a 2015 litera-

ture review [64], and only 2 strains carrying blaKPC-3 were detected in a study analyzing Paki-

stani isolates obtained between 2012–2013 [65].

The concurrent presence of blaNDM-1 and blaOXA-48 has been described in isolates from

Morocco, 2011 [66]; Tunisia, 2012 [67]; United Arab Emirates, 2011–2013 [68,69]; Turkey,

Switzerland and Australia, 2013 [70–72]. Since then, these isolates have been commonly

reported and include those with different combinations of blaOXA-48 variants with blaNDM-

genes [73–81]. In the NCBI Pathogen Detection database, the combination of any of the vari-

ants of blaOXA-48 [82] with any blaNDM- gene [83], was observed in 34 out of 5278 isolates
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(0.64%) (as of April 18th, 2018). Two isolates were from the present study and the remaining

were isolated between 2011–2017 in Vietnam, Europe, South Korea, Thailand and the US. The

identification of both genes in two isolates of different STs, one from 2010 and one from 2013,

appears to be the first description of blaNDM-1 and blaOXA-48 co-producing K. pneumoniae
clones originating from Pakistan thus predating what is currently described in the literature.

The gene encoding OXA-48 β-lactamase was first identified in 2000; since then, this class D

β-lactamase and its variants have become clinically significant worldwide [1]. As CRE-produc-

ing OXA-48-like enzymes may be difficult to recognize since they only weakly hydrolyze both

cephalosporins and carbapenems, their incidence is possibly underestimated [3]. A highly-

transferable pOXA-48 plasmid (IncL group), generally containing no other antibiotic resis-

tance genes, was reported to be primarily responsible for spreading the blaOXA-48 gene in K.

pneumoniae [1]. Confirming the ability of high-risk clones to accumulate resistance determi-

nants, the blaOXA-48 gene was detected in strains belonging to different STs (ST101, ST11, and

ST14). In particular, ST101 does not appear to have been previously observed in Pakistan. To

the best of our knowledge, this is the first description of a blaOXA-48 producing K. pneumoniae
strain of ST101 isolated in Pakistan. In fact, the only report of a blaOXA-48-producing K. pneu-
moniae linked to Pakistan appears to be from a December 2012 case of osteomyelitis in an

infant that had sustained a burn injury in Karachi, Pakistan before returning to Canada, where

the blaOXA-48 producing strain was isolated [84]. This highlights the complex issues and chal-

lenges presented by MDR organisms, as clinicians around the world need to be aware of global

trends in antimicrobial resistance as focusing only on local patterns might not be sufficient to

make prudent clinical decisions.

Seventy percent of the K. pneumoniae isolates examined were found to carry blaNDM-1,

consistent with it being endemic in South Asia (i.e., Bangladesh, India, and Pakistan) [1].

Specifically, blaNDM-1 has been identified in the majority (75%) of carbapenem-resistant K.

pneumoniae in 2011 in Pakistan [36]; since 2015, the country has been associated with single

hospital outbreaks of NDM-producing isolates [64]. As observed for blaOXA-48, blaNDM-1 was

associated with ST11, ST14, ST15, and ST307, which is troubling as these STs frequently con-

tain blaCTX-M and blaKPC, and represent both well-established and emerging clones. Addition-

ally, our blaNDM-1-positive ST14 isolates belonged to serotype K2, which is considered to be

one of the predominant virulent serotypes [61]. The blaNDM genes have been found on a wide

variety of different broad-host-range plasmids, thus facilitating the spread of such genes by

horizontal gene transfer to various Enterobacteriaceae species [85]. Among the seven blaNDM-1

positive isolates, several different replicon-types associated with blaNDM-1 were identified, con-

firming the high variability of the blaNDM-1 genomic context.

The immediate genetic environment of the blaNDM-1 gene is conserved [85]. A blaNDM-1

common region usually comprises a truncated ISAba125 element immediately upstream

of blaNDM-1, followed by the bleMBL gene and the trpF gene (either complete or truncated)

[85,86]. ISAba125 is thought to be responsible for the initial mobilization of blaNDM-1 from its

progenitor [85,86]. In CFSAN044566 and CFSAN044568, the arrangement of the blaNDM-1

region suggests there were multiple insertion events, as two copies of an ISCR1 element are

present. It may be that this region was first mobilized onto a plasmid by an ISAba125-mediated

event, followed by transfer onto an IncA/C2-like plasmid by an ISCR1-mediated transposi-

tional event. The presence of different IS elements has been suggested to aid the efficiency by

which resistance genes spread and both ISCR1 and IS26 have been observed to facilitate the

transposition and/or expression of resistance genes located near them [87]. The flanking

genetic elements may act as hot spots for recombination, responsible for the mobilization of

the conserved blaNDM-1 region and the high dissemination rate of blaNDM-1 worldwide, even

without an apparent epidemiological linkage between NDM-1-positive isolates [85,88].
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Intriguingly, the blaNDM-1 common region may have resulted in the duplication of blaOXA-10,

aadA1, qacEdelta1, and sul1. In 2011, duplication had been observed for the non-ESBL blaSHV-11

gene in different strains of K. pneumoniae, which was linked to a 16-fold higher level of resis-

tance to amoxicillin [89]. More recently, multiple copies of resistance genes (blaSHV-12, blaOXA-9,

and blaTEM-1) were reported in a K. pneumoniae ST11 strain isolated in 2013 in South Korea

[90]. When mapping reads to a specific genomic region, the number of aligned reads should be

proportional to the number of times the region is present in the isolate [91]. In our simple esti-

mation of relative coverage in CFSAN044566 and CFSAN044568, the four genes (blaOXA-10,

aadA1, qacEdelta1, and sul1) showed a higher coverage when compared to that of blaNDM-1.

Future research with long-read sequencing will be necessary to confirm gene duplication, in

addition to closing putative plasmids and determining if they match a previously described plas-

mid or represent a new variant.

Considering the identification of high-risk clones with extended multidrug resistance, gene

duplication, and high prevalence of blaNDM-1 and blaOXA-48 genes, sometimes concurrently, our

findings highlight the serious challenges posed by MDR K. pneumoniae and underscores the

importance of implementing worldwide surveillance for antimicrobial resistance. Additionally,

the numerous potential transmission routes at the human-animal-environment interface

stresses the importance of a One Health approach [14] for effective surveillance, control and

prevention. The presence of about 5,200 isolates of K. pneumoniae in a shared database such as

NCBI Pathogen Detection should help track the global spread of these deadly pathogens, but it

is only as good as the data deposited—a shared responsibility of the clinical research commu-

nity [92]. The application of WGS to molecular epidemiology studies could provide a better

understanding of the worldwide dissemination of MDR isolates and offer a robust surveillance

tool that will be useful in detecting and characterizing both existing and emerging threats.
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