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Abstract

In this paper, we propose a novel classification model for automatically identifying individu-

als with age-related macular degeneration (AMD) or Diabetic Macular Edema (DME) using

retinal features from Spectral Domain Optical Coherence Tomography (SD-OCT) images.

Our classification method uses retinal features such as the thickness of the retina and the

thickness of the individual retinal layers, and the volume of the pathologies such as drusen

and hyper-reflective intra-retinal spots. We extract automatically, ten clinically important reti-

nal features by segmenting individual SD-OCT images for classification purposes. The

effectiveness of the extracted features is evaluated using several classification methods

such as Random Forrest on 251 (59 normal, 177 AMD and 15 DME) subjects. We have per-

formed 15-fold cross-validation tests for three phenotypes; DME, AMD and normal cases

using these data sets and achieved accuracy of more than 95% on each data set with the

classification method using Random Forrest. When we trained the system as a two-class

problem of normal and eye with pathology, using the Random Forrest classifier, we obtained

an accuracy of more than 96%. The area under the receiver operating characteristic curve

(AUC) finds a value of 0.99 for each dataset. We have also shown the performance of four

state-of-the-methods for classification the eye participants and found that our proposed

method showed the best accuracy.

Introduction

Eye diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema

(DME) are amongst the most common causes of vision loss in our communities. The number

of people with AMD is expected to increase by�1.5 fold over the next ten years due to an

increase in aging population [1]. Similarly cases of DME are expected to grow exponentially

affecting over 300 million people worldwide in the next few years [2, 3]. In this paper, we have
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proposed an automatic classification method for people with AMD, DME, and people with

normal retinae using Random Forest (RF), a highly robust and efficient machine-learning

algorithm. The classification method might be able to be used to determine the severity level of

disease based upon their risk of progression and potentially serve as a prediction tool. A total

of ten features, based upon current clinical knowledge, have been extracted automatically from

the spectral domain optical coherence tomography (SD-OCT) retinal images of patients. We

have tested several machine learning algorithms such as support vector machine (SVM), Deci-

sion Tree, etc. Among them, RF has shown the best performance (more than 97% accuracy)

overall.

SD-OCT technology is a non-invasive method of obtaining images of the retina in 3D

where more information of the retina is available than is commonly the case when using 2D

imaging such as colour fundus photography (CFP) [4]. CFP cannot always identify signs of

disease within the retina such as cysts [2] nor provide any information on subtle changes in

the retina thickness or morphological information. SD-OCT uses the back-scattered light and

interferometer that uses a low coherence light source to image various tissue layers [5]. The

laser or infra-red light penetrates through the depth of the retinal tissue along a point and

reads data regarding the backscattered light intensity and coherence, creating what is known

as an axial scan (A-scan) shown in Fig 1(d) [6]. These single A-scans can be assembled linearly

across the tissue (green line in Fig 1(a))—making one cross-sectional image which is known as

a B-scan (Fig 1(c)), and a pool of parallel B-scans form a 3D structure of the retina and choroid

(Fig 1(b)). Anatomically the retinal tissues can be classified into ten layers with the choroidal

structure beneath the retina as shown in Fig 1(d) [7]. Different layers of the retina, the compo-

nents of the choroid and the pathologies such as drusen and Hyper-reflective Intra-retinal

Spots (HIS), are observable in the OCT image as shown in Fig 1(g) and 1(h) using the variation

of the intensities and coherence due to reflective nature of the tissues and their thicknesses,

Fig 1. Macula centred retinal image. (a) Near infra-red image; (b) Volume or 3D reconstruction of the retina from

OCT scans; (c) A B-scan image (cross-section of the retina through the green line in Fig a and b), (d) Retinal Layers are

delineated in a B-scan image, (e) and (f) show Optic disc centred enface and SD-OCT B-scan respectively, (g) and (h)

show drusen and hyper-reflective intra-retinal spots (HIS) in SD-OCT B-scan respectively.

https://doi.org/10.1371/journal.pone.0198281.g001
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vascular structures, pathologies, etc. [1, 5, 8, 9] Fig 1(d) shows a B-scan delineating the ten reti-

nal layers and choroid components [7]. The ten layers of the retina are: 1) Inner Limiting

Membrane (ILM); 2) Retinal Nerve Fibre Layer (RNFL); 3) Ganglion Cell Layer (GCL); 4)

Inner Plexiform Layer (IPL); 5) Inner Nuclear Layer (INL); 6) Outer Plexiform Layer (OPL);

7) Outer Nuclear Layer (ONL); 8) External Limiting Membrane (ELM); 9) Photoreceptor

Layer (PL); 10) Retinal pigment epithelium (RPE). The PL is divided into three segments, and

they are 1) Myoid Zone (MZ); 2) Ellipsoid Zone (EZ); 3) Outer Segment Layer (OSL). The

boundary between the RPE and the choroid is Bruch’s membrane (BM) [7, 10]. The two major

components of the choroid are the choroidal vessel and stroma [11]. The choroidal vessel is

sub-divided into three layers: the choriocapillaris (Cc), Sattler’s (Sat) and Haller’s (Hal) layers.

