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Abstract

Coprinopsis cinerea is a model mushroom particularly suited for the study of fungal fruiting

body development and the evolution of multicellularity in fungi. While microRNAs (miRNAs)

have been extensively studied in animals and plants for their essential roles in post-tran-

scriptional regulation of gene expression, miRNAs in fungi are less well characterized and

their potential roles in controlling mushroom development remain unknown. To identify

miRNA-like RNAs (milRNAs) in C. cinerea and explore their expression patterns during the

early developmental transition of mushroom development, small RNA libraries of vegetative

mycelium and primordium were generated and putative milRNA candidates were identified

following the standards of miRNA prediction in animals and plants. Two out of 22 novel pre-

dicted milRNAs, cci-milR-12c and cci-milR-13e-5p, were validated by northern blot and

stem-loop reverse transcription real-time PCR. Cci-milR-12c was differentially expressed

whereas the expression levels of cci-milR-13e-5p were similar in the two developmental

stages. Target prediction of the validated milRNAs resulted in genes associated with fruiting

body development, including pheromone, hydrophobin, cytochrome P450, and protein

kinase. Essential genes for miRNA biogenesis, including three coding for Dicer-like (DCL),

one for Argonaute (AGO), one for AGO-like and one for quelling deficient-2 (QDE-2) pro-

teins, were also identified in the C. cinerea genome. Phylogenetic analysis showed that the

DCL and AGO proteins of C. cinerea were more closely related to those in other basidiomy-

cetes and ascomycetes than to those in animals and plants. Taken together, our findings

provided the first evidence for milRNAs in the model mushroom and their potential roles in

regulating fruiting body development. New information on the evolutionary relationship of

milRNA biogenesis proteins across kingdoms has also provided new insights for guiding fur-

ther functional and evolutionary studies of miRNAs.
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Introduction

Small non-coding RNAs (sRNAs), about 20–30 nucleotides (nt) in length, are the regulators of

RNA interference (RNAi), a conserved eukaryotic gene silencing mechanism [1]. sRNAs are

categorized into three groups based on their origin and functions: small interfering RNAs (siR-

NAs), piwi-interacting RNAs (piRNAs) and microRNAs (miRNAs) [2]. In fungi, RNAi-related

machineries are mainly responsible for genomic defence, heterochromatin formation and

gene regulation [3]. For example, siRNAs mediate quelling and meiotic silencing of unpaired

DNA as genomic surveillance against viral infection in Cryphpnectria parasitica, and against

transposon invasion and silencing unpaired DNA in Neurospora crassa [3, 4, 5]. Most of the

descriptions of RNAi pathways of sRNAs in various fungi have focused only on the siRNA-

directed pathways.

MiRNAs are present in nearly all eukaryotic lineages. They play essential roles in various

biological processes by mediating post-transcriptional gene silencing to regulate gene expres-

sion through base pairing their seed region (2–7 nt at the 5’-end) to the untranslated region

(UTR) or opening reading frame of their target genes [6–13]. In plants, miRNAs play roles in

tissue morphogenesis, stress response and stem development through mRNA cleavage after

perfect complementarity binding to their targets [12]. In animals, miRNAs regulate cell prolif-

eration and differentiation, apoptosis, and different metabolic pathways during developmental

transition by miRNA-mediated translational repression [6, 7, 8, 9, 11, 14]. The first miRNA-

like RNA (milRNA) in filamentous fungi was described in N. crassa only in 2010, more than a

decade later than in animals and plants [15]. Although milRNAs have been subsequently dis-

covered in other fungi, such as Sclerotinia sclerotiorum, Trichoderma reesei, Penicillium marnef-
fei, Fusarium oxysporum, and Antrodia cinnamonmea, the potential roles of milRNAs in the

developmental processes of mushroom forming fungi are still largely unknown [16– 20].

Fungi, ranging from the simplest unicellular yeasts to macroscopic mushrooms, possess a

fascinating morphological diversity [21]. Coprinopsis cinerea, commonly known as the ink cap,

is one of the most morphologically complex fungi and has a well-characterized genome [22].

C. cinerea is also a model mushroom that is commonly used to study the developmental pro-

cesses in higher basidiomycete fungi. Under nutrient depletion and normal day-night rhythm,

the undifferentiated vegetative mycelium of C. cinerea undergoes dynamic genetic and physio-

logical changes to form a multihyphal structure, known as the fruiting body, through hyphal

aggregation and mycelial differentiation [23–25]. Fruiting body development of C. cinerea is a

rapid but complex process, consisting of six main stages: mycelium, initials, stage 1 and 2 pri-

mordium, young fruiting body, and mature fruiting body [22]. The entire process can be com-

pleted within two weeks when the fungus is cultured on artificial media with optimal

conditions [26,27]. Understanding the molecular regulatory mechanisms during fruiting body

initiation and development is one of the major goals of mycological studies. The most signifi-

cant transcriptomic switch has been shown to occur during the transition from mycelium to

primordium, which represents a developmental transition from a loose, undifferentiated struc-

ture to a compact and well-organized multicellular body plan [28, 29].

The regulatory roles of miRNAs have been demonstrated in various multicellular organ-

isms. In fungi, the key components of RNA regulatory networks and stage-specific milRNAs

have also been reported [11, 15, 20, 30–35]. Some miRNAs in animals and plants are expressed

in a stage-specific or tissue-specific manner, suggesting their potential roles in maintaining tis-

sue specificity and functions [11, 36–39]. Here, we hypothesized that miRNAs also regulate

developmental transition in the mushroom forming fungus C. cinerea. Prediction and identifi-

cation of milRNAs and their targets in C. cinerea are feasible based on the published genome

sequence data and transcriptomic profiles of the early developmental transition in C. cinerea

milRNAs in the model mushroom C. cinerea
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[22, 28, 29]. In this study, we used high-throughput small RNA (sRNA) sequencing to compu-

tationally identify 22 putative milRNA candidates in the mycelium and primordium stages of

C. cinerea. Two milRNAs, namely cci-milR-12c and cci-milR-13e-5p, were validated using

northern blot analysis, and their expression levels were examined by stem-loop RT-qPCR in

both developmental stages. One of the milRNA candidates, cci-milR-12c, was found to be dif-

ferentially expressed. Genes encoding putative Dicer-like (DCL), Argonuate (AGO), AGO-like

and quelling deficient-2 (QDE-2) proteins were identified in the C. cinerea genome [22]. Our

results have provided evidence for the presence of milRNAs in C. cinerea, revealed their poten-

tial targets, and demonstrated the differential expression of milRNAs during the early develop-

mental stages of the model mushroom. Our study has facilitated the understanding of the

diversified regulatory roles of milRNAs and the molecular mechanisms of fruiting body devel-

opment in higher basidiomycete fungi.

