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Abstract

The breast cancer network constructed from 70 experimentally verified genes is found to fol-

low hierarchical scale free nature with heterogeneous modular organization and diverge

leading hubs. The topological parameters (degree distributions, clustering co-efficient, con-

nectivity and centralities) of this network obey fractal rules indicating absence of centrality

lethality rule, and efficient communication among the components. From the network theo-

retical approach, we identified few key regulators out of large number of leading hubs, which

are deeply rooted from top to down of the network, serve as backbone of the network, and

possible target genes. However, p53, which is one of these key regulators, is found to be in

low rank and keep itself at low profile but directly cross-talks with important genes BRCA2

and BRCA3. The popularity of these hubs gets changed in unpredictable way at various

levels of organization thus showing disassortive nature. The local community paradigm

approach in this network shows strong correlation of nodes in majority of modules/sub-mod-

ules (fast communication among nodes) and weak correlation of nodes only in few modules/

sub-modules (slow communication among nodes) at various levels of network organization.

Introduction

Breast cancer is the most common cancer in women worldwide [1], and it has the ability to

get inherited which can be seen as a threat killer in an aggregated families. This inheritance is

driven by some rare and common variant combinations, noted to be BRCA1, BRCA2, P53,

PALB2, CHEK2 and ATM which confers high lifetime risk of the disease, while common vari-

ants at more than seventy loci identified through large-scale replication studies [2]. Till now,

eradication of this disease is only through tumor surgery and chemotherapy. While surgery

being the only curative approach for localized tumor (benign) of this disease revealing a high

risk of advanced metastasis (malignant stage of tumor) [3]. Because of these limitations, new

methods have been trying to develop with regard to primary and secondary prevention strate-

gies of this disease. On the other hand, the bilateral mastectomy technique is only limited to

women harboring BRCA1/2 germline pathologic mutations or the woman with personal his-

tory of disease [4, 5]. Based on the harmonal dependency of the breast carcinoma (the early
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phases), many chemoprevention techniques (primary prevention), such as, the use of selective

estrogen receptor modulators (SERMs), anti-estrogen drugs (e.g. aromatase inhibitors) and

micronutrients (e.g. vitamins) have been tested for anticancer activity taking the rare and com-

mon variant genes as target [2].

The ongoing paradigm of systemics based approaches to understand and predict mecha-

nisms in biological phenomena is to investigate complex interaction in these biological net-

works and how various fundamental functions are exhibited out of the organization among

the components in them. The large scale accurate omics data, high throughput gene expres-

sion data and the developed efficient integrative techniques have increasingly been used to

map gene association with the specific function (biological)/disease [6]. Since mutation plays

an important role (especially in cancer) in driving the associated key gene(s) to cause ulti-

mately defective protein(s) translation which in turn perturb normal cell functioning (driv-

ing to cancer phase), these gene(s) has (have) been used as target gene(s) [7]. In breast cancer

network, it has been reported the involvement of more than six thousand genes (eight thou-

sand two hundred forty proteins) in five thousand seven hundred thirty two biological pro-

cesses and one thousand nine hundred thirty molecular functions [8], and therefore it is a

cumbersome task to understand the complicated organization in the network [9]. The emer-

gent modular nature in the presently studied networks including protein-protein interaction

(PPI) and metabolic networks allows us to apply bottom-up approach techniques to analyze

the components (sub-networks/modules/communities) and their organization at various

sub-levels. These network modules help us to figure out the underlying principle of progres-

sion of this disease side by side and emanate the idea of searching key target genes in the well

organized breast cancer network [10]. Since modules behave as the building blocks of the

higher level of functional organization of a network, they can recursively be divided in to

sub-modules which become the potential source of information on the specific domain of

activity [11].

Network theory approach has been proposed to be an important in understanding topolog-

ical properties and the dynamics of complex systems, which can correlate to various system’s

functional modules [12]. Most of the existing natural and artificial networks can fall in one of

the network types namely, scale-free, small world, random and hierarchical network [13, 14].

Among them, hierarchical network is of special interest because of its important structural

properties in which the appeared modules/communities with sparsely distributed hubs regu-

late the network [13, 14], and its self-organized working principle [13]. The presence of mod-

ules/communities in this network type is of particular interest because they may correspond to

independent functional components in the network obeying their own laws [13], and exhibit-

ing nonlinear activities [12]. The sparsely distributed hubs have an affinity to regulate and sta-

bilize the network, within the constituting modules, but it is dubious that they are central

controllers [15]. We aimed at studying breast cancer network that describe alteration (up or

down regulation) in genes/pathways, which could contribute to the pathogenesis of this cancer

and associated target key genes. Since the involvement of proteins in all biochemical processes

is an established fact, an extensive analysis of breast cancer network constructed from protein-

protein interaction network has the potential to facilitate the identification of genes affected

during the disease process. Therefore, we focus our study on breast cancer network con-

structed from experimentally identified breast cancer genes and their interaction to explore

possible important key regulatory genes. We also aim at to understand topological properties

of the network from which we try to predict important key regulators among which some are

of fundamental importance, their activities and regulating mechanism. We further study the

complex organization in this cancer network and comment why is it difficult to crack this can-

cer network.

Exploring key regulators in breast cancer
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Materials and methods

Acquisition of breast cancer data

We have integrated six highly cited resources for cancer in order to obtain a comprehensive

list of breast cancer genes. The different resources focus on different aspects of cancer biology

(Fig 1); 1. KEGG (Kyoto Encyclopedia of Genes and Genomes): it assimilates the current

knowledge of molecular interaction networks, 2. CGC (Cancer Gene Census): it defines list of

those genes whose mutations are implicated in cancers, 3. BCGD (Breast Cancer Gene Data-

base): it accumulates the molecular genetic data related to genes involved in breast Cancer. 4.
CGAP (Cancer Genome Anatomy Project): It lists gene expression profiles inside cancer cells.