Most of the time, the boundaries between the RPE, Bruch’s membrane, and choriocapillaris,

known as RBC complex, are indistinguishable due to the signal attenuation of the image

[11, 12]. The retinal thickness is defined by the boundary of ILM-RNFL and RBC. Much of the

previous work on OCT image analysis has focused on the problem of retinal layer segmenta-

tion, which is a necessary step for retinal and its constitutive layer thickness measurements

[11, 12].

There has been some work on the automatic segmentation of the retinal layers, but only a

few methods are available for the classification of the SD-OCT volumes [13–15]. Among those

classification methods, most of them are binary classifier that is, classified into diseased or nor-

mal cases, not specific diseases such as AMD and DME. Almost all of those methods designed

the classification method using the texture information of the SD-OCT images. Fraccaro et al.

[15] developed a classification method using retinal pathology information, but they were

manually extracted features. To the best of our knowledge, there is no classification method

based on automatically segmented the retinal structure and pathological information. We dis-

cuss the background work on the classification method in section Literature Review.

In this paper, we propose a classification method of AMD, DME and normal individuals.

The system has also been tested for the binary classification case that has also shown excellent

performance. There are a total of ten retinal features extracted from the SD-OCT images, and

all of these are considered clinically important features based on the changes of the retinal

structure and pathology due to AMD and DME. The retinal layers are automatically seg-

mented using our method [16]. We have proposed a quantification method for pathology with

the help of segmented layer. The features constructed with two parameters each from the reti-

nal thickness, the complex of ELM to RPE layer, and the RPE layer; two parameters from the

boundary curviness of the retinal layers (OPL-ONL and MZ-EZ), and two parameters for the

volume of the RPE detachment (drusen) and hyper-reflective intra-retinal spots. Several

machine-learning approaches have been used to test the performance of the feature selection

as well as a comparison between them. Evaluation is performed on seven datasets from four

different sources including two public dataset [17, 18] (see section Dataset and Experiment

Setup and Result) with fifteen-fold cross validation such that each test includes one case of

each for the data set containing 45 individuals. The results show high accuracy on all seven

datasets and higher than the original work on the public dataset [17].

Contributions of the paper are as follows.

1. Automatic classification of SD-OCT volumes of patients into AMD, DME, and normal

individuals.

2. Automatic feature extraction from the SD-OCT volumes that are related to the changes of

the retinal structure due to AMD and DME (such as thickness of the retina and retinal lay-

ers, drusen).

Classification of diseased retina using SD-OCT images
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Literature review

There are few works available that classify patients into various diseases or normal based on

the retinal SD-OCT images. Most of these works use a binary classifying system into diseased

or normal. The features for classification purposes are mostly on texture information of the

image and are created using Local Binary Pattern (LBP), a histogram of oriented gradient and

other texture analysis. These features are filtered using principle component analysis (PCA),

Bag-of-word, and k-means cluster, etc. The disadvantage of the texture information is that it is

more susceptible to noises and device oriented due to different intensity variation among

them. On the other hand, retinal structure information does not depend on the device and is

less susceptible to noise. That is why the classification method based on retinal structure infor-

mation is more reliable than the texture-based classification. Fraccaro et al. [15] showed that

Random Forest algorithm had superior performance when compared to One-rule, Decision

Tree, Logistic Regression, AdaBoost, and Support vector machine for the classification of dis-

ease. A brief summary of the classification methods used in eye disease is as follows.

Liu et al. [13] proposed a method for macular pathology detection in OCT images using

Local Binary Patterns (LBP) and gradient information as attributes. The method starts by

aligning and flattening the images, and then a 3-level multi-scale spatial pyramid is created.

From every level of the pyramid, edge and LBP histograms are extracted in each block. The

obtained histograms are used to form a global descriptor. The principle component analysis is

used to reduce the dimension of the global descriptor. Finally, a two-class, non-linear support

vector machine is used to train the system and classify the SD-OCT volume into normal mac-

ula and three macular pathologies (macular hole, macular edema, and AMD). They used 193

volumes from 136 subjects for training the system and 58 volumes from 37 subjects for the

testing the system. The cross-validation area under the receiver operating curve (AUC) on the

development dataset was 0.976, 0.931, 0.939, and 0.938, and the AUC result on the holdout

testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, Macular Hole

(MH), Macular Edema (ME), and AMD, respectively.

