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Abstract

Accurate characterization of morphological variation is crucial for generating reliable results

and conclusions concerning changes and differences in form. Despite the prevalence of land-

mark-based geometric morphometric (GM) data in the scientific literature, a formal treatment of

whether sampled landmarks adequately capture shape variation has remained elusive. Here, I

introduce LaSEC (Landmark Sampling Evaluation Curve), a computational tool to assess the

fidelity of morphological characterization by landmarks. This task is achieved by calculating

how subsampled data converge to the pattern of shape variation in the full dataset as landmark

sampling is increased incrementally. While the number of landmarks needed for adequate

shape variation is dependent on individual datasets, LaSEC helps the user (1) identify under-

and oversampling of landmarks; (2) assess robustness of morphological characterization; and

(3) determine the number of landmarks that can be removed without compromising shape

information. In practice, this knowledge could reduce time and cost associated with data collec-

tion, maintain statistical power in certain analyses, and enable the incorporation of incomplete,

but important, specimens to the dataset. Results based on simulated shape data also reveal

general properties of landmark data, including statistical consistency where sampling additional

landmarks has the tendency to asymptotically improve the accuracy of morphological charac-

terization. As landmark-based GM data become more widely adopted, LaSEC provides a sys-

tematic approach to evaluate and refine the collection of shape data––a goal paramount for

accumulation and analysis of accurate morphological information.

Introduction

Techniques for characterizing morphology provide a lens with which to describe, interpret,

and analyze variations in form. In recent years, geometric morphometric (GM) methods have

become widely adopted in morphological studies due to their efficacy in capturing, retaining,

and visualizing shape information [1–4]. Typically, GM data comprise a set of two- or three-

dimensional (2-D or 3-D) Cartesian coordinate points positioned on specimens and structures

of interest. The raw coordinate data are then aligned to extract shape information and analyzed

to investigate a wide range of topics in biology, engineering, and design.
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As with any scientific data, the quality of GM data remains a crucial component of conduct-

ing sound research. Namely, do our data accurately reflect the shape variation of objects and

structures under study? Using horse teeth, Cardini and colleagues examined the number of

specimens needed for reliable estimation of mean shape [5]. Cardini also examined the con-

gruence between datasets with both pairs of bilateral landmarks and those with only one side

sampled, showing that the latter case exaggerates the variation along the midline [6,7]. A

related issue in GM that has eluded systematic investigation is whether the landmark sampling

is sufficient for characterizing morphological variation. This issue is critical because sampling

too few landmarks will obscure local shape differences that drive global shape differences

among specimens, ultimately generating spurious results biased by landmark choice (Fig 1:

morphospaces). Poor landmark sampling is more probable in fields such as paleontology and

archaeology, where the inclusion of important, but damaged or deformed, specimens prompt

the removal of potential landmarks from analyses. However, sampling too many landmarks is

also problematic due to increased work load required for data collection and analysis. More-

over, while oversampling landmarks may benefit visualization and estimation of shape [3,8]),

the power of many standard statistical tests suffers as the number of shape variables exceeds

the number of specimens [9,10]. Some digitization approaches, such as user-specified sam-

pling of semi-landmarks along a curve (e.g., [11]) and automatic placement and alignment of

landmarks on 3-D surfaces [12], provide the capacity to place hundreds to thousands of land-

marks on specimens without first evaluating the need for such dense characterization of shape.

As such, knowledge of whether a dataset adequately captures shape variation could drastically

improve the practice of collecting landmark data overall.