Materials and methods

C. cinerea strains and growth conditions

The C. cinerea strain used for the identification of milRNAs and core milRNA biogenesis pro-

teins is a dikaryon, mated from the monokaryotic strains J6;5–4 and J6;5–5 [40]. Two mono-

karyons were generated from single spore isolates of a dikaryon that had been backcrossed

with the reference strain Okayama 7#130 for five generations. The homokaryotic fruiting

strain #326 (A43mut B43mut pab1-1) was also used in the siRNA-mediated Dicer knockdown

analysis [41]. The strains were cultured on YMD medium containing 0.4% yeast extract, 1%

malt extract, and 0.4% glucose with Bacto agar. Mycelia were cultivated on agar plates at 37 ˚C

for about 4–5 days until the mycelium grew over the whole agar surface and reached the edge

of plates. Fruiting body formation was induced by incubating the mycelium culture at 25 ˚C

under a light/dark regime of 12/12 h [22,42,43]. The incubator was kept at a relative

humidity > 60% for the production of fruiting bodies.

RNA isolation and sRNA sequencing

Samples were collected from two biological replicates for each developmental stage of C.

cinerea. In brief, total RNA was extracted from mycelium (MYC) (4–5 days in the dark) and

primodium (PRI) (~ 6–7 mm tall, 3 days in the light) using mirVana miRNA Isolation Kit

(Ambion) and treated with TURBO DNA-free Kit (Ambion) in accordance with the manufac-

turer’s instructions. Mycelia from four agar plates and 4–5 independent primordium struc-

tures were harvested and pooled to form one replicate. All samples were stored at −80 ˚C. The

concentration and quality of RNA samples were checked using an Agilent 2100 Bioanalyzer.

Using total RNA as the starting material, sRNA sequencing was performed by Macrogen

(Korea) on a Hiseq 2500 platform (Illumina). The sRNA sequence dataset was deposited to

Sequence Read Archive (SRA) of National Center for Biotechnology Information (NCBI)

under the accession no. SRP150974.

Bioinformatics analysis of sRNAs and prediction of milRNA candidates

Raw sequence reads were filtered to remove low quality reads with a Phred score lower than

20, adaptor and primer sequences, and reads shorter than 18 nt (Macrogen, Seoul, Korea).

High quality reads were then used to build a non-redundant dataset in which reads identical in

length and identity were clustered (Macrogen, Seoul, Korea). Clean unique reads were

searched on Rfam v.9.1 to identify other types of small ncRNAs, such as rRNA, tRNA and

snRNA (Macrogen, Seoul, Korea) [44]. Since previous studies have identified miRNAs derived

milRNAs in the model mushroom C. cinerea
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from other small ncRNAs, clean clustered reads with 18–30 nt, including those aligned to

tRNAs and rRNAs, were subsequently mapped to the C. cinerea genome (NCBI assembly

accession: AACS00000000) using Bowtie and only perfectly matched sRNA reads were selected

for milRNA prediction (Macrogen, Seoul, Korea) [45].

For milRNA candidate prediction, short clean reads ranging from 18–30 nt were first

aligned to miRBase v.21 to categorize known miRNAs [46] and were clustered together by

95% similarity using CD-HIT [47]. An in-house Perl program was then developed to identify

the novel miRNAs. Since N. crassa demonstrated a wider range of precursor length than that

in plants, the remaining mapped sRNA sequences were first extended on the genome to 51–

150 bp in length to form a precursor-like hairpin structure [15]. Secondary structures of the

extended sequence were computed by RNAfold in Vienna RNA package 2.0 with GU wobble

base pair allowed. Putative milRNA candidates were selected using the following criteria: (1)

sRNA that formed a hairpin structure with minimum free energy (MFE) of folding� -20 kcal/

mol; (2) the predicted region contained at least 18 bp and the sRNA resided in this stem

region; (3) only one loop with at least 4 bp was present in the predicted hairpin; (4) a RAND-

FOLD p-value of the predicted secondary structures < 0.01; and (3) with at least four reads

[48,49,50]. The Perl script of miRNA prediction was deposited on figshare at https://figshare.

com/s/10aa5707773d496e2c15.

Validation of milRNAs by northern blot analysis

Northern blot analysis of milRNA identification was performed according to the protocol of

Kim et al. with double-labeled digoxigenin (DIG) oligonucleotide probes instead of locked

nucleic acids (LNA) probes [51]. Briefly, total RNA samples (5–15 ug) from the two different

developmental stages were resolved on a 15% denaturing polyacrylamide gel with 8M Urea in

1X TBE. The RNA gels were then transferred to Hybond-N+ (Amersham Biosciences) at 10–

15 V (30–60 min) using a Trans-Blot SD semi-dry transfer cell (Bio-Rad). Cross-linking,

hybridization and membrane detection were performed as previously described [51]. Cross-

linking was performed using freshly prepared 1-ethyl-3-(3-dimethylaminopropyl) carbodii-

mide (EDC) reagent at 60 ˚C for 1 hr. Membranes were hybridized overnight in ULTRAhyb™
hybridization buffer (Ambion) with specific double DIG-labeled oligonucleotide probes syn-

thesized by Integrated DNA Technologies at 37 ˚C. Sequences of the probes used against the

putative milRNAs were as follows: ccin-milR-12c, 5’-AAAGGTAGTGGTATTTCAACGG
CGCC-3’; ccin-milR-13e-5p, 5’-AGTCCCTACTAGGTCCCGAG-3’. Probe detection was

performed using DIG luminescent detection kit in accordance with the manufacturer’s

instructions (Roche) and photoemissions were detected using the ChemiDoc-It Imaging Sys-

tem (Bio-rad).