Albarrak et al. [14] proposed a decomposition based approach for classifying the partici-

pants into normal or AMD cases. After de-noising the image, they flatten the image and

cropped an interest of volume for extracting 192 histogram bins as features using a normal

LBP histogram and a Histogram of Oriented Gradients (HOG) for LBP-TOP on XY, XZ, and

YZ planes. A Bayesian network classifier was then used to categorise the subjects. The pro-

posed technique was evaluated using ten-fold cross validation to 140 volumetric OCT images

and demonstrated a promising performance with the best AUC value of 94.4%.

Srinivasan et al. [17] proposed a classification method to distinguish DME, AMD, and nor-

mal SD-OCT volumes. After de-noising, the image using the sparsity-based block matching

and 3D-filtering, flatten the image based on estimated RPE layer position and crop the region

of interest for extracting features for the classifier. The features extracted for each slice of a vol-

ume using HOG and a linear Support Vector Machines (SVM) is used for classification. On a

dataset of 45 patients equally subdivided into the three aforementioned classes, this method

leads to a correct classification rate of 95.56% for DME, AMD and normal patients.

Venhuizen et al. [19] also proposed a method for OCT images classification into AMD and

normal participants using the Bag-of-Words (BoW) models. The method selected the key

points in each B-scan from where 9 × 9 patches are extracted around each key point. The

dimension of the patches is reduced by using the PCA and created a codebook using k-means

clustering. The obtained codebook from the training is used to represent each OCT volume as

a feature vector occurrence histogram. Finally, Random Forest (RF) with a maximum of 100

Classification of diseased retina using SD-OCT images
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trees is used for the classifier. The method achieved an AUC of 0.984 with a dataset of 384 (269

AMD, 115 control) OCT volumes.

Fraccaro et al. [15] proposed a method for AMD and normal participant classification from

SD-OCT images using various machine learning approaches and showed Random Forest per-

form best compare to others. They have used manual segmentation of the druse and other

pathologies from 912 volumes of 487 patients. They tested Decision Tree, Logistic Regression,

AdaBoost, Support vector machine and Random Forest algorithms. Regarding AUC, random

forests, logistic regression and AdaBoost showed a mean performance of (0.92), followed by

SVM and decision trees (0.90).

Lemaitre et al. [2] proposed a method for automatic classification of patients into DME and

normal subjects from SD-OCT volumes. Their method was based on LBP features to describe

the texture of OCT images and dictionary learning using the BoW models. The images were

divided into local patches and extracted a dense set of LBP descriptors. They had extracted

3D-LBP features from the entire OCT volume and used Random Forest classifier. They had

used two datasets from two different sources and consisted 32 (16 DME and 16 Normal) vol-

umes from Singapore Eye Research Institute (SERI) and 30 (15 DME and 15 Normal) from

Srinivasan et al. [17]. They achieved approximately 87% sensitivity and 75% specificity over

the two datasets.

Sidibe et al. [20] proposed a classification model for DME patients by modelling the appear-

ance of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal

OCT images as outliers. The classification of an OCT volume was based on the number of

detected outliers. They used the same dataset of Lemaitre et al. [2] and showed better output

than Lemaitre et al. [2] and Venhuizen et al. [19]. They achieved a sensitivity and a specificity

of 100% and 80% on the Duke dataset [17].

In conclusion, the above methods do not consider structural features of the retina such as

reduction in layer thickness, drusen characteristics, etc. whereas our method is based upon fea-

tures that are considered clinically important.

The proposed method

The methodology of classification of the diseased eyes is formulated as a standard classification

procedure as shown in Fig 2. Since we use the segmentation method proposed in [11] to

extract retinal layer boundaries there is no need for pre-processing or noise reduction of the

input images. After the segmentation, ten retinal features are extracted as described in section

The Feature Extraction Process. The difference between boundaries of a layer along the A-

scan is considered as the thickness of the layers and retina. The pathologies such as drusen and

Hyper-reflective Intra-retinal Spots (HIS) are identified using position and intensity profiling

of the image. Layer segmentation is used to identify the position and hence the type of pathol-

ogy. For example, drusen are identified using the non-uniformity of thickness of the RPE layer

Fig 2. The basic flow diagram. The flow diagram of the proposed classification method.

https://doi.org/10.1371/journal.pone.0198281.g002
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and by simply counting the number of pixels in the drusen, the volume of the drusen is

derived. Training and testing are two steps of the machine learning algorithm where training

is used to create the classification model, and testing is used to evaluate the performance of the

model. In the next two subsections, a brief description of automatically segmented retinal lay-

ers and extracting the features are discussed.