Moreover, a theoretical notion important to landmark sampling is whether shape data are

consistent. In GM the term “consistency” has typically referred to the precision in digitization

(e.g., [13]) and in some cases, the congruence between morphometric data collected under differ-

ent modes (e.g., [14]) or superimposition methods [9,15]. However, “consistency” in the context

of sampling theory has been seldom studied in the GM literature, in which shape data converge

to the true values as n!1, where n denotes the number of landmarks. Kent and Mardia exam-

ined the consistency in the estimation of mean shape by generalized Procrustes superimposition

as more specimens are sampled, demonstrating that specimen sampling is statistically consistent

with respect to mean shape, assuming isotropic errors at each landmark [16]. Yet, no study to

date has studied the consistency in overall shape data with respect to landmark sampling. In addi-

tion, the statistical efficiency of landmark data also remains to be examined, where the variance

around the estimated value decreases as n!1, where n signifies number of landmarks.

Here, I present a new R function called Landmark Sampling Evaluation Curve (LaSEC) to

determine whether a landmark-based dataset has achieved stationarity in capturing shape, as

well as size, information. I demonstrate its practical utility by performing LaSEC on published

empirical data sets. In addition, I also investigate the theoretical issues of whether landmark

data are statistically consistent and efficient using both simulated and empirical data. The out-

put from LaSEC allows the user to evaluate the fidelity of landmark data and avoid sampling

too few or too many landmarks. The function is included in the new LaMBDA (LandMark-

Based Data Assessment) R package (www.github.com/akiopteryx/lambda; S1 Data).

Materials and methods

Analysis

The function LaSEC is coded in R [17] and utilizes the R packages geomorph [18] and

vegan [19] for aligning coordinate data and calculating the degree of congruence between

subsampled and full data sets, respectively. To run the function, the user specifies three items:

How many landmarks are enough?
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Fig 1. Schematic diagram of steps performed during a single iteration of LaSEC on a crocodylian skull dataset [25]. The procedure begins by extracting shape

information from a coordinate dataset (“Parent dataset”), subsampling three randomly selected landmarks, then calculating its fit of specimen distribution to that of the

parent dataset based on Procrustes sum of squares (PSS). Once PSS is recorded, one additional landmark is randomly selected and the fit value is calculated between the

new subsampled data and the parent dataset. This process is repeated until all landmarks in the parent dataset are sampled. The adequacy of landmark sampling is

assessed based on the extent of stationarity observed in the resulting curve. The morphospaces constructed from first two principal components (PC) of subsampled

shape variation illustrate the drastic differences in the distribution of major crocodylian clades: Alligatoridae (black), Crocodylidae (white), Gavialidae (gray). Circled

numbers correspond to in-text description of the procedure. Coordinate data visualized in Morpheus et al. version 1.8.0 [34] where sampled landmarks are red and

unsampled landmarks are white.

https://doi.org/10.1371/journal.pone.0198341.g001
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(1) the coordinate data in the format of a 2-D matrix where specimens are rows and shape var-

iables are columns, (2) the physical dimensionality of the data (i.e., 2-D or 3-D), and (3) the

number of resampling rounds: lasec(coord.data, n.dim, iter). The coordinate

data are assumed to be unaligned and complete, reflecting the size variation of the sampled

specimens and without any missing data.

To measure the differences between the full (hereby “parent”) and subsampled datasets, the

function uses the protest function in the vegan R package [19] to calculate the Procrustes

Sum of Squares (PSS). This method [20] performs an ordinary Procrustes alignment [21] to

superimpose the distribution of specimens in the subsampled data to that of the parent data.

While the typical implementation of Procrustes alignment in GM studies involves translation,

rotation, and scaling of coordinate data in physical 2-D or 3-D space, the alignment procedure

here subjects the shape data to translation, rotation, and scaling in full, hyper-dimensional

shape space. Described another way, the constellation of the specimens in the shape space of

subsampled data are aligned to those in the shape space of the parent data. Because this align-

ment requires equivalent statistical dimensions in the two datasets, the function automatically

adds columns of zeros to the subsampled data to match the dimensionality of the parent data

(i.e., the same number of shape variables). The addition of zeros, or any single number, in this

step does not alter the value of PSS because these dummy variables do not contribute any vari-

ation to the shape data. Hence, the distribution of specimens in the respective shape spaces

remains the same with the addition of these dummy variables. To match the aesthetic of typical

sampling rarefaction curves and Bayesian trace plots, the ‘fit’ between subsampled and parent

data is measured as 1–PSS, such that values equal to one and near zero signify perfect and poor

Procrustes fit, respectively.