5. GAD (Genetic Association Database): it contains genetic association studies related to can-

cer, that are described in literature. 6. NCG (Network of Cancer Genes): it contains data on

gene mutations. From the above assimilated repositories we have got 2050 genes, out of which

1332 were found to be unique. Again from these only 70 genes passed the test of our criterion

of experimental verification. The protocol we followed for this process is a simple work flow

stared with the mining of the list of genes (associated with breast cancer) from all of the six

defined storehouses. These lists were subjected to CGI-Perl codes (developed locally) for the

removal of duplication of both in terms of redundancy of names and use of synonymic (multi-

ple names for the same gene) gene names. The method of removal involves pattern matching

and searching globally in Gene card (http://www.genecards.com) database. This method pro-

vided the information of unique 1332 genes in csv format with their synonymic names. Now,

this list of genes is further put into manual curation followed by the Agilent literature search, a

plugin of cytoscape to get the relevant literary background on each gene. Finally, from the

whole process we could able to arrived at the list of 70 genes out of 1332 unique genes. In

order to construct primary network of expressed proteins we mapped these genes to UniProt

(January, 2016) and got UniProt-ID, names and other functional information associated with

them (70 genes).

Construction of protein-protein interaction network

We followed one gene one protein concept to build the primary PPI (Protein-Protein Interac-

tion) network of breast cancer regulatory genes (Fig 1). The network was constructed using

APID2NET plug-in implemented in cytoscape version 2.8.3, which was used to retrieve all the

possible information from seven main resources namely the DIP (Database of Interacting Pro-

teins), BIND (Biomolecular Interaction Network Database), IntAct, MINT (Molecular Inter-

actions Database), UniProt, BioGRID (The General Repository of Interaction Datasets) and

HPRD (Human Protein Reference Database) [16]. The integrative and analytical effort done

in APID provided an efficient open access repository where all the curated as well as experi-

mentally verified PPIs are amalgamated into an exclusive web application. This gave us a swift

exploration of interaction networks (i.e Graph denoted by G) as it includes certain parameters

that weight the reliability of given interaction (i.e edge denoted by E), and also qualifying the

function of any given protein with their interacting partners (i.e node denoted by V). The

APID2NET parameters include (i) ‘interspecies proteins’, that filters species-specific interac-

tions (ii) ‘hypothetical proteins’, for filtering hypothetical proteins from the interaction; (iii)

‘conexion level’, that defines the degree of the network neighborhood; and (iv) ‘experimental

methods’, that defines the minimum number of methods (experimental) used to identify that

particular link (edge/interaction). Here, we cross-checked this with five well studied candidate

gene Tp53, BRCA1/2, EGFR, EP300 where InAct database when used gave thousands of inter-

action for them. On combining all the information finally we got a network of 1732 nodes
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harbouring 55444 interactions from which we only selected the first neighbors of selected 70

genes (discarding self-loops and isolated nodes) ending up with network of 1476 nodes defin-

ing 22314 connection between them.

Characterization of topological properties of networks

The structural properties of complex networks can be characterized by the behaviors of the fol-

lowing topological parameters.

Degree distribution. The total number of links a node has provided by the surrounding

nodes in the network is termed as the degree k of the node in the network. If a graph of a net-

work is defined by G = (V, E), where V and E represent the sets of nodes, V = {n} and the edges

between in pair of nodes E = {eij; i, j, i 6¼ j}. Then probability of degree distribution (P(k)) of

the network is given by,

PðkÞ ¼
nk
N

ð1Þ

where nk and N are the number of nodes with degree k and size of the network respectively.

For random and small-world networks, P(k) follows poisson distribution [17], whereas, for

scale free network, it obeys power law P(k) * k−γ [17, 18] and for hierarchical networks the

Fig 1. Work flow of breast cancer network construction from big data resources and method of finding key regulators from the constructed

network with their analysis.

https://doi.org/10.1371/journal.pone.0198525.g001
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value of γ becomes close to γ* 2.26 (mean-field value) which indicates the importance of

modules with hubs in the network [13, 19].

Clustering co-efficient. Clustering co-efficient of a network characterize how strongly a

node(s) neighborhood(s) are connected internally. It is defined as the ratio of the number of

triangular motifs a node has with its nearest neighbor to the maximum possible number of

such motifs. For an undirected network, clustering co-efficient of ith node can be obtained by,

CðkiÞ ¼
2ei

kiðki � 1Þ
ð2Þ

where, ei is the number of connected pairs of nearest-neighbor of ith node, and ki is the degree

of the repective node. For directed network, there are in-degree and out-degree clustering co-

efficients. For scale free networks C(k) * constant, whereas, for hierarchical network it follows

a power law, C(k) * k−α, with α* 1 [13, 19, 20].

Neighborhood connectivity. The average connectivity of nearest neighbors of a node in a

network represents the neighborhood connectivity of the node in the network [21] which is

given by,

CnðkÞ ¼
X

q

qPðqjkÞ ð3Þ

where, P(q|k) is conditional probability that a link belonging to a node with connectivity k
points to a node with connectivity q. For scale free network, Cn(k) * constant, whereas for

hierarchical network, it follows power law in k, Cn(k) * k−β with β* 0.5 [22]. Further, nega-

tive and positive signs in β could be an indicator of disassortivity and assortivity respectively in

the network topology [23].