Segmentation of the boundaries of the retinal layers

In general, the borders of the tissue layers of the retina are smooth horizontal lines in normal

persons. This property can be exploited for segmentation of layers by mapping the problem as

the shortest path graph problem. The graph nodes are formed using the edge pixels found with

Canny Edge Detection Algorithm. Edge weights between the nodes are computed using fea-

tures such as distance between the nodes, the slope similarity to a reference line and node’s

non-associativity (pixels not satisfying associated layer property) to the layer [11]. Once such a

graph is constructed, the layers boundary can be determined by computing the shortest path

between the start A-scan and end A-scan of a given B-scan image.

Also, the tissues of the retina are continuous in adjacent B-scans when the distance between

the adjacent scans are very close. Therefore, we expect very small changes of a boundary from

one B-scan to the next. This information helps to correct boundaries by using neighbourhood

information. Therefore, we employ 3D segmentation in our method to overcome 2D segmen-

tation failures due to noise or tissue structure or pathologies. Our method first detects the

boundaries sequentially in the order of high contrast and the maximum gradient intensity to

low contrast and minimum gradient intensity of the boundaries. This approach helps to detect

the low contrast boundaries in a small region of interest (ROI) since we define ROI using the

already detected boundaries and adjacent B-scans. The reduction of the ROI helps to improve

the accuracy and efficiency of the detection even in the presence of pathologies. The sequence

of the detection of boundaries is 1) ILM-RNFL, 2) RBC, 3) MZ-EZ 4) IZ-RPE 5) OPL-ONL, 6)

ONL-ELM, 7) EZ-OSL, 8) ELM-MZ, 9) INL-OPL, 10) IPL-INL, 11) RNFL-GCL, and 12)

GCL-IPL. The layer-specific region of interest selection and approximation of three prominent

reference layers makes our method efficient, accurate and robust. Fig 3 shows a basic flow

Fig 3. The basic flow diagram of the segmentation algorithm. The basic flow diagram of our proposed 3D

segmentation.

https://doi.org/10.1371/journal.pone.0198281.g003
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diagram of our proposed 3D segmentation. A brief description of the segmentation of the

MZ-EZ boundaries is explained in Fig 4. In Fig 4, a target SD-OCT B-scan is shown in (a);

edge pixels after applying Canny edge detection highlighting in (b); since MZ-EZ boundary

have positive intensity gradient, we select only those edge pixels with positive gradient as

shown in (c); the candidate pixels in the region of interest (ROI) which is defined by the upper

and lower boundaries is shown in (d); A magnified image of the red region of (d) is shown in

(f), each colour represents a different pixels-group and black circles represent the end pixels

which are the nodes of the graph; The graph representing edge pixels-groups of (f) is shown in

(e). To make it clear, (e) shows only a partial graph and it does not show edges coming into the

graph and leaving the graph to its neighbouring edge pixel-groups; pixel-groups lying on the

shortest path of the graph is shown in (g); reconstructed MZ-EZ Boundary (yellow line) is

detected after fitting a curve as shown in (h).

The feature extraction process

Ophthalmologists have defined a set of anatomical signs from the changes of the retinal struc-

tural information that are seen in retinal diseases such as AMD and DME [21–23]. The signs

include abnormality of the retina and its layer thickness and reflectivity [21, 22] such as where

the OSL thickness was reported to be reduced significantly in early AMD patients [24]. Oph-

thalmologists have also defined presence of pathologies such as drusen and RPE detachments

Fig 4. MZ-EZ boundary detection steps of SD-OCT B-Scan Image. (a) SD-OCT B-Scan image; (b) Image after

applying Canny edge detection highlighting edge pixels; (c) Image with highlighted edge pixels having positive

intensity gradient; (d) Image with the candidate pixels in the ROI which is defined by the upper and lower boundaries

depending on the target boundary; (e) The partial graph of the full connected graph representation of the boundary

detection problem; (f) A magnified image of the red region of (d), each colour represents a different pixels-group and

black circles represent the end pixels which are the nodes of the graph; (g) Image with highlighted pixel-groups lying

on the shortest path of the graph; (h) The MZ-EZ Boundary (yellow line) is detected after fitting a curve.

https://doi.org/10.1371/journal.pone.0198281.g004
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for AMD and intra retinal cysts for DME [22]. As a consequence, the proposed method has

used these signs of DME and AMD as features for the classification method. A total of ten fea-

tures are extracted via a process as follows.

Feature 1: Volume of the HIS. The presence of the hyper-reflective intra-retinal spots

(HIS) in the retinal SD-OCT volumes present in diabetic eyes, can occur even when clinical

retinopathy is undetectable clinically [23]. For this reason, we have chosen the volume of the

HIS as a feature. It is characterised by the brighter intensity and located in the inner retina

mostly in INL to ONL layer as shown in Fig 1(h). Since we have segmented the layers, we

searched for HIS only in these layers. In general, these layers are darker than RNFL and RPE

layers except for the HIS pixels. So the pixels, which are located in INL to ONL layer and have

an intensity value more than the mean intensity of the RNFL and RPE layers, are defined as

HIS pixels. The total number of pixels multiplied by the resolution of the image is considered

as the volume of the HIS. Fig 5 shows an example of the automatic segmentation of HIS by our

proposed method.