Although the parent and subsampled datasets are in separate shape spaces, PSS compares

the shape distribution of specimens in full statistical dimensionality, which is the basis of quali-

tative and quantitative shape analyses in GM studies. Other measures of congruence, such as

correlation coefficients are limited if correlation is based on reduction of shape data into pair-

wise distances or few principal components of shape variation which may misrepresent con-

gruence in full shape space ([22]). Correlation coefficients from two-block partial least squares

analysis [23] uses the full dimensionality of datasets. However, it yields very high levels of cor-

relation despite low qualitative and visual congruence between datasets (S1 Fig). This result is

likely due to the subsampled dataset being a subset of the parent dataset, and thus, the method

identifies linear combinations of data with strong correlations even with very low landmark

sampling. For these reasons, PSS was utilized as a sensible metric for measuring the overall

congruence between the subsampled and parent datasets.

Given this measure of fit, LaSEC conducts the following procedure (Fig 1: step numbers

below correspond to circled numbers in figure):

1. As is typical for extracting shape data, perform a generalized Procrustes alignment (gpa-
gen function in the geomorph package) on a coordinate dataset (argument coord.
data) in 2-D or 3-D (argument n.dim) and record the resulting shape coordinates and

centroid size. Here, the shape coordinates are projected onto tangent space because pair-

wise distances among corresponding datasets later in the analysis are based on Euclidean

distances and most shape analyses in the biological literature are conducted in tangent

space instead of Procrustes shape space.

2. Subsample the same three randomly selected landmarks from all specimens. The subsam-

pling begins with a subset of three landmarks because a minimum of three landmarks is

required to define shape. Then, generate shape and centroid size data with generalized Pro-

crustes superimposition on the subsampled data.

How many landmarks are enough?
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3. Perform an Ordinary Procrustes Alignment (protest function in the vegan R package)

on the subsampled data to minimize the pairwise distances between corresponding land-

marks in the parent data through translation, rotation, and scaling of data in full shape

space. As stated above, note that this procedure is different from the typical implementation

of Procrustes alignment on coordinate data in 2-D or 3-D space. The function then records

the sum of these squared distances as measure of fit (PSS) between the relative locations of

data points in the parent and subsampled datasets. Equivalent procedure is conducted on

centroid size data.

4. Sample one additional, randomly chosen landmark and repeat step 3 until the entire set of

landmarks in the parent dataset is sampled. The completion of this step represents one iter-

ation of subsampling.

5. Repeat steps 2–5 for specified number of iterations (iter argument).

6. Create sampling curves by plotting the trajectory of “fit” (1–PSS) against the number of land-

marks sampled from each iteration for both shape and centroid size as gray lines. Then, plot

the median fit value for each number of landmarks sampled on the same plot as a thick, dark

line. Finally, output these sampling curves: LaSEC_SamplingCurve_Shape.pdf,
LaSEC_SamplingCurve_Size.pdf.

Data

To demonstrate its performance and utility, I performed LaSEC on published empirical data-

sets as well as simulated shape data with varying numbers of specimens, landmarks, and

covariance structure. The four empirical datasets analyzed in this study include 2-D data of

wasp wings with 19 landmarks and 249 specimens [24], 3-D cranial landmarks from an onto-

genetic sampling of 10 extant species of crocodylians comprising 204 specimens and 78 dis-

crete landmarks [25], 3-D landmark data from the condylar surface of femora in placental

mammals that consist of 321 equally spaced surface semi-landmarks on 282 specimens [26],

and 3-D craniofacial data of baboons which include 231 landmarks and semi-landmarks from

250 specimens from the NYCEP PRImate Morphometrics Online (PRIMO) database (http://

primo.nycep.org). To examine the effect of specimen and landmark sampling on characteriza-

tions of shape variation, I simulated 2-D and 3-D coordinate data using the sim.coord func-

tion, also included in the LaMBDAR package. This function allows the user to generate

coordinate data with specified number of specimens and landmarks from a normal distribu-

tion with a variance-covariance structure using the mvrnorm function in the MASS R package

[27]. In this study, I conducted LaSEC on simulated 2-D and 3-D data with combinations of

10, 20, 40, and 80 specimens and landmarks and covariation values of 0.1 and 0.5 between

pairs of coordinate variables.