Betweenness centrality. Betweenness centrality of a node in a network characterizes the

ability to monitor to extract benefits from information flows in the network [24], and extent to

which the node has control over the other nodes in the network through signal processing [25,

26]. If dij(v) indicates the number of geodesic paths from node i to node j passing through

node v, and dij represents number of geodesic paths from node i to j, then betweenness central-

ity (Cb(v)) of a node v can be obtained by,

CbðvÞ ¼
X

i;j;i6¼j6¼k

dijðvÞ
dij

ð4Þ

IfM denotes the number of node pairs excluding v, then normalized betweenness centrality is

given by, CBðvÞ ¼ 1

M CbðvÞ.
Closeness centrality. Closeness centrality (CC) represents how fast information is spread

from a node to other nodes reachable from it in the network [27]. CC of a node i is defined as

the reciprocal of the mean geodesic distance between the node and all other nodes connected

to it in the network, and is given by,

CCðkÞ ¼
n

P
j dij

ð5Þ

where, dij is geodesic path length between nodes i and j, and n is the total number of nodes in

the network connected to node i.
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Eigenvector centrality. Eigenvector centrality of a node i (CE(i)) in a network is propor-

tional to the sum of i0s neighbor centralities [28], and it is estimated by,

CEðiÞ ¼
1

l

X

j¼nnðiÞ

vj ð6Þ

where, nn(i) indicates nearest neighbors of node i in the network. λ and vi are eigenvalue and

eigenvector of eigen-value equation, Avi = λvi, where, A is the adjacency matrix of the network.

The principal eigenvector of A, which corresponds to maximum positive eigenvalue λmax, rep-

resents eigenvector centrality score [29]. Since node’s eigenvector centrality function smoothly

varies over the network and depends on its neighbors, node with high eigenvector centrality is

embedded in the locality of nodes of high eigenvector centralities, and chance of having iso-

lated nodes in and around the locality is very low [28]. Hence, eigenvector centrality can be

used as an indicator of node’s spreading power in the network.

Knock out experiment

To access the change of organization within the network in the absence of most influencing

nodes i.e the elimination of formed Rich-clubs or leading hubs (breaking monopoly) in the

network. We successively removed first five most influencing nodes from the constructed

complete network, and calculated the topological properties of the modified/reorganized net-

work to characterize regulating capabilities of the hubs by measuring the degree of structural

change due to their absence. We further repeated the knock out experiment by systematic

removal of 10, 20, 30, 40, 50 and 100 first leading hubs respectively to understand the role

of leading hubs in the network. Every time we calculate the topological properties using Net-

work analyser, a plug-in in cytoscape version 3.3.2, while for eigen value calculation we used

CytoNCA another plug-in in cytoscape for topological properties calculation. The result from

this plug-in was also helpfull in cross checking Network Analyzer.

Community detection/finding: Leading eigen-vector method

To detect and characterize the modular nature and their properties in the hierarchical network

is important in defining the predicting about the behaviour of network at various levels of hier-

archy and also accessing the organizing principle of the network in study. There are many

methods to detect communities, of them leading eigen vector method (LEV) gave the promis-

ing reliablity (in our case) as it calculates the eigenvalue for each link, giving importance to

links not nodes. Therefore, with this believe we used LEV detection method in R from package

‘igraph’. We used this technique to detect modules from complete network, sub-modules from

modules at each level of organization, and so on untill we get only motifs (i.e. 3 nodes and 3

edges). In the whole process we sticked to the criterion of identifying any sub-module as com-

munity by the presence of at least one motif (defined by G(3, 3).

Estimation of network compactness: LCP-DP approach

The LCP-decomposition-plot (LCP-DP) provides one way of characterization of various topo-

logical properties of a network in two-dimensional space of common neighbors (CN) index of

interacting nodes and local community links (LCL) of each pair of interacting nodes in the net-

work. It constitutes information of number, size, and compactness of modules in a network,

which can be used as an indicator of self-organization in the network [30]. Mathematically,

the CN index between two nodes x and y can be obtained from the measure of overlapping

between their sets of first-node-neighbors S(x) and S(y) given by, CN = S(x) \ S(y). The

Exploring key regulators in breast cancer
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interaction of the two nodes could possibly take place if there is significant amount of overlap-

ping between the sets S(x) and S(y) (large value of CN). The increase in CN could be an indica-

tion of increase in compactness in the network, which could provide faster information

processing in the network. Further, the LCL between the two nodes x and y, whose upper

bound is defined by, max ðLCLÞ ¼ 1

2
CNðCN � 1Þ, is the number of internal links in local-

community (LC). The two nodes are likely to be linked together if CN of these two nodes are

members of LC [30]. LCP-DP generally found to have a linear dependence between CN and
ffiffiffiffiffiffiffiffiffi
LCL
p

. The LCP correlation (LCP-corr) is the Pearson correlation co-efficient of CN and LCL

defined by LCP � corr ¼ covðCN;LCLÞ
sCNsLCL

with CN> 1, where cov(CN, LCL) is the covariance between

CN and LCL, σCN and σLCL are standard deviations of CN and LCL, respectively.

Distribution of energy in network: Hamiltonian energy calculation

The energy used in the organization of a network at a certain level/state can be measured by

using Hamiltonian energy (HE) of the network at that level/state within the formalism of Con-

stant Potts Model [31, 32]. HE provides energy distribution not only at global level of a net-

work but also at modular level, which is in the self-organization of the system. HE of a

network or module or sub-module can be calculated by,

H ½c� ¼ �
X

c

½ec � gn2

c � ð7Þ

where ec and nc are number of edges and nodes in a community ‘c’ and γ is the resolution

parameter acting as edge density threshhold. Generally, we have g � 1

ðncÞ
2. HE calculation can

be beneficial in understanding the roles of modules and hubs in network organization.