Feature 2: Volume of the drusen. The presence of drusen in the retinal SD-OCT images

are a key risk factor for AMD patients [21, 22]. For this reason, we have chosen the volume of

a druse as a feature for the classification method. They are characterised by the RPE layer

detaching from the BM and intensities in the detached area are lower than the RPE layer as

shown in Fig 1(g). This detachment changes the shape and position of the upper few layers all

the way to ELM layer as shown in Fig 6(a). The thicknesses of ELM to BM layer are computed

and a first order polynomial is used to fit the thickness with respect to horizontal position. If

the value of the thickness deviates from the fitted value of the polynomial it is considered as

potentially an area of drusen. If the intensity ratio between upper and lower few pixels in the

potential drusen area is greater than 1.3 (set empirically), then it is considered to be drusen.

The total number of pixels multiplied by the resolution of the image is considered as the vol-

ume of the drusen. Fig 6 shows an example of the automatic segmentation of the drusen area

by our proposed method and a 3D view of drusen in the SD-OCT volume.

Feature 3: Curviness of the MZ-EZ boundary. The curviness (non-straightness) of the

MZ-EZ boundary is an effect of RPE detachment and drusen for AMD. We have proposed a

method to compute the curviness of a boundary that is shown in Algorithm 1. In step 1, the

position of the RBC boundary is subtracted from the given boundary to normalise line the

position. A constant value (α = 3) is used to penalise a position of the boundary as curviness.

For example, if deficiency of the boundary from the first order polynomial value is more than

α, we consider them as curvy and penalise otherwise they are not penalised. Another constant

value (δ = 5) is used to find the peak of the boundary. For example, a position of the boundary

is defined as peak, if it has at least δ difference between the local maxima and the local minima.

A value is considered local maxima if that value is more than one of neighbours but not less

than any of the neighbours. Similarly, a value is considered local minima if that value is less

Fig 5. An example of HIS segmentation. (a) an SD-OCT B-scan (b) manual ILM-RNFL boundary (red line) and HIS

(green colour) (c) automatically detected ILM-RNFL boundary (red line) and HIS (green colour).

https://doi.org/10.1371/journal.pone.0198281.g005
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than one of the neighbours but not greater than any of the neighbours. This will ensure there

is one local maxima between two local minima and vice versa. The nearest two local maxima

and minima is removed if the difference between them is less than δ. This step is repeated for

removing all neighbour local minima and maxima with difference less than δ. Fig 7 shows the

curviness of different boundaries.

Algorithm 1 Curviness of a given boundary

Input: The boundary of RBC (BRBC) and given (BGiven).
Output: The value of curviness (C).
1: NL = BRBC—BGiven.
2: Compute first order polynomial P1

NL using NL
3: Df = jNL � P1

NLj

4: C1 = Σi�(Df>α))Dfi
5: LMM = localMaxMin(NL)
6: Repeat until there is at least one minDiffNeigh(LMM)<δ
7: Remove Smallest Difference Pair in LMM
8: End Loop
9: C2 = Number of Local Maxima in LMM
10: C = C1 × C2.
α is the maximum deficiency value for not a curve. localMaxMin(NL) is a
function that gives the local maxima and minima in the NL and stored
into LMM; minDiffNeigh(LMM) is a function which gives minimum differ-
ence between neighbour minima and maxima.

Feature 4: Curviness of the OPL-ONL boundary. The curviness of the OPL-ONL

boundary is an effect due to the Cyst and HIS exist for retinal disease DME. The curviness of

Fig 6. An example of drusen segmentation. (a) an SD-OCT B-scan with delineation of drusen by the blue color (b)

Drusen in 3D view of an SD-OCT volume of an AMD patient.

https://doi.org/10.1371/journal.pone.0198281.g006
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this boundary is computed using Algorithm 1 with same constant values as MZ-EZ curviness

(Feature 3).

Feature 5-10: Thickness parameters of the structures. Six more features from three

structures, Retina, Complex of EZ to RBC layers, and RPE layer are quantified as features

shown in Fig 8. Two features from each of the structure are added to the feature list. The thick-

nesses of these structures of the retina have changed significantly due to the retinal diseases

AMD and DME [15, 24]. For this reason, we have added mean and 70th percentile of the thick-

ness value of these structures as features for the classification method. The thickness of the

structure is computed by the difference of the position of the enclosed boundaries such as the

thickness of the retina is computed by ILM-RNFL and RBC boundaries. Similarly, the thick-

ness of the complex of EZ to RBC layer is computed by ONL-EZ and RBC boundaries, and the

thickness of the RPE layer is computed by IZ-RPE and RBC boundaries. The thickness is then

smoothed for reducing the possible error in the segmentation by applying the Gaussian filter.