Identification and phylogenetic analysis of DCL and AGO protein genes

One AGO (XP_001837237.2), one AGO-like protein (XP_001837864.2) and a QDE-2 protein

(XP_001838344.1) were found in the annotated protein sequences of C. cinerea from GenBank
(AACS00000000) [22]. For the phylogenetic analyses of the two main effector proteins in

miRNA biogenesis, Dicer and AGO, corresponding protein sequences of animals, plants and

some ascomycete fungi were downloaded from UniProt (http://www.uniprot.org/). Based on

the annotated protein sequences of N. crassa DCL-1, DCL-2 (XP_961898.1, XP_963538.3) and

QDE-2 (XP_958586.1), three DCL proteins of C. cinerea (XP_002911949.1, XP_001837094.2,

XP_001840952.1), and some ascomycete and basidiomycete fungi were identified using

BLASTP against the JGI database (https://genome.jgi.doe.gov/) [15]. An E-value of� 10E-10

and an identity� 25% were used as the cutoffs in the BLASTP searches. The functional

milRNAs in the model mushroom C. cinerea
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domains of the corresponding proteins in C. cinerea were predicted using Pfam and SMART

[52, 53]. Phylogenetic trees of the proteins were constructed by the maximum likelihood

method with 1000 bootstrap replicates using MEGA 7 [54].

Experimental quantification of milRNAs and biogenesis proteins by RT-

qPCR

The sequence-specific TaqMan MicroRNA Assays and TaqMan small RNA Assays (Life Tech-

nologies) were used for RT-qPCR of cci-milR-12c and cci-milR-13e-5p, and the 5S rRNA

(endogenous control), respectively. Reverse transcription was performed using TaqMan

MicroRNA Reverse Transcription Kit (Applied Biosystems, Inc). Results from the 5S rRNA

were used for normalization. cDNA was amplified in 20 uL reaction mixtures containing Taq-

Man Universal PCR Master Mix, no AmpErase UNG (Applied Biosystem) using standard

qPCR conditions (95 ˚C for 10 min, followed by 40 cycles of 95 ˚C for 15 sec and 60 ˚C for 1

min) [55].

To examine the expression levels of the Dicer and AGO proteins in C. cinerea, total RNA

was reverse transcribed to cDNA using Transcriptor First Strand cDNA Synthesis Kit (Roche

Applied Science) with random hexamer primers. Real-time PCR analysis was performed using

the SsoAdvanced Universal SYBR Green Supermix (Bio-rad), with 1 μl of 10 μM gene-specific

forward and reverse primers (S1 Table). Thermal cycling was performed for 35–40 cycles.

Each cycle consisted of polymerase activation at 95 ˚C for 30 sec, denaturation at 95 ˚C for

5–15 sec, and extension at 60 ˚C for 1 min. The relative expressions of DCL, AGO, AGO-like

and QDE-2 proteins were normalized against 18S rRNA with forward primer (50-GCCTG
TTTGAGTGTCATTAAATTCTC-30) and reverse primer (50-CTGCAACCCCCACATCCA-30).
All the cycling reactions were performed in triplicate and the cycle threshold fluorescence data

were recorded on an ABI 7500 Fast Real-Time PCR system (Applied Biosystems). The com-

parative Ct method (ΔΔCt) was exploited to calculate the relative expression levels of both vali-

dated milRNAs, DCLs, AGO, AGO-like and QDE-2 proteins. Statistical analysis was

performed by Student’s t-tests. A P-value <0.05 was considered statistically significant.

Dicer-like proteins knockdown mediated by siRNAs

At least two sequence-specific siRNA targeting separate regions for each DCL mRNA were

transfected into the stipe of primordium twice using needle and syringe to enhance the effi-

ciency and effectiveness of knockdown [56]. The 5’-3’ sequences of the sense and antisense

strands of synthetic Stealth siRNA duplexes (Invitrogen) of three DCLs are shown in S2 Table.

The gene silencing effects were optimized through direct transfection of 8 μM siRNA. Briefly,

primordia were first treated with synthetic siRNAs and incubated at 25 ˚C for 24 h. The trans-

fected primordia were then treated with the same concentration of siRNAs and incubated for

another 24 h. After the double transfection, total RNA samples of the control groups, untreated

primordium and unrelated transfection (primordium with RNase-free water injection), and

DCL knockdown strains were harvested. The remaining gene expressions of knockdown

strains compared with the control groups were measured by quantitative real-time PCR using

primers listed in S1 Table. Primers were designed to detect sequences between the sites of

siRNA directed cleavage or at the target site of siRNA.

MilRNA target prediction and functional annotation

Most miRNAs bind to the 3’-UTR of their target mRNAs to down-regulated their gene

expressions. Nevertheless, there are no general rules for the complementarity between fungal

milRNAs and no 3’-UTR data have been determined for C. cinerea [22]. A database was

milRNAs in the model mushroom C. cinerea
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constructed from the 1,000 bp downstream sequences of the stop codon of all genes in the C.

cinerea genome for miRNA target prediction, as in the milRNA studies on other fungi (N.

crassa, T. ressei and P. marneffei) [15, 17, 18, 22]. As no prediction algorithms have yet been

developed for fungi, three separate tools (PITA, miRanda and microTar) were used here to

predict the potential targets of validated milRNAs in order to minimize false positive results

[57–60]. These three tools focus primarily on the thermodynamic considerations—miRanda

predicts the stability of miRNA/target duplexes based on the hybridization energy of the bind-

ing site in 3’-UTR, whereas PITA and microTar take both the hybridization energy and acces-

sibility of the 3’-UTR into account. Although the ranking criteria of miRanda is slightly

different from the other two algorithms, PITA and miRanda has been demonstrated previously

to give comparable results[61]. Therefore, the overlapped targets predicted by these three tools

were chosen as the most likely putative targets.