Results and discussion

Exploration of breast cancer key genes

Interestingly, the exploration of key genes has been in a long run paving its way to even more

sophisticated list [33–37] with the availability of large sets of expression data (Chip-Seq, RNA-

seq and mRNA expression) and technique to analyse them. However, both the proper method

and composite list of genes is yet to be formalized with practical and front-line issues of gene

identification. As for instance, wu et al., 2011 has emphasized on the importance of bistable

gene switches at genomic level and predicted them using mining approach [33]. In another

study done by chand et al., 2012 tried make stress on 3 genes (namely CHUK, INSR and

CREBBP) using mRNA expression data from SMD (Stanford Microarray Database) and Gene

interaction pattern (GIP). They suggests that these 3 genes were found to be highly interacting

with the breast cancer genes like Tp53, ESR1 etc [34]. while, we provided the list of key regula-

tors that are both itself being as backbone genes and are in close link to other reported breast

cancer genes. Other important studies of novel target identification done independently by

[35–37] have raised this issue in a more clear genomic perspective using Chip-Seq, Gene

Ontology etc in order to provide genome scale view breast cancer. We on the other hand dis-

cussed the same issue at effective communication level (i.e. first neighbours of selected 70

genes). secondly, the present study for the first time used LCP-DP approach to exploit the

compactness of communities and correlate their importance in controlling network. Thirdly,

we further able to show the presence of self-organization and reorganization in case of any per-

turbations. In addition to this we also traced down the behaviour of hubs at different level of

hierarchy for this cancer. Thus we can say that our approach is more efficient in providing the

better insight in synergy with expression based approaches and if overlap this network with
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expression data and apply our approach then it will reveal more interesting fact about the real

situation going on in the network.

Breast cancer network follows hierarchical scale-free network

The topological parameters of the breast cancer network we constructed (Method and Fig 1)

using experimentally verified seventy genes (Table 1) follow power law distributions as a func-

tion of degree. The probability of degree distributions (P(k)), clustering co-efficient (C(k)) and

connectivity (Cn(k)) exhibit power law or fractal nature (Fig 2 first row, three first left panels),

and for complete network, it is given by,

P

C
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ð8Þ

This network behavior characterized by Eq (8) indicates hierarchical scale free network [13,

19, 20, 22, 38, 39]. The power law fits on the data points of the topological parameters of the

network are done and verified following a standard statistical fitting procedure proposed by

Clauset et. al. [40], where, all statistical p-values for all data sets, calculated against 2500 ran-

dom samplings, are found to be larger than a critical value 0.1, and goodness of fits are found

to be less than and equal to 0.33. The negative value in β0 of connectivity parameter shows

disassortive nature of the network, and possibility of rich-club formation among the leading

hubs is unlikely [22]. However, the roles of the leading hubs are still significant in regulating

the breast cancer network.

The centrality parameters, namely, betweenness (CB), closeness (CC) and eigen-vector (CE)

centralities of the network also exhibit fractal behavior (Fig 2 first row, three right panels)

given by,
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The positive value of exponents of these centrality parameters, shown in Eq (9), indicate the

strong regulatory role of the leading hubs in the breast cancer network [25, 29].

Strong inter-links in breast cancer network

To understand the organization, reorganization and importance of leading hubs on the breast

cancer network, the changes in the topological properties of the network are studied by remov-

ing leading hubs from the network (Fig 2). The changes in the properties of the hubs knock

out networks can be captured by their exponents of stamped fractal laws, which are given by,

gi
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; i ¼ 0; 10; 20; 30; 40; 50; 100 ð10Þ

The decrease in γ (1.27 − 1.14< 1 + ln(4)/ln(3) = 2.26, mean-field value of hierarchical net-

work [19]) in Eq (10) (Fig 2 first panel of last row) favors more significant role of hubs in

the hubs knocked out network [20]. This shows that removing more leading hubs from the
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Table 1. List of Key regulator genes out of 100 leading hubs identified in breast cancer network. The colored (blue)

genes are those FKRs which are already found to be very important genes in breast cancer regulation.

SL. No. Name of FKR Ranking among FRK Ranking among Leading Hubs

1 EGFR 1 1

2 EP300 2 2

3 GRB2 3 3

4 BRCA1 4 8

5 CBP 4 35

6 RS3A 5 9

7 PHB 5 10

8 KU70 6 10

9 RL13 6 44

10 P53 7 26

11 RL13A 8 54

12 SF3B2 8 86

13 DHX15 8 87

14 RL17 9 55

15 ANM5 9 75

16 RL8 10 52

17 SART3 10 60

18 RL18A 10 63

19 RL10 10 64

20 IMMT 10 66

21 SYEP 10 68

22 IF4A3 10 69

23 RL28 10 70

24 RL14 10 71

25 RL19 10 72

26 DDX39 10 77

27 SYNE1 10 78

28 COPA 10 79

29 RL12 10 81

30 MBB1A 10 82

31 DICER 10 83

32 MATR3 10 85

33 RPA1 10 88

34 TCPA 10 90

35 ILF3 10 95

36 PALB2 10 96

37 TF3C1 10 98

38 RL15 10 99

39 ELAV1 10 100

40 DLX4 10 100

41 NUCL 11 53

42 RL18 13 56

43 RL7A 13 59

44 RL21 14 43

https://doi.org/10.1371/journal.pone.0198525.t001
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network allows more responsibilities of the existing leading hubs in the resulting network in

order to reorganize and save the network properties from break-down. The increase in α (Fig

2 second panel of last row) surprisingly indicates the increase in compactness in the hubs

removed network in order to save the network from break down. However, decrease in net-

work connectivity exponent β as increase in the number of hubs removed (Fig 2 third panel

of last row) may be due to significant decrease in connections of low degree nodes associated

with the removed hubs.