Then these smooth thickness values are used for computing the features.

Dataset and experiment setup

We obtained SD-OCT images from four sources: Duke University [17], Centre for Eye

Research Australia (CERA), New York University (NYU) and Tian et al. [18]. The Duke Uni-

versity provided 45 subjects consisting of 15 normal, 15 AMD and 15 DME. CERA provided

20 Normal and 162 AMD subjects; NYU provided 14 normal subjects and Tian et al. provided

10 normal subjects. Among these four sources Duke University and Tian et al. images are pub-

licly available. CERA images have 512 × 1024 × 49 voxels per subjects of SD-OCT volumes

acquiring from Spectralis SD-OCT (Heidelberg Inc., Heidelberg, Germany). New York Uni-

versity images have 512 × 1024 × 49 voxels per subjects of EDI-OCT volumes acquiring from

Spectralis SD-OCT (Heidelberg Inc., Heidelberg, Germany). The study was approved by the

Institutional Review Board of The University of Melbourne and the Human Ethics Committee

Fig 7. The curviness of different MZ-EZ boundaries. The curviness of different MZ-EZ boundaries (red colour) with

a different curve using our proposed method. RBC boundary is in green colour.

https://doi.org/10.1371/journal.pone.0198281.g007
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of the Royal Victorian Eye and Ear Hospital. Written informed consent conforming to the

tenets of the Declaration of Helsinki was acquired from all participants. Using these four

sources of images, we constructed seven datasets see Table 1. D1 is constructed with normal

and DME subjects because Venhuizen et al. [19], Lemaitre et al. [2] and Sidibe et al. [20] report

their methods performance on this partial data of Duke University. The datasets is constructed

to show the performance of our proposed method in different sources of images and combine

sources.

We are aiming to make public our collected dataset both CERA and NYU and currently, we

are seeking ethics clearance from two medical organisations. Once approved, we will provide

the download link and we expect do it before final publication of this paper. However, our

used features of the subjects for the model are available in https://tinyurl.com/y7vy2lmr.

Several machine-learning algorithms are used to compare the accuracy of the classification

model for two and three class classifications of eye patients. The machine-learning algorithm

are Logistic Regression Model; Support Vector Machine with two kernel functions, Linear and

Radial basis function; AdaBoost, Naive Bayes Model, Decision Tree with Regression and

Fig 8. A volumetric image of the retina and the choroid. (a) A 3D render image of the retina with choroid

constructed from an SD-OCT volume. (b) Segmented layers of the retina and choroid (c) The complex of the EZ, IZ,

and RPE in a different colour in the gray-scale retinal SD-OCT image.

https://doi.org/10.1371/journal.pone.0198281.g008
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classification model; and Random Forest (RF); two class classification model categories the

subjects into normal and diseased, while three class classification model categories into AMD,

DME and normal. We have used Matlab default library function for each of the machine learn-

ing algorithms’ implementation [25]. We have performed k-fold cross validation with k = 15

for all machine learning algorithm on both datasets this way we make sure that each test fold

has at least one instance of each case tested as in [17], In k-fold cross validation test, a given

dataset is randomly divided into k parts (fold) where (k-1) folds of subjects are used for train-

ing the classification model and remaining one fold of subjects are used to test the model. The

system is executed k times so that each fold of the subjects must be used once for testing the

model. Since the given dataset is divided randomly into folds and the performance of the clas-

sification model depends on the training data, so the performance of the model varied in each

iteration. For this reason, we have repeated the k-fold cross validation test 10 times and average

accuracy (total number of successfully classified subjects divided by the total number of sub-

jects) is defined as the model’s accuracy. The optimal parameters of the classification algo-

rithms are selected for each fold using a portion of training data as validation data. Once the

optimal parameters for the fold are chosen the model is learned using the whole training data

and the model is tested using the test data. The optimal parameters chosen are number of trees

for RF and Kernel scale for SVM.

Result & discussion

The public data available by Srinivissan et al. [17] has 45 subjects and it contains three groups

(Normal, DME and AMD) each containing 15 subjects. A part of this dataset (Normal and

DME) is used by several researchers, and they are Lemaitre et al. [2] and Sidibe et al. [20].

These two researchers have also shown the performance of Venhuizen et al. [19] on the same

dataset. So it is one of the best and accurate way to compare the performance of the methods

on this partial dataset between our proposed method and the state -of-the-art methods. The

comparison between state-of-the-art methods in terms of sensitivity, specificity, f1-score, accu-

racy and AUC value on this partial Duke dataset (D1) are shown in Table 2. Since Lemaitre

et al. [2] and Sidibe et al. [20] have reported the performance of the classification model for

two classes (Normal and DME) using sensitivity and specificity on the partial data of Duke

dataset (only normal and DME patients), we have also followed the same approach for com-

parison purposes. We have reported the performance of Venhuizen et al. [19], Lemaitre et al.