Results

Comparisons of sampling curves from simulated data reveal clear indicators of robust shape

characterization (Figs 2–5). First, and perhaps the most obvious, indicator is the presence of a

plateau in fit values for datasets with greater numbers of landmarks than number of specimens.

For simulated datasets with relatively poor landmark sampling (e.g., 80 specimens, 10 land-

marks), the sampling curves do not show any decreases in slope as landmark sampling

improves, implying a lack of stationarity in characterizing shape variation. Second, simulated

data with relatively rich landmark sampling exhibit diminishing variance in fit values for a

given number of landmarks as landmark sampling approaches that of the parent dataset. In

How many landmarks are enough?
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contrast, datasets with poor landmark sampling show increasing variance in fit value. Taken

together, the results from simulated data establish two indicators of stationarity in shape infor-

mation: an extensive plateau in the sampling curve and diminishing variance in fit values. For

simulated 2-D and 3-D data, these signs are observed when the number of landmarks exceeds

specimen number.

Beyond these indicators of stationarity, performing LaSEC on simulated datasets elucidates

the potential impact of covariation and physical dimensionality of landmarks (2-D or 3-D) in

capturing shape variation. Given 2-D or 3-D data, the contour of the sampling curves is nearly

identical between datasets with covariance values of 0.1 and 0.5. Likewise, the number of land-

marks at median fit values between simulated datasets are fairly similar between the two

covariance values (Figs 2–5: text in right-most plots). However, lower covariation noticeably

increases the variance in fit values, particularly when landmark sampling is relatively poor.

Comparisons between simulated 2-D and 3-D datasets suggest that 3-D landmarks are associ-

ated with lower variance in fit values and emergence of plateaus with relatively fewer land-

marks than 2-D data. This observation is corroborated by fewer 3-D landmarks generally

required to attain median fit values of 0.9 and 0.95. These results suggest that, given equivalent

covariation structure, 3-D landmarks are more effective at capturing shape variation than 2-D

landmarks because they are able to contain more information (i.e., additional z coordinates)

that help distinguish the shapes of specimens.

The empirical datasets indicate varying levels of stationarity in the characterization of shape

variation. The sampling curve from the wasp wing data (Fig 6A) resembles that of simulated

data with 10 specimens and 10 landmarks. Despite the lack of a distinct plateau, the variance

in fit values steadily decreases as the landmark sampling approaches the parent dataset. This

result suggests that the convergence to the parent dataset is genuine although confirming the

authenticity of the asymptotic trajectory requires sampling additional landmarks to extend the

sampling curve. In this dataset, the median fit values of 0.90 and 0.95 require 12 and 15 land-

marks (63.1, 78.9%), respectively, of the 19 total landmarks.

Relative to the wasp wing data, the crocodylian data exhibit a more robust plateau (Fig 6B)

and proportionately fewer landmarks (33.3 and 51.3% of 78 landmarks respectively) to reach

median fit values of 0.90 and 0.95. Notably, the addition of certain landmarks shows marked

improvement in fit values (Fig 6B: top arrow). These saltations in fit signify that some land-

marks are critical for capturing shape information (e.g., landmarks at the edges of structures

that anchor the alignment and global signal in shape variation).