To understand the importance of a particular cellular function, one needs to identify molec-

ular components (basically Genes) and the interaction among them which are related and

accountable to it. One of the traditional approaches used to capture the importance of func-

tional modules and leading hubs is to see the difference in the expression of genes through

Fig 2. Showing the Degree distribution i.e P(k) vs. k graph, After Knock out experiment at 0, 10, 20, 30, 40, 50, 100 nodes removal and it is also fitted to the power law

with exponent γ falling in range of Characteristic Heirarchial Networks i.e. (0� γ� 2); Showing the Clustering Co-efficient i.e C(k) vs. k graph; After Knock out

experiment at 0, 10, 20, 30, 40, 50, 100 nodes removal and it is also fitted to the power law with exponent α falling in range of Characteristic Heirarchial Networks i.e. (α ~

1); Showing the Avg Neibourhood Connectivity i.e Cn(k) vs. k graph; After Knock out experiment at 0, 10, 20, 30, 40, 50, 100 nodes removal and it is also fitted to the

power law with exponent β falling in range of Characteristic Heirarchial Networks i.e. (β� 1), Showing the Betweeness Centrality, Closeness Centrality and Eigenvector

Centrality i.e Cb, Cc and Ce vs. k graph respectively, After Knock out experiment at 0, 10, 20, 30, 40, 50, 100 nodes removal and it is also fitted to the power law with

exponent �, δ and μ in order.

https://doi.org/10.1371/journal.pone.0198525.g002
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‘Gene Knock-Out’ experiment [41]. Following this procedure, the absence of gene expressions

of a small number of knock out genes from the genetic background allows one to able to access

regulation of hundreds of other genes present in the network. This regulation can be revealed

(theoretically) by the change in the connections and topological properties before and after

knockout. Leading hubs knock out experiment allows to decrease betweenness centrality expo-

nent � with increase in removed hubs (Fig 2 fourth panel of last row) which reveals that the

regulating roles of remaining hubs become less important [24], but the role of modules might

be significantly important in the network [25]. Therefore, the controlling capability of remain-

ing hubs become weaker, as a consequence the modules in the network might regulate the

overall network activities [26]. However, the values of exponents of other centrality parame-

ters, namely closeness and eigen-vector centralities, δ and μ increases as the number of

removed hubs increases. The increase in δ indicates that the information processing in the net-

work becomes faster when leading hubs are removed which means that local perturbations

due to hubs removal are strong enough to cause significant change in global scenario [27].

This fast information processing might be useful in reorganizing the perturbed network to

maintain the required network properties and to save the network from break down. Further,

the increase in the value of exponent of eigenvector centrality μ reveals that each node in the

network have stronger links with the rest of the network, embedded it deeper in the locality of

the network, and possibility of isolation of it from the network becomes significantly less [28].

This means that the roles of modules in the perturbed network become more important to

keep the network’s inherent properties and to save it from break down [28, 29]. Since the

breast cancer network is hierarchical scale free network, the modules have stronger capabilities

of regulating the network than the existing hubs, and removing few hubs does not cause net-

work break down [13]. The knock out hubs experiment we performed shows no drastic change

in the topological properties of the perturbed network (Eq (10)), but enhance the regulating

capabilities of the modules than the hubs, which is the consequence of strong inter-links in the

network.

Absence of centrality-lethality rule in breast cancer network

Since the breast cancer network falls in hierarchical scale free network, the network can be rep-

resented as a system level organization of modules/sub-modules at different levels of organiza-

tion (Fig 3A) applying Girvan and Newman’s standard community finding technique [14].

Since the normalized modularity (Q), which is defined as the modularity per node in the net-

work, and normalized LCP-correlation, defined as LCP-correlation per node increase as level

of organization (s) increases (Fig 3B), the nodes in the network are tighly connected. Hence,

regulation of the network by modules/sub-modules at various levels of organization dominates

the regulatory roles by hubs in the network.

Generally, essential genes can be identified from single gene knockout experiments one

after another. However, these experiments are time consuming and limited (require set of cri-

terion to be confirmed before application). Essential genes in biological context means genes

that are highly inter-connected (or leading hubs). The accumulation of mutation in any gene

results in the disfunctioning or removal of expression of the specific protein in the cell. This

scenario in theory can be demonstrated by removing the corresponding hub/hubs (essential

gene/genes that may have been mutated) from the network and then rechecking the topologi-

cal change in the network [42]. If the removal of that/those hub/hubs cause drastic change in

the network properties, such as, break-down of the network etc then the network is said to be

governed by centrality-lethality rule in it [43]. However, in breast cancer network, removal of

some leading hubs do not cause network break down because of its hierarchical properties
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Fig 3. System level organization of breast cancer network. (a) Organization of modules/sub-modules at various levels (indicated by various concentric

circles) and arrows show sub-modules constructed from previous modules. (b) Plots of modularity and LCP-correlation per node as a function of level of

organization. (c) Popularity rankings of the first fifty leading hubs in the complete network: the plot also shows unpredictability of the these hubs at various

levels of organization. Identification of key regulators of breast cancer network.

https://doi.org/10.1371/journal.pone.0198525.g003

Exploring key regulators in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0198525 June 21, 2018 12 / 24

https://doi.org/10.1371/journal.pone.0198525.g003
https://doi.org/10.1371/journal.pone.0198525


(Figs 2, 3 and 4), where, the emergence of highly diverged modules at different levels of organi-

zation protects its traditional properties, and leading hubs could no longer over-regulate mod-

ular mechanisms in the network. This absence of centrality-lethality rule clearly suggests that

the top leading genes, such as, EGFR, EP300, GRB2, BRCA1 etc present in the network are not

the only ones that confirms the correct functioning of regulation mechanism, while they work

in co-ordination manner with other comparatively less esential genes.