Additional filtering steps were applied to select for putative targets with annotated biologi-

cal functions using Gene Ontology (GO) terms, Eukaryotic Orthologous Groups (KOG)

groups, KEGG orthologs (KO), and KEGG biological pathways [62, 63, 64]. The GO terms of

targets were assigned using BLAST2GO (version 2.4.2) with default parameters. The KOG

groups were assigned by RPS-BLAST (E-value cut-off of 1.00E-3). The KO and KEGG biologi-

cal pathways were assigned with the KEGG Automatic Annotation Server (KAAS) using all

available fungal species as the representative gene set and the bidirectional best hits method

(BBH). GO enrichment analysis was done with topGO (Release 3.7) using one-sided Fisher’s

exact test [65]. KOG enrichment analysis was done with the HYPGEOM.DIST function in

Microsoft Excel using one-sided Fisher’s exact test. KEGG enrichment analysis was done with

DAVID 6.8 (http://david.ncifcrf.gove/summary.jsp) [66, 67]. A p-value smaller than 0.05 was

considered as significant. To further identify target mRNAs that likely interact with milRNA

in vivo, annotated putative targets with similar expression patterns to the corresponding milR-

NAs between the two developmental stages were selected based on previously published

microarray data of C. cinerea [29]. Functional targets with a fold change� 0.5 and> 0.5 at

MYC compared to PRI were considered as putative milRNA targets of cci-milR-12c and cci-

milR-13e-5p, respectively.

Results

Identification of sRNAs in C. cinerea by high-throughput sequencing

The general features of sRNA species identified in MYC and PRI of C. cinerea are shown in

Table 1. A total of 16,925,614 and 17,490,760 raw reads were obtained from MYC and PRI,

respectively. A total of 1,354,235 and 1,379,040 unique sRNA reads (18–30 nt) were obtained

from the MYC and PRI stages, respectively. A total of 152,835 and 135,648 rRNAs, and 15,890

and 12,280 tRNAs were included in the unique clean reads of the MYC and PRI samples,

respectively. The majority of sRNA reads in C. cinerea were derived from the coding regions,

followed by rRNA and a tiny amount from tRNA and snoRNAs (Fig 1c). The percentage of

rRNA-derived sRNAs of C. cinerea was similar to that of S. sclerotiorum and T. ressei, but dif-

fered from F. oxysporum and N. crassa in that about half of the sRNA reads were derived from

rRNA [15, 16, 17, 20]. Most sRNA clean reads from both stages were 20–22 nt in length (Fig

1a) and displayed a strong preference for 5’ uracil (Fig 1b).

Prediction and identification of potential milRNAs in C. cinerea
Twenty-two putative milRNA candidates were identified in C. cinerea. Most of them appeared

in both MYC and PRI, but cci-milR-1 and cci-milR-2, which were only presented in MYC.

The read counts and sequences of the milRNAs are listed in Table 2. The 20 and 26 nt classes

milRNAs in the model mushroom C. cinerea
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were the most abundant groups in the milRNA candidates (Fig 2a). Guanine dominated the 5’

end nucleotide with weak superiority (Fig 2b). As with canonical miRNAs in animals and

plants, most of the milRNAs in C. cinerea were derived from the intergenic region (68%),

including five from rRNA (23%) and two from exon (9%) (Fig 2c). As for the gene locations,

half of the putative milRNAs dwelled on the assembled chromosomes (Table 2). Six putative

milRNAs predicted in C. cinerea were located within a short distance on the U413 contig, simi-

lar to milRNAs in animals and plants, which usually appear in clusters [68].

Although no conserved milRNA of animals and plants was found in C. cinerea, one homo-

log of cci-milR-12c was identified in another mushroom forming basidiomycete fungus, Lac-
caria bicolor (GSE9784). This homolog was absent in Phanerochaete chrysosporium, Postia
placenta, two other Pleurotus ostreatua, and Agaricus bisporus [69–73]. Sequence of the cci-

milR-12c precursor (pre-milR-12c) was BLAST searched against the L. bicolor EST database

[69], and only sequences with no mismatches on the seed region of mature cci-milR-12c and

with fewer than three mismatches to the downstream sequence of the seed region were

regarded as homologs [74]. The absence of milRNA homologs of animals and plants in C.

cinerea indicates evolutionary divergence of miRNA genes among these three kingdoms, coin-

ciding with most of the fungal milRNAs [16, 17, 20].

Validation and characterization of milRNA expression patterns

Northern blot and RT-qPCR were used to validate the presence and to examine the expression

levels of putative milRNAs in the two developmental stages. Two out of 22 milRNA candidates,

cci-milR-12c and cci-milR-13e-5p, were verified using northern blot. Their expression pat-

terns during this developmental transition are shown in Fig 3. By contrast, other putative

milRNAs were not detected by Northern blot analyses carried out here. cci-milR-12c showed a

higher expression in PRI (fold change >2), indicating that this milRNA candidate was differ-

entially expressed in the early developmental stage. By contrast, the expression level of cci-

milR-13e-5p in MYC was only slightly higher than that in PRI. The hairpin precursors of the

two validated milRNAs are shown in Fig 4. Annotation of the gene loci of these two miRNAs

indicated that the cci-milR-12c gene is located on an unassembled contig and cci-milR-13e-5p

Table 1. General features of sRNA sequencing of C. cinerea in two developmental stages.

MYC PRI

Total reads 16,925,614 17,490,760

Trimmed readsa 9,543,074 11,505,899

Filtered readsb 9,188,318 10,924,076

Unique reads 2,837,886 3,696,516

Mapped readsc 2,685,051 3,574,137

rRNA reads 152,835 135,648

tRNA reads 15,890 12,280

sRNA reads (18–30 nt) 1,354,235 1,379,040

Conserved miRNAs 0 0

Predicted milRNAs 22 20

a Raw reads were filtered to remove low quality reads, adaptor and primer sequences.
b Trimmed reads were filtered to remove short reads < 18nt.
c Against the reference genome of C. cinerea (NCBI assembly accession: AACS00000000). MYC: mycelium library,

PRI: primordium library.

https://doi.org/10.1371/journal.pone.0198234.t001
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is derived from the intergenic region, based on the genome assembly data (AACS00000000)

[22].