Finally, the placental femur and baboon skull data generate sampling curves that resemble

those from simulated data with 10 specimens and 80 landmarks (Fig 6C and 6D). This obser-

vation implies that these datasets have robustly characterized shape variation. For these data-

sets, merely 14.3% and 25.1% of landmarks are needed to capture equivalent fidelity in shape

information (fit� 0.95), respectively. As such, a substantial portion of the landmarks and

semi-landmarks from these datasets could be removed while retaining the fidelity in character-

izing shape variation.

Based on both empirical and simulated shape data, the sampling curves (Figs 2–6) show

that landmark data are statistically consistent in characterizing shape variation. Although sam-

pling one additional landmark may, in some cases, reduce the fit of a subsampled data set to

the parent data (Fig 6B: bottom arrow), the median values for each subset of landmarks (Figs

2–6: dark lines) consistently converge to the pattern of shape variation of the parent dataset.

Therefore, landmark-based geometric morphometric data generally converge to the shape dis-

tribution of the parent dataset as more landmarks are sampled. In contrast, the evidence of sta-

tistical efficiency of landmark-based data is mixed. For empirical datasets, the variance in fit

values diminishes as additional landmarks are sampled (Fig 6), whereas sampling curves from

How many landmarks are enough?
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simulated shape data (Figs 2–5) show increasing variance in fit initially, followed by decreasing

variance after an inflection point (i.e., location of highest curvature).

Sampling curves for centroid size illustrate that very few landmarks are necessary to accu-

rately capture size variation among specimens (Fig 7). In all four data sets, high fidelity in size

information (fit� 0.95) requires only three landmarks (i.e., minimum number of landmarks

required to define a shape). No more than eight landmarks are needed to reach a median fit

value of 0.99 for any empirical data set examined here.

Fig 2. Sampling curves from performing LaSEC on a simulated 2-D dataset of simulated shapes with variable number of specimens and landmarks with

covariance of 0.1. Each gray line indicates fit values from one iteration of subsampling. Thick, dark line denotes median fit value at each number of landmarks.

Numbers within plots are the number of landmarks at median fit value of 0.90, 0.95, and 0.99.

https://doi.org/10.1371/journal.pone.0198341.g002

How many landmarks are enough?
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Discussion

Properties of landmark data

Running LaSEC on multiple types of data demonstrates important properties of landmark-

based GM data. The effect of inter-landmark covariance structure on shape characterization is

unclear based on simulated data analyzed in this study. As anticipated, however, the results

suggest that fewer 3-D than 2-D landmarks are generally required to attain equivalent fidelity

in shape characterization. In addition, both simulated and empirical data show that landmark

Fig 3. Sampling curves from performing LaSEC on a simulated 2-D dataset with variable number of specimens and landmarks with covariance of 0.5. Each gray

line indicates fit values from one iteration of subsampling. Thick, dark line denotes median fit value at each number of landmarks. Numbers within plots are the number

of landmarks at median fit value of 0.90, 0.95, and 0.99.

https://doi.org/10.1371/journal.pone.0198341.g003

How many landmarks are enough?
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data are statistically consistent for capturing shape and size variation, where incorporating

additional landmarks will steadily improve the characterization of shape variation, at least as

measured by PSS. Whether landmark data are statistically efficient is less clear. For the empiri-

cal datasets used in this study, the variance in fit value diminishes consistently with larger land-

mark sampling, implying that landmark data are statistically efficient (Fig 6). The sampling

curves of simulated datasets, in contrast, are more nuanced, showing increasing variance in fit

values up to certain subsampling of landmarks, followed by a decreasing trend once the land-

mark sampling reaches a plateau in the curve (Figs 2–5). These conflicting outcomes suggest

Fig 4. Sampling curves from performing LaSEC on a simulated 3-D dataset with variable number of specimens and landmarks with covariance of 0.1. Each gray

line indicates fit values from one iteration of subsampling. Thick, dark line denotes median fit value at each number of landmarks. Numbers within plots are the number

of landmarks at median fit value of 0.90, 0.95, and 0.99.

https://doi.org/10.1371/journal.pone.0198341.g004

How many landmarks are enough?
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that theoretically, landmark data are not necessarily statistically efficient, but they are likely to

be efficient for characterizing shape variation in biological systems.