To understand more specifically about the competition between the regulatory roles of

leading hubs and modules/sub-modules, the activities of the first fifty leading hubs are consid-

ered. The first nearly ten leading hubs show significant change in their degree k, but the

remaining hubs show slight variations in their degrees showing nearly similar activity. If one

defines the popularity of a hub at any level of organization s by its degree, then the popularity

of a particular gene gets changed at different levels (Fig 3D). This means that a particular hub

might be very popular and could have interfered various activities in the module it belongs

and other modular activities in that level, whereas at other levels it may stay at low popularity

without interfering various intra and inter modular activities (Fig 3D color codes indicate pop-

ularity). Hence there is no single or few hubs which control the network at various levels of

organization. Therefore, removing of few leading hubs never cause network break down

which is in fact absence of centrality-lethality rule in this network [43]. This absence of central-

ity-lethality rule or absence of central control system could be one of the most important sig-

natures of inherent self-organization in the breast cancer network [44].

Key regulators of breast cancer

Since the popularity of leading hubs get change with their activities and regulating mecha-

nisms, all the leading hubs may not be key regulators for clinical and drug target genes.

However, few of these leading hubs can be important, which we term as key regulators
(FKR), and can be defined as the deeply rooted hub genes which can able to reach from main

network to motif level (fundamental regulating unit) through various levels of organization

via modules/sub-modules (Figs 3D, 4, S1 Fig). These regulators work at grassroots level with

basic maintaining technologies, and are generally backbone of keeping network stability

locally as well as globally. They could be key to network structural and functional integrity at

various levels, and essential organizers of maintaining network stabilization whenever the

network is under attack. They are generally main information propagators as well as receiv-

ers, and serves as means of cross-talks of far and near nodes in the network for possible

segregation even though they are physically far away from one another. As long as the funda-

mental key regulators are there in the network deeply buried through large number of levels

of organization, the network will have strong capability of defending any attacks, and unac-

ceptable changes in it. Following this definition, we could able to identify eleven key regula-
tors out of fifty leading hubs in the breast cancer network, which are EGFR, EP300, GRB2,
BRCA1, KU70, RS3A, PHB, P53, CBP, RL21 and RL13 respectively. These hubs take part and

regulate at any level of organization of the network starting from fundamental regulating

unit i.e. motif.

The popularity of the eleven key regulators get changed at various levels of organization.

The only first three leading hubs could able to maintain their own big popularities from top

(main network) to bottom (motif level). Only one of these regulators, p53maintain its low

popularity profile but turns out to be an important fundamental regulator in breast cancer net-

work. Two of the eleven regulators, namely RS3A and PHB, are found to be regulating together

in the same module/sub-module at various levels of organization till motif level (Fig 4). These

two regulators are still maintain low profile, but important regulators.
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Now the approximate regulating capabilities of these FKR and their activities in the net-

works/modules/sub-modules, where they belong to, can be estimated by defining a probability

PFKR(x), which is the probability of a FKR to have x[s] links in the network/module/sub-module

it is accommodated having total N[s] edges, where s is the level of organization index, given by,

PFKRðx½s�Þ ¼
x½s�

N ½s�
; s ¼ 0; 1; . . .m; m ¼ 5 ð11Þ

The calculated P½s�FKR s for all FKR show their increase in values as a function of level of organiza-

tion s (S1 Fig panels of lowest row). This indicates that capabilities of regulating of these FKR
increase at deeper level of organization, and their activities become more prominent. There-

fore these FKR are active workers at grassroots level, and become backbone of the network

organization and stabilization. We could able to identify forty four FKRs out of first one hun-

dred leading hubs in breast cancer network (Table 1).

Most of the leading hubs, except few (eleven out of fifty leading hubs), are not key regula-

tors which are involved in fundamental regulation of cancer. This means that even though

these hubs has high popularity in the complete network, they generally end up their existence

after few levels of organization (Figs 3, 4, S1 Fig). We also observe that ranking of popularity of

leading hubs at complete network level does not necessarily provide as an indicator of that hub

of becoming a fundamental key regulator. Further, these hubs are not as important as funda-

mental key regulators in the long run as far as preservation of network properties is concerned.

Hence, in breast cancer network fundamental key regulators could be target genes for possible

diagnosis and cure of this disease.

Fig 4. The structures of modules/sub-modules through which the first ten leading hubs passed through. The probability distribution of the seven key
regulators as a function og level of organization.

https://doi.org/10.1371/journal.pone.0198525.g004
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Some of the identified FKR are found to be experimentally known important breast cancer

regulator genes. For example, EGFR is a transmembrane tyrosine kinase receptor, which

forms functionally active dimers, such as, EGFR-EGFR, EGFR-HER2, EGFR-HER3, EGFR-

HER4). This dimerization induces the recruitment of a range of adaptor proteins, such as,

GRB2 and then activates a cascade of intracellular signaling to alter gene transcription, which

results in cancer cell proliferation, reduction of apoptosis, and metastasis [45]. Germline muta-

tions in BRCA1/2 gene cause a significant amount of hereditary effect in breast cancer subjects.

Further, most of the BRCA1 kindered breast cancers are of triple-negative phenotypes (ER

negative, PR negative and HER2 negative) and harbors with TP53 somatic mutations. How-

ever, BRCA2 associated cancers are less homogeneous and often ER positive [46]. On the

other hand, PHB (Prohibitin) is a negative regulator of cell proliferation and a tumor suppres-

sor protein, and it is connected to diverse cellular functions like cell cycle control, senescence,

apoptosis and regulation of mitochondrial activities. However, in different tissues/cells, it has

different level of expression, its expression level is high in most of the cancers [47]. Moreover,

non-homologous end-joining (NHEJ) is an important pathway for the repair of DNA double

strand breaks (DSBs) in human cells. This NHEJ pathway is frequently upregulated in many

cancers as a compensation for innate genomic instability, making this pathway a pious target.

KU70/80 heterodimer protein, owing to the high affinity to DNA termini, serves as the central

regulating factor during repair of DSBs via NHEJ pathway [48]. On the other hand, RS3A may

play a role during erythropoiesis under the guidence of transcription factor DNA damage

inducible transcript 3 (DDIT3) [49].