[2] and Sidibe et al. [20] on D1 dataset (only DME and Normal patients) from Sidibe et al. An

Area Under the receiver operator characteristics Curve (AUC) value was not reported by these

researchers which is why the corresponding cells in Table 2 contain “NA”. In the following

paragraph, we explain the outcome of each method in details.

Table 1. Constructed datasets from four sources.

Dataset Source Normal AMD DME

D1 Duke University 15 0 15

D2 Duke University 15 15 15

D3 CERA 20 162 0

D4 Duke University + CERA 35 177 0

D5 Duke University + CERA 35 177 15

D6 Duke University + CERA + NYU + Tian 59 177 0

D7 Duke University + CERA + NYU + Tian 59 177 15

https://doi.org/10.1371/journal.pone.0198281.t001
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The sensitivity of Venhuizen et al., Lemaitre et al. and Sidibe et al. are less than 90, Srinivis-

san et al. achieve 100 and our proposed method achieve 94.67. On the other hand, Srinivissan

achieve less than 90 for specificity while Lemaitre et al., Sidibe et al. and our proposed method

achieves 100. Another important metric for the performance measurement is f1-score, where

our proposed method achieves the highest value that is 97.22 and second highest value (93.75)

is achieved by Srinivissan et al. Our proposed method achieve the highest value not only for

f1-score but also for accuracy which is more than 97 where second highest value (93.33) is

achieved by Srinivissan et al. and Lemaitre et al. We have also reported the AUC value which is

not reported by these state-of-the-art methods. Liu et al. [13], Albarrak et al. [14] and Fraccaro

et al. [15] use different dataset and not available for others, as a result, there is no way to com-

pare the performance of methods against them. It might be possible to compare with them if

we can imitate their implementations and apply on our dataset which is also not accurate

always due to many choices of parameters. As a result, it is not possible to give a proper com-

parison with them. Although it is not a proper way to claim our method is better than their

based on their reported performances of the methods, but regarding the AUC value, it is clear

our method is better than them. Since all these reported methods except Fraccaro et al. use

image intensity-based features for classification. We can see from the result that image inten-

sity-based features are less accurate than retinal structure-based features. Also, Fraccaro et al.

use druse and other pathologies quantity where we have used pathologies quantity as well as

curviness of the layers which increase the accuracy. From these observations, it is clear that ret-

inal layers’ changes are an important set of features for the classification problem.

We have performed more experiment on larger datasets (D1-D7, see Table 1) for our pro-

posed classification method and reported in Table 3. Table 3 shows sensitivity, specificity,

Table 2. Performance of four state-of-the-art and proposed methods on partial Duke dataset (D1) considering only normal and DME patients (because the Venhui-

zen et al., Lemaitre et al., and Sidibe et al. dataset only used these images).

Metric Srinivisan et al. Venhuizen et al. Lemaitre et al. Sidibe et al. Proposed

Sensitivity 100 71.42 86.67 80 94.67

Specificity 86.67 68.75 100 100 100.00

f1-score 93.75 70.47 92.86 88.89 97.22

Accuracy 93.33% 70.0% 93.33% 90.00% 97.33%

AUC value NA NA NA NA 0.99

https://doi.org/10.1371/journal.pone.0198281.t002

Table 3. The metric in mean (standard deviation) of 10 iterations on 15-fold cross-validation test for the proposed classification model using Random Forest.

Dataset # of class Sensitivity Specificity f1-Score Accuracy AUC

D1 2 94.67(4.22) 100.00(0.00) 97.22(2.23) 97.33(2.11) 0.99(0.00)

D2 2 96.67(1.57) 100.00(0.00) 98.30(0.81) 97.78(1.05) 0.99(0.00)

3 96.89(2.15) 0.99(0.00)

D3 2 99.14(0.32) 85.00(0.00) 98.65(0.16) 97.58(0.28) 0.99(0.00)

D4 2 98.64(0.40) 88.86(2.11) 98.23(0.33) 97.03(0.55) 0.99(0.00)

D5 2 98.28(0.25) 88.57(1.35) 98.10(0.18) 96.78(0.30) 0.99(0.00)

3 94.63(0.54) 0.99(0.00)

D6 2 98.42(0.45) 97.29(0.88) 98.75(0.33) 98.14(0.50) 0.99(0.00)

D7 2 97.60(0.44) 96.10(0.82) 98.19(0.32) 97.25(0.48) 0.99(0.00)