Similar discrepancy exists between simulated and empirical data regarding the number of

landmarks required for stationarity in shape information. Simulated 2-D and 3-D data suggest

that stationarity in shape information requires the number of landmarks to exceed the number

of specimens (Figs 2–5). With the exception of simulated data with 80 specimens, landmark

sampling reaches a median fit value of 0.90 only when the number of landmarks equals or

exceeds the specimen count. Such data could dramatically reduce the power of parametric

Fig 5. Sampling curves from performing LaSEC on a simulated 3-D dataset with variable number of specimens and landmarks with covariance of 0.5. Each gray

line indicates fit values from one iteration of subsampling. Thick, dark line denotes median fit value at each number of landmarks. Numbers within plots are the number

of landmarks at median fit value of 0.90, 0.95, and 0.99.

https://doi.org/10.1371/journal.pone.0198341.g005

How many landmarks are enough?
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statistical tests or prohibit certain procedures, although recent methodological advancements

have mitigated this issue for some analyses [10,28,29]. The empirical data selected for this

study, however, indicate that equivalent fidelity in shape information is achieved with fewer

landmarks than specimens (Fig 6). Again, these discordant results are likely due to

Fig 6. Sampling curves from performing LaSEC on empirical datasets with respect to characterizing shape variation. (a) 2-D wasp wing data [24]. (b) 3-D

crocodylian skull data [25]. Arrows point to instances of saltations and decrease in fit value. (c) 3-D condylar surface semi-landmark data of placental mammal femora

[26]. (d) 3-D baboon skull data. Each gray line indicates fit values from one iteration of subsampling. Thick, dark line denotes median fit value at each number of

landmarks. Numbers within plots are the number of landmarks at median fit value of 0.90, 0.95, and 0.99.

https://doi.org/10.1371/journal.pone.0198341.g006

How many landmarks are enough?
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fundamental differences in the structure of shape variation between simulated and empirical

datasets. Compared to coordinates sampled from a normal distribution under a single vari-

ance-covariance scheme, shape variation in biological systems is expected to be far more struc-

tured due to myriad factors, such as physical, developmental, and functional constraints, that

differentially act on taxonomic groups and anatomical structures. Hence, proportionately far

fewer landmarks are expected to be necessary for robustly capturing the shape variation of bio-

logical specimens than with simulated shapes.

Nevertheless, landmark data will each contain a unique structure in shape variation. For

instance, denser landmark sampling is generally expected for capturing morphological varia-

tion within a population than across major clades. While analyzing simulated data helps iden-

tify clear signs of robust shape characterization, the idiosyncrasies of individual datasets

prevent a formulation of unambiguous principles regarding adequate number of landmarks

that are extensible across all empirical datasets. As such, the quality of landmark data need to

be assessed for individual datasets.

In addition to shape characterization, this study also clearly shows that landmarks capture

size variation very effectively, requiring no more than eight landmarks in all empirical data

sets examined in this study (Fig 7). This result corroborates a previous study indicating that

small intraspecific sampling provides accurate estimation of mean centroid size, whereas more

than 20 specimens are needed to estimate the mean shape of species [5]. Related studies have

also shown that one-sided data are able to characterize size variation as effectively as bilaterally

sampled data [6,7]. This efficacy of landmarks in characterizing size variation is expected

because size is a univariate trait that correlates strongly with linear distances measured on cor-

responding specimens. Because inter-landmark distances are inherent in landmark data, very

few landmarks are typically needed for robust characterization of size variation.