Key regulator p53 maintain low profile

In breast cancer network, even though p53 is found to be key regulator, it keeps its profile low

(its ranking of popularity is in between 14-26 in all the levels of organization) (Fig 5). However,

it interacts with other important genes BRCA2, BRCA3 and CHK2 forming two triangular

motifs at the lowest level of organization (level = 4). Since it friends with these important

genes, it might directly and indirectly regulate the breast cancer mechanisms in an efficient

way as compared to other key regulators. Further, the modules/sub-modules it belongs to are

also tightly bound as reflected from the large values of LCP-correlation values (see Methods)

which have values in the range between [0.941 − 0.969] > 0.8 [30] (Fig 5). To characterize the

compactness or how strongly the nodes are interconnected in the modules/sub-modules at

various levels of organization, where p53 constitutes, we define a relative LCP-correlation

given by,

PLCP ¼
xi
xN

; i ¼ 1; 2; 3; 4 ð12Þ

where, xi is the value of LCP-correlation of ith level of organization and xN is the LCP-correla-

tion of the complete network. Since the PLCP values calculated using Eq (12) are almost the

same for various various levels (Fig 5 right lower panel), the p53 is burried in depth at each

level and allowed it to regulate through its important partners.

We further calculated energy distributions in modules/sub-modules, where p53 is accom-

modated, using Hamiltonian function given by Eq (7) (see Methods). Defining the energy dis-

tribution per node, which is the ratio of Hamiltonian energy of a module/sub-module at a

particular level ‘s’Hs to the size of the corresponding module/sub-module Ns given by,

PH ¼
Hs

Ns
; s ¼ 1; 2; 3; 4 ð13Þ
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Fig 5. The modular path of p53 from complete network to motif with the structures of modules/sub-modules at

various levels in which p53 is accommodated. (a) The plots of LCP-correlation as a function of CN for each modules/

submodules (plots corresponding to each module/sub-module of the network) of p53 path. (b) The plots of PH and PLCP
as a function of level of organization.

https://doi.org/10.1371/journal.pone.0198525.g005
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we can estimate the amount of energy distribution at each level. The calculated PH using Eq

(13) is found to be approximately the same for all levels of organization (Fig 5 right upper

panel). This reveals that p53 modular/sub-modular organization at various levels are very

much similar and close to one indicating similar and strong organization.

p53 is well studied tumor supressor gene, playing important role in signal transduction as

well as regulating stress inside the cell [50, 51]. It is considered to be an important key candi-

date in cellular mechanisms, which is mainly responsible for cellular fate decision, either cell

cycle arrest or apoptosis [52]. Further, as far as cancer diseases are concerned, p53 is found to

be mutated in 50% of all human cancers [53] and 80% in basal/triple negative breast cancer

[54].

Heterogeneity in network organization: Key to resist any change

The degree of compactness and nodes distribution in a network can be measured by local

community paradigm: decomposition plot (LCP-DP) calculations [30]. Since the distributions

of the points in the two dimensional plots of
ffiffiffiffiffiffiffiffiffi
LCL
p

(local community links) versus CN (com-

mon neighbors) for the complete network, and its first level modules show heterogeneities, the

network and first level modules are heterogeneous in organization. The number of distinct

patterns of the points in the plots indicate number of possible modules/sub-modules in the

respective network and modules, and the distributions of the points reveal the organization in

the respective network and modules. The extent and degree of spareness of the distributed

points indicate the size and compactness (denser the points more in compact) of the network

and modules respectively. Since the
ffiffiffiffiffiffiffiffiffi
LCL
p

versus CN plot of complete network has four dis-

tinct patterns, the network is composed of four distinct modules with different approximate

compact sizes (extents of CN) 25, 60, 70 and 170 respectively (Fig 6 panels in upper most two

rows). The network as well as the constituting modules have significantly large LCP-correla-

tion values ([0.919 − 0.985] > 0.8) indicating the nodes are strongly connected. To understand

energy distribution in the main network and the respective modules constructed from it i.e.

modules at the first level of organization, we calculated Hamiltonian energy per nodeHs using

Eq (13), and found thatHs of all four modules are different indicating heterogeneity of energy

distributions in the respective modules (Fig 6 first row right most panel). Further,Hs of two

modules are found to be much larger than the other remaining two, and,

Xm½1�

c¼1

H ½1�Nc < H½0�N ; H
½1�

Nc 6¼ H
½1�

Nc0
; 8c 6¼ c0 ð14Þ

where,m[1] is number of modules in the first level, and Nc is the size of cth module. Eq (14) is

found to be true because of existence of isolated nodes in the first level modular organization.

We removed the first five leading hubs (which include three key regulators), and looked for

changes in the network organization following the LCP-DP procedure. Even though there is a

change in the compactness size of the four modules to 25, 52, 60 and 160 with respective LCP-

correlation values [0.897 − 0.985] > 0.8 (Fig 6 panels in third and fourth rows), the network

and its respective modules still strong compactness preserving most of the network properties

(Fig 2). Similarly, we removed fifty leading hubs (including eleven fundamental key hubs)

from the complete network, and the resulting network is still composed by four distinct mod-

ules with compact sizes 25, 35, 42 and 120 respectively with LCP-correlation values [0.866

− 0.975] > 0.8 (Fig 6 panels in the last two rows) still showing strong compactness and main-

taining similar behaviors of the network properties (Fig 2). The calculated HN in these net-

works (Fig 6 third and fifth rows right most panels) also show similar behavior as in Eq (14).
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Fig 6. Compactness of breast cancer network: LCP-correlation calculation as a function of CN for complete and

first level modules when zero, five and fifty leading hubs are removed.

https://doi.org/10.1371/journal.pone.0198525.g006
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We further continued this LCP-DP calculation for sub-modules at second and third levels

(Fig 7 panels in the uppermost two rows) and still show strong compactness. This means that

there could large number of key regulators which are in the comparatively low ranking cate-

gory taking responsibilities of preserving the network properties and saving it from break

down. Hierarchical networks generally have such properties and difficult to break it down.