Although no annotated genes were identified in the locus of mature cci-milR-12c, there was

a significant hit of pre-milR-12c to a eukaryotic rRNA sequence (accession: RF02543) when

searching the precursor sequence on the Rfam database (E-value = 1.6e-26). Nucleotide

sequence search also revealed that the pre-milR-12c sequence matched to the 28S rDNA locus

of C. cinerea (E-value = 8e-62). Similar to rRNA-derived miRNAs found in human, the loca-

tion of rRNA genes recovered here was distinct from that of the rRNA genes and cci-milR-12c

might be generated during processing of the transcribed rRNA gene [75].

Identification of DCL, AGO and QDE-2 proteins and characterization of

their expression patterns in MYC and PRI

Dicer and AGO are effector proteins known to participate in miRNA biogenesis in animals

and plants [76]. QDE-2 protein is an AGO shown to be involved in the pre-miRNA cleavage

in N. crassa and its homologs have also been found in various fungal species [15, 18, 19]. Based

on homolog search of the N. crassa DCL proteins against the C. cinerea genome, three DCL

proteins were found (Fig 5) [15, 22]. Furthermore, an AGO (CC1G_00373), an AGO-like

(CC1G_09846) and a QDE-2 (CC1G_04788) proteins have been annotated in C. cinerea [22].

The AGO and AGO-like genes CC1G_00373 (3,979 bp in length) and CC1G_09846 (3,457 bp

in length) encode mRNAs for protein of 897 and 981 amino acids, respectively. The QDE-2

gene (CC1G_04788) is 3,438 bp in length encoding mRNA for protein of 965 amino acids. All

AGO family proteins predicted in C. cinerea have at least one of the two characteristic domains

Fig 1. Features of sRNAs uncovered in C. cinerea. (a) Size distribution and (b) 5’ end nucleotide frequency of sRNAs in mycelial

(MYC) and primordium (PRI) stages. (c) Pie charts showing the distribution of sRNA frequencies in two MYC and PRI libraries.

https://doi.org/10.1371/journal.pone.0198234.g001
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Table 2. Twenty-two predicted milRNAs in C. cinerea.

milRNA ID Locus of mature milRNAa Strand milRNA sequence (5’ to 3’) Length (nt) Read number in MYC Read number in PRI

cci-milR-1 Chr_1:2276359-2276380 + CTGGATGGTGTGGGAGTTGCT 21 179 0

cci-milR-2 Chr_4:444870-444895 + ACGAAGCAGTCGGCGCACTGGACGT 25 33 0

cci-milR-3 Chr_6:260570-260591 - ATGAGCTCAGCGGTTATCCGAT 22 11 15

cci-milR-4a Chr_7:1973680-1973700 + TTTGCGGTGATGACTGACGT 20 1,152 3,469

cci-milR-4b Chr_7: 2383250-2383270 + TCAGTCATCACCGCAAACCA 20 1,143 4,096

cci-milR-5-3p Chr_9:6467-6488 - TTCTTAGGAATATCGGCCAGAC 22 3.5 3

cci-milR-5-5p Chr_9:6494-6515 - CTTGGCACTCGGTCGATATTCC 22 6.5 3

cci-milR-6 Chr_9: 2295986-2296004 - CATCTGTCCTTCCCGCTGC 19 16 16

cci-milR-7 Chr_11:1942223-1942244 + TCTTCCGAACCTCTTGATAGCT 22 25 25.5

cci-milR-8 Chr_12:1120052-1120072 - CTGACTTCTGCCAGCCATTCT 21 33 29

cci-milR-9 Chr_12:1565625-1565643 + TGCTTGGACTTCTATGGC 18 1,379 1,434

cci-milR-10 U377:434-457 - GTGAAAAGACATAGAGGGTGTAGA 24 8,925 2,518

cci-milR-11 U382:2844-2863 - GAAAAGTGACGGCTCATCCC 20 44 73.5

cci-milR-12a U401:686-705 - ATTGACACGGCTGGGCTTTT 20 14.5 16

cci-milR-12b U401:1048-1069 + TGAGTAGAATGGTCCCTGTCCC 22 220 232

cci-milR-12c U401:4487-4512 - GGCGCCGTTGAAATACCACTACCTTT 26 3,724 50,524

cci-milR-13a U413:2349-2377 - ATATTTGGTATTTGCGCCTGTCCGATCGG 29 2,321 248

cci-milR-13b U413:2422-2441 + ATAACACTCCATCAGTAGGG 20 2 2

cci-milR-13c U413:2964-2989 - TGTGAAAAGACATAGAGGGTGTAGAA 26 9,147 2,863

cci-milR-13d U413:3111-3130 - CTAATTAGTGACGCGCATGA 20 6,832 418

cci-milR-13e-3p U413:3387-3405 - ACCTCTAGATGGACCCCGC 19 900 823

a Positions according to the reference genome of C. cinerea (NCBI assembly accession: AACS00000000). MYC: mycelium library, PRI: primordium library.

https://doi.org/10.1371/journal.pone.0198234.t002

Fig 2. Characterization of putative milRNA candidates in C. cinerea. (a) Size distribution, (b) 5’ end nucleotide frequency

and (c) annotation gene loci of the 22 putative milRNAs.

https://doi.org/10.1371/journal.pone.0198234.g002
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of AGO protein: PAZ and Piwi domain. The mRNAs of Dicer protein homologs

(CC1G_00230, CC1G_03181, CC1G_13988) encode 1499, 2074 and 1457 amino acid residues,

respectively. Interestingly, only one of the C. cinerea DCLs (CC1G_00230) contained the PAZ

domain, which is present only in mushroom-specific DCLs but not in other fungal DCLs.