A guide for using LaSEC

LaSEC is an exploratory tool for assessing whether a given landmark sampling robustly char-

acterizes the shape variation of specimens under study. Its output provides three related but

valuable pieces of information: (1) stationarity in shape and size information; (2) evidence of

over- or under-sampling of landmarks; and (3) minimum number of landmarks needed to

retain equivalent shape information. The function LaSEC is included in the LaMBDAR pack-

age (www.github.com/akiopteryx/lambda), and performed by running lasec(coord.
data, n.dim, iter, show.progress), where coord.data is the coordinate data

in a 2-D matrix format (rows of specimens and columns of coordinate variables), n.dim
denotes the physical dimensionality of the data (2 or 3 for 2-D and 3-D data respectively),

iter specifies the number of rounds of subsampling (default is 1,000), and show.prog-
ress is the option to display a progress bar during the analysis. Although this study focuses

on biological systems, LaSEC can be run on any landmark-based coordinate data.

After the completion of subsampling rounds, LaSEC produces sampling curves that visual-

ize the degree of stationarity in characterizing shape variation among specimens. Distinct

signs of stationarity include the presence of a plateau and diminishing variance in fit value.

Absence of these features (e.g., Fig 6A) implies that the given landmark scheme is unreliable

with respect to capturing shape variation. Consequently, re-evaluation of data with additional

landmarks is necessary to ensure that accurate shape information is being collected. The ade-

quate number of additional landmarks will depend on the intended specimen sampling, the

morphological features under study, as well as the locations and definitions of individual land-

marks. In some cases, sampling additional landmarks may be difficult. If discrete anatomical

landmarks have been exhausted, one can consider employing curve or surface semi-landmarks
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for denser characterization of shape [9,14]. Other cases where additional landmarks would

exclude damaged, but critical, specimens may require imputation and retrodeformation tech-

niques to estimate missing or deformed landmarks [30–32].

Alternatively, if the sampling curve exhibits indicators of robust characterization of shape

variation, then the user could perform subsequent analyses with the current landmark scheme

Fig 7. Sampling curves for subsampled empirical data with respect to characterizing centroid size variation. (a) 2-D was wing data [24]. (b) 3-D crocodylian skull

data [25]. (c) 3-D condylar surface semi-landmark data of placental mammal femora [26]. (d) 3-D baboon skull data. Each gray line indicates fit values from one

iteration of subsampling. Thick, dark line denotes median fit value at each number of landmarks. Numbers within plots are the number of landmarks at median fit value

of 0.90, 0.95, and 0.99.

https://doi.org/10.1371/journal.pone.0198341.g007
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or remove a proportion of landmarks while maintaining equivalent shape information. For the

latter case, the sampling curve provides a visual guide to how many landmarks can be removed

confidently without jeopardizing the characterization of shape variation. A list of median fit

values (output median.fit) offers a more quantitative approach, where the user could

remove a certain number of landmarks down to a specific fit value (e.g., fit> 0.95). In the cro-

codylian dataset, for example, a median fit value of 0.95 is maintained even with the removal

of 28 of the 78 landmarks (Fig 6B). The issue of precisely which landmarks to remove is dis-

cussed below but ultimately decided by the investigator. Once landmark sampling is appropri-

ately reduced, performing LaSEC on a new dataset is unnecessary. Even if the sampling curve

of the new dataset lacks signs of stationarity, prior analysis has already demonstrated that the

shape variation characterized by the new landmark scheme is consistent with that of the parent

dataset. By providing qualitative and quantitative justifications for removing landmarks,

LaSEC has the potential to reduce the work load of future data collection, maintain power in

downstream analyses, and incorporate specimens with missing landmarks.

Furthermore, conducting LaSEC on previously published landmark data helps the user

evaluate the reliability of the results and conclusions. For instance, the output from the croco-

dylian dataset suggests that approximately 40 3-D landmarks are needed to accurately charac-

terize the shape variation in extant crocodylians (Fig 6B). Yet, Foth and colleagues collected

only 20 2-D landmarks from the skulls of the extant crocodylian Melanosuchus niger [33].

Although their smaller landmark sampling may capture the intraspecific shape differences

within M. niger, 40 3-D landmarks are needed to characterize the more pronounced interspe-

cific shape variation. Therefore, additional landmarks should be collected to be more certain

that the finer intraspecific shape variation in M. niger is being accurately characterized.