3 95.58(0.44) 0.99(0.00)

https://doi.org/10.1371/journal.pone.0198281.t003
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f1-score, accuracy and AUC for our proposed method in the means of mean (standard devia-

tion) since we performed 15-fold cross validation test for ten times. We have used k = 15 for k-

fold cross validation test using Random Forest classification method. It is the best way to eval-

uate the performance as each test fold contains one instance of each class for three class classi-

fication. The accuracy for our proposed method is better than Srinivisan et al. (the owner of

the dataset D2) on dataset D2 where we have achieved an average accuracy 96.89% with stan-

dard deviation 2.15 for ten iteration of 15-fold cross validation tests while Srinivisan et al.

achieved 95.56%. We have performed three-class classification test whenever there are three

classes of subjects such as D2, D5 and D7 as reported in Table 3. We can observe that the clas-

sification accuracy decreases when only one kind of subjects increases or there is an imbalance

in the number of subjects; for example the accuracy of three-class classification on dataset D5

and D7. However, our proposed method achieved high accuracy in all datasets in terms of

each metric. In addition, we have achieved the AUC values for each case (for example, normal

participants as positive class in three and two class classification method; AMD patients as pos-

itive class; DME as positive class; etc.) 0.99 with a standard deviation of 0.001.

We have examined the classification model using several machine learning approaches. The

accuracy in 15-fold cross validation test in the means of mean (standard deviation) for ten

times in dataset D2 is reported in Table 4. Logistic regression model shows worst performance

that demonstrates unsuitability as classification model for the patients based on the proposed

features from the SD-OCT images. SVM with linear and RBF kernel functions show better

result but not as good as AdaBoost, Naive Bayes Model, Decision Tree with Regression and

classification model; and Random Forest (RF) based classification model. AdaBoost based clas-

sification model shows similar performance as SVM. Naive Bayes Model shows good accuracy

for the binary classification where it shows 100% accuracy. Regression and Classification based

decision tree also show good accuracy using our extracted features. Though classification

based decision tree has better accuracy than regression based decision tree but the difference is

small. RF shows accuracy more than 96.89% in all test with low standard deviation for each

iteration of 15-fold cross validation test. Though, RF based classification model is not the best

in accuracy in all cases, that is also true for others, but its consistency of accuracy in each test

makes it superior for acceptance over others.

Conclusion

In this paper, we have proposed a novel method of eye disease classification using automati-

cally quantified hand-crafted clinical driven features of AMD, DME and normal participants

using the Random Forest algorithm. We have also examined a number of machine learning

algorithms, but RF performs best on accuracy compared to others in both dataset. The AUC

value is also very high (0.99) with a small standard deviation 0.001 for the classification

method. This high accuracy with several machine algorithms demonstrate the features

Table 4. The accuracy for different machine-learning algorithms for the classification model based on the proposed features on dataset D2.

# of class LRM SVM AB NBM Decision Tree RFT

Linear RBF Reg. Class.

2 76.44 (3.18) 87.33 (1.50) 88.67 (1.26) 95.56 (1.48) 100.00 (0.00) 92.22 (2.40) 94.00 (1.50) 97.78 (1.05)

3 49.56 (2.58) 87.56 (1.55) 86.22 (1.75) 88.44 (3.89) 91.11 (1.81) 93.33 (0.00) 93.56 (0.70) 96.89 (2.15)

LRM: Logistic Regression Model; AB: AdaBoost; NBM: Naive Bayes Model; Reg.: Regression; Class.: Classification; RFT: Random Forest Tree

https://doi.org/10.1371/journal.pone.0198281.t004
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extracted can model the disease. Moreover, we emphasise, this is the first method where

completely automatic segmentation of the layers and extraction of pathologies are employed

for classification of AMD, DME using SD-OCT images. The results show as predicted diseases

are highly correlated with the layers’ thicknesses and pathologies. Though we have achieved

higher accuracy than state-of-the-art methods, our method may have some limitation where

further research may need to be performed. Our adapted retinal layer segmentation is one of

the accurate methods among state-of-the-art methods; however, it can fail to detect the retinal

layers in the presence of the extreme pathologies. So it is worth investing this situation and we

believe sensitivity will increase and achieve better results. Another scope of future work after

this analysis is testing the method on different levels of severity of diseases of subjects which

will provide more reliability of the proposed methods. Also, the score of the automatic classifi-

ers might be used as the severity level of the disease. Unfortunately, we currently do not have

such data sets. In our future work, we plan to work with Ophthalmologists to build data sets

containing severity levels for prediction. Other layers information such as ONL layer thick-

ness, can also be considered as features for designing the classification model or the prediction

model. Our proposed automated system can be employed for early detection of common eye

diseases that do not have symptoms early in the disease progression state, allowing earlier

intervention.
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