Although PAZ is a conserved domain in both Dicer and many AGO family proteins, it cannot

be found in the annotated AGO proteins (CC1G_00373) in C. cinerea (Fig 5) [77, 78]. In gen-

eral, the domain organization of DCL, AGO, AGO-like and QDE-2 proteins of C. cinerea was

similar to that of N. crassa, except that there is no PAZ domain in the AGO protein (S4 Table).

RT-qPCR was used to examine the mRNA expression levels of the protein homologs. The

results are shown in Fig 6. DCL-2 and DCL-3 showed higher expression levels in PRI, how-

ever, but DCL-1 was down regulated in PRI (Fig 6a). For the AGO homologs, the expression

levels of AGO and QDE-2 proteins were significantly lower in PRI (Fig 6b). Similar to the

expression levels of cci-milR-12c, DCL-2 and DCL-3, AGO-like proteins were expressed sig-

nificantly higher in PRI than in MYC. Therefore, DCL-2 or DCL-3 and AGO-like proteins are

more likely involved in the biogenesis of cci-milR-12c. On the contrary, AGO or QDE-2 and

DCL-1 are more likely related to the higher expression of cci-milR-13e-5p in MYC.

Phylogenetic analysis of DCL and AGO homologs

Phylogenetic analysis of DCL and AGO proteins showed that both proteins duplicated early in

the eukaryotic lineage and evolved independently in animals, plants and fungi (Figs 7 and 8).

DCL and AGO homologs in C. cinerea were closely related to those in other basidiomycetes.

Most of the mushroom forming fungi possess three DCLs, while other fungi contain only two

DCLs. Besides, one DCL (CC1G_00230) of C. cinerea was grouped with DCLs of other

Fig 3. Validation of two milRNA candidates by northern blot and RT-qPCR. MYC: mycelium, PRI: primordium.

Northern blot of sRNA samples showed the presence of (a) cci-milR-12c and (b) cci-milR-13e-5p in both

developmental stages of C. cinerea. The top panel shows northern blots probed with the milRNA-specific DIG probes.

The 15% denaturing gel stained with ethidium bromide (EtBr) in the bottom panel indicates equal loading of RNA

samples. RT-qPCR results show the expression levels of (c) cci-milR-12c and (d) cci-milR-13e-5p in both

developmental stages. Results were obtained from three independent experimental replicates and were significantly

different between stages. �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0198234.g003
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mushroom forming basidiomycetes, namely Galerina marginata, Laccaria bicolor and Schizo-
phyllum commune, and this group of mushroom-specific DCL protein has not been discussed

previously (Fig 7) [79]. These results suggest that Dicer proteins duplicated and diversified

early in the eukaryotic lineage.

Based on the phylogenetic analysis results and protein domain architecture of the annotated

DCL-1 and DCL-2 proteins among ascomycete and basidiomycete fungi, the three predicted

Fig 4. Predicted secondary structures of milRNA precursors. The predicted structures of pre-milR-12c and pre-

milR-13e-5p with mature milRNA sequences are labeled in red.

https://doi.org/10.1371/journal.pone.0198234.g004

milRNAs in the model mushroom C. cinerea

PLOS ONE | https://doi.org/10.1371/journal.pone.0198234 September 19, 2018 11 / 24

https://doi.org/10.1371/journal.pone.0198234.g004
https://doi.org/10.1371/journal.pone.0198234


DCL homologs in C. cinerea were named in this study [79]. A novel group of DCL homolog in

basidiomycete in the phylogenetic tree was revealed which was further supported by the pro-

tein domain comparison among annotated fungal DCLs. Since all of the annotated DCL-1 pro-

teins of fungi possess the type III restriction enzyme domain instead of the DEAD/DEAH

box helicase domain (as in DCL-2 proteins), and as the PAZ domain was only found in mush-

room-forming basidiomycetes (L. bicolor and G. marginata), the putative DCL genes CC1G-

Fig 5. Schematic 2D domain architecture of Dicer and AGO proteins in C. cinerea. The grey bars represent the full

protein sequences and the colored boxes represent identified functional domains.

https://doi.org/10.1371/journal.pone.0198234.g005

Fig 6. Relative mRNA expression levels of DCL and AGO proteins. The expression levels of (a) Dicer-like (DCLs), (b) AGO, AGO-like and QDE-2

proteins in mycelium (MYC) and primordium (PRI) stages. Results were obtained from three independent experimental replicates and were significantly

different between stages. �p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0198234.g006
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Fig 7. Phylogenetic tree of DCL proteins in animals, plants and fungi. The tree was constructed using the maximum

likelihood method. Different groups (with colors) are animals (red), plants (green), non-mushroom forming

basidiomycetes (black), mushroom-forming basidiomycetes (blue), Coprinopsis cinerea (pink), ascomycetes (purple),

unicellular fungi (brown), protozoan (grey). The protozoan Tetrahymena thermophile was used as an outgroup.

Bootstrap values were calculated from 1000 replicates and only values�50% are shown here. The scale bar represents

0.5 substitutions per nucleotide position.

https://doi.org/10.1371/journal.pone.0198234.g007
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Fig 8. Phylogenetic tree of AGO proteins in animals, plants and fungi. The tree was constructed using the maximum likelihood

method. Different groups (with colors) are animals (red), plants (green), non-mushroom forming basidiomycetes (black),

mushroom-forming basidiomycetes (blue), Coprinopsis cinerea (pink), ascomycetes (purple), unicellular fungi (brown), protozoan

(grey). The protozoan Tetrahymena thermophile was used as an outgroup. Bootstrap values were calculated from 1000 replicates and

only values�50% are shown here. The scale bar represents 0.2 substitutions per nucleotide position.

https://doi.org/10.1371/journal.pone.0198234.g008
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13988, CC1G_03181 and CC1G_00230 were named as DCL-1, DCL-2 and DCL-3, respectively

(S4 Table).