Given the crucial information it provides concerning data quality, I recommend perform-

ing LaSEC in the initial phases of data collection, where the user has sample landmarks from

specimens that collectively exhibit the breadth of morphological variation intended for the

study. Following this recommendation allows the investigator to determine whether greater or

fewer numbers of landmarks will be required for generating reliable results. If landmark sam-

pling is found to be inadequate, landmark sampling can be augmented to prevent further col-

lection of undersampled, potentially inaccurate, data. Conversely, if LaSEC suggests

stationarity in characterization of shape variation, then a strategic reduction of landmarks

could maximize sample size through faster digitization of specimens and accommodation of

specimens with missing landmarks.

Limitations of LaSEC

Although LaSEC provides valuable information on the quality of landmark data, it has few

notable limitations, at least in the current version. First, the analysis does not determine a pre-

cise number or proportion of landmarks that could be removed from the dataset. While the

number of landmarks at median fit values of 0.90, 0.95, and 0.99 could inform the number of

landmarks to remove, these cutoff points are arbitrary. This situation is akin to evaluating the

amount of burn-in to remove in a Bayesian analysis, where the user decides how much data to

remove based on the contour of the plot.

Second, the analysis does not identify which landmarks could be removed with minimal

consequences to data quality. Due to the naïve selection of landmarks in LaSEC, some sub-

samplings of landmarks are anticipated to be impractical and suboptimal (e.g., sampling land-

marks only from a restricted region of a structure). Hence, an informed removal of landmarks

by an investigator will likely result in greater congruence with the parent dataset than the

median fit values given by LaSEC. In practice, the user should confirm a high congruence
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(e.g., fit� 0.95) between an informed subsampled data to the parent data set using the pro-
test function in the vegan R package [19]. To illustrate, I removed 35 landmarks on the left

side of the skull from the crocodylian dataset to compare the parent dataset with landmark

data comprising median and right landmarks. The resulting fit value was 0.999 compared to

median fit value of 0.959 with the same number of landmarks (43 of 78 landmarks), indicating

that an informed subsampling will be superior to subsets of randomly selected landmarks with

respect to shape characterization.

Finally, LaSEC does not consider sliding semi-landmark alignments [9,15] due to chal-

lenges associated with tracking adjacent semi-landmarks during the subsampling procedure.

Moreover, implementation of sliding semi-landmarks may be insensible and ultimately cause

difficulty in the interpretation of results because the direction of sliding will fluctuate dramati-

cally based on random and often sparse subsampling of neighboring semi-landmarks. In this

study, empirical datasets with semi-landmarks were analyzed to examine results from data

with dense landmark sampling.

Conclusions

Despite these current limitations, LaSEC, included in the new LaMBDAR package, equips

investigators with a tool to systematically evaluate the quality and properties of landmark-

based GM data. Simulated datasets clearly establish two indicators of reliable landmark data:

the presence of a plateau in the resulting sampling curve and diminishing variance in fit values

as landmark sampling approaches the full set of landmarks. Both empirical and simulated data

demonstrate statistical consistency in landmark data for characterizing shape (and size) varia-

tion. While landmark data are not necessarily statistically efficient in this task, empirical data-

sets suggest that they are efficient at characterizing variation in biological shape. As landmark-

based GM data continue to accumulate at a rapid pace, LaSEC places the focus on the equally

important task of evaluating and refining these data—one that is vital to achieving accurate

understanding of morphological variation.
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S1 Fig. Sampling curve of crocodylian skull data based on correlation coefficients from

two-block partial least squares analysis. Note high correlation between subsampled and par-

ent datasets despite low visual correspondence in morphospace (Fig 1).

(TIF)

S1 Data and Code. ZIP-archived directory containing all computer programs. Note that

the code will not be updated after publication. The most recent version is available via GitHub:
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