Now we calculate LCP-correlation of all the modules/sub-modules of the complete network

distributed at various levels, and categorize them into two categories, 1. strong correlation, if

the values of LCP-correlation values are larger than and equal to 0.8, and weak correlation, oth-

erwise (LCP-correlation values<0.8) (Fig 7 lower panel). This result shows that the number of

strongly correlated modules/sub-modules much larger than the number of weakly correlated

Fig 7. Compactness of breast cancer network: (a) LCP-correlation calculation as a function of CN for second and third level modules when zero, five and fifty leading

hubs are removed. (b) Representation of modules/sub-modules based on the values of LCP-correlation values: modules with red color are for LCP − corr� 0.8, and

green color modules are for LCP − corr< 0.8.

https://doi.org/10.1371/journal.pone.0198525.g007
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modules/sub-modules at each level of organization in the network. This indicates that it is not

easy to break down such networks.

Origin of self-organization in the network

Breast cancer network follows hierarchical scale free nature (Fig 2) with strong modular orga-

nization (Fig 3). In this type of network, the topological parameters (P, C, Cn, CB, CC, CE)
which characterize network structure follows power laws (Fig 2 and Eqs (8) and (9)). The

behaviors of these power laws can be represented by a single function Λ(k), which has the fol-

lowing scaling behavior [55, 56],

LðlkÞ ¼ f ðlÞLðkÞ; f ðlÞ ¼
LðlkÞ
LðkÞ

¼ l
D
; D! � g; � a; � b; �; d;m as L! P;C;Cn;CB;CC;CE

ð15Þ

This Eq (15) shows fractal nature of the topological properties of breast cancer network. The

fractal behavior of the network is one important signature of self-organization [57] in this

breast cancer network.

Further, nodes in breast cancer network are tighly bound (Fig 2) through various levels of

network organization (Fig 3) and therefore cross-talk among them could be fast in the net-

work. The popularities of leading hubs get changed on random basis at various level of organi-

zation (Fig 3), and the network shows disassortivity nature i.e. there is no signature of rich-

club formation by these leading hubs. This means that there is no tendency to link up of lead-

ing hubs to regulate and rule the network, which is clear evidence of absence of central control
system, which is one of the most important properties of self-organization [44].

The modules/sub-modules generated from the breast cancer network and distributed at

various levels of organization are strongly compact as reflected from the high values of calcu-

lated LCP-correlations for all the modules/sub-modules (Figs 6 and 7). This strong compact-

ness of the modules/sub-modules reveals that the constituting nodes in each module/sub-

module are tightly bound, and are very sensitive in internal or/and external local and global

fluctuations in it because of efficient information processing due to nodes’ strong inter-linked.

This strongly contributes to the preservation of network properties against any internal or/and

external changes or adapted to the favourable changes without breaking down the network,

which is another one of the most important properties of self-organization [58, 59].

Conclusion

Breast cancer network is found to follow hierarchical scale free network with strongly inter-

linked modular/sub-modular features. The modules/sub-modules are organized hierarchically

at different levels of organization preserving similar topological properties as the complete net-

work has. Hence the modules/sub-modules at various levels of organization can be approxi-

mately seen as the replications of the complete network with some scale factor engineered by

Eq (15)). At the same time the breast cancer network is, not only regulated by the highly inter-

linked compact and heterogeneous modules/sub-modules but also by a large number of lead-

ing hubs of unpredictable change of their popularities with the level of organization. Out of

these large number of leading hubs, only few are key regulators (FKR) which work at grassroots

level for preserving the network properties and saving it from all possible local and global per-

turbations. These FKRs are in fact deeply rooted in the network, from complete network to

motif level, and can be considered as the backbone of network in terms of signal processing,

organizing/reorganizing among the nodes in the network, and modules/sub-modules at

Exploring key regulators in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0198525 June 21, 2018 20 / 24

https://doi.org/10.1371/journal.pone.0198525


various levels of organization when the network is under attack, and adaptation to new fitted

change. It is also found that some FKR have high popularities and some are not. However, the

properties of the network does not merely change if there are large number of FKRs in it, and

possibly the network may break down if all the FKRs are removed. In breast cancer network,

we identified eleven FKRs (EGFR, EP300, GRB2, BRCA1, KU70, RS3A, PHB, P53, CBP, RL21
and RL13) out of fifty leading hubs in it, which could be possible target genes.

In breast cancer network, p53 gene is found to be a FKRwhich maintains low profile. How-

ever, the modules and sub-modules it passed through from complete network to motif level

are mostly strongly compact in nature indicating p53 as fast information processor and key

regulator which allows efficient cross-talk among the nodes in each module/sub-module it

belongs. Even though its ranking is low i.e. eight among the identified FKRs in breast cancer

network, it allows its modules/sub-modules at various level of organization to keep strong rela-

tive correlation with the complete network such that p53 provides strong relation from com-

plete network to motif. The distributed energy per node in modules/sub-modules at various

levels also is almost the same. At motive level, p53 also interact with two important genes,

namely BRCA2 and BRCA3. Hence p53 could be one of the most important FKRs in breast

cancer network.

Breast cancer network maintains self-organization characterized by various properties,

first, the topological properties of it follow fractal laws. Secondly, the removal of leading hubs

does not cause network break down which is the evidence of absence of control mechanism.

Third, the network and its constituent modules/sub-modules are strongly compact in nature,

which could be a means of keeping network stabilization against any attack. Even though

breast cancer network is self-organized one needs to have rigorous studies on FKRs for under-

standing this kind of disease and prevention.

Supporting information

S1 Fig. The structures of modules/sub-modules through which the first ten leading hubs
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