The expression levels of milRNAs in the DCL knockdown strains

Sequence-specific siRNA duplexes were used to knockdown individual DCL mRNA. The effi-

ciency of knockdown of DCL mRNA following double transfection and the expression pat-

terns of the two validated milRNAs in DCL knockdown strains are summarized in S1 Fig.

Primordium transfected with siRNAs showed 60–80% knockdown of DCL mRNA transcript

abundance compared to the two control groups. A DIG-labelled probe specific for cci-milR-

12c detected three bands in the control, with approximate sizes of 25/26, 40 and 50 nt on

northern blot. The cci-milR-13e-5p-specific probe also revealed three bands on the blot, with

sizes of about 20, 30, 40 nt. The ~20 nt bands were similar in size to the predicted cci-milR-12c

and cci-milR-13e-5p, suggesting that they are the mature milRNAs. By constrast, the interme-

diate RNAs ~30–50 nt in size are likely the precursors of milRNAs (pre-milRNAs). However,

the signals of the two mature milRNAs of DCL knockdown strains were similar to those of the

controls. Given that the expression of DCL mRNAs was not completely abolished using

knockdown, the roles of DCLs in milRNA biogenesis cannot be confirmed here.

Prediction and functional annotation of milRNA targets

Computational prediction of milRNA targets was carried out based on three different algo-

rithms: miRanda, PITA and microTar, to minimize false-positive results. Each prediction algo-

rithm predicted a few hundreds to thousands of target genes for each milRNA. A larger

number of targets was predicted by microTar due to the fact that miRanda and PITA rely on

evolutionary conservation to select functional targets whereas microTar discerns milRNA tar-

gets by calculating the duplex energies without taking into account the conservation of

miRNA targets [56–59]. The number of overlapped targets is shown in a Venn diagram (Fig

9). There were 206 and 204 common targets of cci-milR-12c and cci-milR-13e-5p, respectively.

Of these, 143 and 140 were annotated with functional GO, KOG terms or fruiting body related

genes (data not shown). Given that the expression patterns of milRNA are similar to their tar-

gets and two milRNAs showed higher expression in MYC and PRI respectively, the expression

levels of putative targets during the transition from MYC to PRI were used for the last filtering

step. As a result, 15 and 133 functional genes were selected as the putative targets of cci-milR-

12c and cci-milR-13e-5p, respectively (S3 Table).

To fully understand the functions of the putative targets of milRNA, all the overlapped tar-

gets of each milRNA were annotated using GO terms, KOG terms and KEGG pathway. Both

GO and KOG enrichment analyses showed that the targets of cci-milR-12c were enriched in

“RNA processing and metabolism”, especially RNA splicing. About 60% of enriched GO terms

were in this category (Fig 10a and 10c). On the contrary, the targets of cci-milR-13e-5p were

enriched in “nucleotide transport and metabolism” including RNA catabolic processes, and

“translation, ribosomal structure and biogenesis” (Fig 10b and 10d).

Additional functional annotation of putative milRNA targets was performed by searching

the eukaryotic homologs in the KOG database (Fig 10c and 10d). Putative targets of cci-milR-

12c were assigned to 22 groups and cci-milR-13e-5p were assigned to 23 groups. The category

“RNA processing and modification” was the largest group annotated to cci-milR-12c targets,

followed by “Replication, combination and repair” and “Coenzyme transport and metabo-

lism”. “Nucleotide transport and metabolism” and “Translation, ribosomal structure and

biogenesis” were the enriched KOG terms annotated to the targets of cci-milR-13e-5p.
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Fig 9. Venn diagram showing the distribution of the number of putative milRNA targets predicted by miRanda, PITA and microTar.

https://doi.org/10.1371/journal.pone.0198234.g009

Fig 10. GO and KOG enrichment analyses of two validated milRNAs. GO enrichment analysis of the predicted targets of (a) cci-milR-12c and (b) cci-milR-13e-5p.

GO terms were classified with Blast2GO into three major categories and representative results of GO enrichment with topGO using Fisher’s exact test, p-value< 0.05.

BP: Biological process, MF: Molecular function, CC: Cellular component. KOG enrichment analysis of the predicted targets of (c) cci-milR-12c and (d) cci-milR-13e-

5p.

https://doi.org/10.1371/journal.pone.0198234.g010

milRNAs in the model mushroom C. cinerea

PLOS ONE | https://doi.org/10.1371/journal.pone.0198234 September 19, 2018 16 / 24

https://doi.org/10.1371/journal.pone.0198234.g009
https://doi.org/10.1371/journal.pone.0198234.g010
https://doi.org/10.1371/journal.pone.0198234


Overall, results from the GO and KOG term annotations of the two validated milRNAs

were similar. Since none of the annotated KEGG pathways for milRNA targets were found to

be significantly enriched, when using p-value cut-off at 0.05. Therefore, the results of KEGG

analysis were not included here.

Interestingly, some enriched GO terms of the milRNA targets of cci-milR-13e-5p were

closely related to the developmental processes in fungi, including ligase activity, actin,

unfolded protein, and protein kinase binding. The expression levels of target genes under

these categories passed the fold change threshold in the last filtering step of target prediction

(S3 Table). Although there were a limited number of putative targets of cci-milR-12c that were

annotated with the functional GO and KOG terms and were differentially expressed in MYC,

some fruiting body related genes were included, including fungal pheromone, hydrophobin

and cytochrome P450. Taken together, these results suggest that milRNAs may play an impor-

tant role on regulating different metabolic pathways and facilitating the cellular developments

during the early developmental transition in C. cinerea.

Discussion

In this study, we constructed sRNA libraries and identified milRNAs of C. cinerea at two dif-

ferent developmental stages. Characteristics of C. cinerea milRNA populations similar to those

in animals and plants and the presence of core proteins of miRNA biogenesis in C. cinerea sug-

gest that milRNAs in mushrooms may be produced in similar pathways to those in animals

and plants. The functional analysis of milRNA targets also demonstrates the potential regula-

tory roles of milRNAs in fruiting body development (S2 Fig).

The expression patterns of milRNAs hint at their biological functions across different bio-

logical processes. Here, we identified putative targets that exhibited a negative correlation in

expression profiles with milRNAs during the transition from MYC to PRI, some of which

were related to fruiting body formation. cci-milR-12c potentially controls the vegetative

growth of hyphae by targeting the fungal pheromone, stage-specific hydrophobin and nucleo-

tide metabolic process. Fungal pheromone is responsible for initiating septal dissolution and

clamp-cell fusion during the transition from monokaryotic to dikaryotic state, whereas hydro-

phobin regulates morphogenesis in fungi, particularly in fruiting body development of basid-

iomycetes [26, 80, 81]. It has also been reported that different sets of hydrophobins are

employed by mushroom forming basidiomycetes in different developmental stages [81, 82].

By contrast, most of the putative targets of cci-milR-13e-5p were related to macromolecule

metabolism and protein binding. For instance, cci-milR-13e-5p targeted protein kinase that

has been predicted to respond to nutrient depletion in fruiting body initiation, especially

FunK1, which can only be found in multicellular fungi. In addition, the up-regulated heat

shock proteins in PRI are response to the lower temperature for fruiting body development

(25˚C) than that of mycelial cultivation (37 ˚C) [22, 23, 83–86]. Therefore, cci-milR-13e-5p is

more likely to regulate the dynamic structural changes, carbon, protein and nucleotide metab-

olism, in response to an increased demand of DNA synthesis, protein synthesis and turnover

from the mycelial to primordium stage [28]. Results suggest that milRNAs may play a role in

controlling the drastic transcriptomic and morphological changes during fruiting body

initiation.

Phylogenetic analysis results of DCLs, AGO, AGO-like and QDE-2 proteins and the fact

that no miRNA homologs of animals and plants were identified in the C. cinerea genome

support the claim that miRNAs may evolve independently among animals, plants and fungi

[15, 35, 87, 88, 89]. Our results also indicate an early duplication and diversification of Dicer

proteins followed by a lineage-specific loss of PAZ domain in fungi. In evolutionary terms,
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DCL-3 (CC1G_00230) is evolutionary closely related to other mushroom forming fungi and

is the only DCL in C. cinerea that contains the PAZ domain, which has only been found in

mushroom forming basidiomycetes, such as G. marginata and L. bicolor [69, 90]. The PAZ

domain recognizes the 3’ 2-nt overhang of pre-miRNA during miRNA biogenesis and the

specific distance between the anchoring site of PAZ and RNase III domain is used to deter-

mine the milRNA product size [91]. However, this functional domain is absent in other fun-

gal species included in the phylogenetic analysis, suggesting that different molecular

mechanisms are adopted by DCLs without the PAZ domain to produce milRNAs with het-

erogeneity in length. Indeed, size heterogeneity of fungal milRNAs has been reported in N.

crassa and F. oxysporum [15, 16]. Furthermore, homologs of cci-milR-12c were found in

another mushroom, L. bicolor. Since the PAZ domain-containing DCL was only identified in

mushroom-forming fungi, further studies should investigate its uniqueness in mushrooms

and if the milRNA produced by this homolog function differently to those from the other

homologs.

Given that miRNAs are generally produced from a hairpin precursor by Dicer, the accu-

mulation of pre-miRNAs can be detected in organisms with impaired Dicer function [13].

Change of miRNA expression patterns is an indicator of the participation of Dicer in its bio-

genesis. Although homologous recombination has been found in C. cinerea, gene knockouts

are difficult to achieve due to the high efficiency of non-homologous DNA end joining [92,

93]. Therefore, an alternative gene silencing method, dsRNA-mediated gene knockdown,

which was successfully used in the study of C. cinerea strains #326 (A43mut B43mut pab1-1),
was used in this study [93]. However, cci-milR-12c and cci-milR-13e-5p were still produced

—corresponding RNA bands of these milRNAs were detected in northern blot, with a ~70%

knockdown efficiency of DCLs. It is possible that milRNAs are efficiently produced, even

when the expression levels of the DCLs are extremely low. Future experimental work is

needed to investigate the roles of PAZ-containing DCLs in milRNA biogenesis of mush-

rooms and to determine if the milRNA homologs play a regulatory role in other mushroom

forming fungi.

Conclusions

Our findings have demonstrated differential post-transcriptional regulatory roles of milRNAs

in different developmental stages of the mushroom forming fungus C. cinerea and identified

the milRNA potential targets involved in fruiting body formation, providing new insights into

the regulatory mechanisms of fruiting body development and the potential functions of milR-

NAs in fungi. Moreover, we have found putative core miRNA biogenesis proteins, Dicer and

AGO, in the C. cinerea genome. Phylogenetic analysis showed that these proteins were more

closely related to those in other fungal species than to those in animals and plants. However,

the roles of DCLs, AGO and QDE-2 proteins in the biogenesis of C. cinerea milRNAs cannot

be shown here. Altogether, these results serve as the foundation for further evolutionary devel-

opmental studies of fungi and contribute to the phylogenetic occurrence of miRNA-mediated

regulatory system among different kingdoms.
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S1 Fig. Effect of DCL knockdown on miRNA expression. (a) RT-qPCR expression levels of

DCLs obtained in DCL knockdown strains after normalization against the untreated primor-

dium (control). Results were obtained from three independent experimental replicates. The

treatment samples were significantly different from the control samples. �p< 0.05, ��

p< 0.01. Northern blot of sRNA samples shows the presence of (b) cci-milR-12c, (c) cci-milR-
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13e-5p and their precursors in all the knockdown strains. The top panels show the northern

blots probed with milRNA-specific DIG probes. The 15% denaturing gels stained with ethid-

ium bromide (EtBr) in the bottom panels indicate equal loading of RNA samples.

(TIF)

S2 Fig. Schematic summary of the milRNA study in C. cinerea.

(TIF)

S1 Table. Primers used in RT-qPCR for expression determination of core biogenesis pro-

teins. F: forward primer, R: reverse primer.

(PDF)

S2 Table. Stealth siRNA duplexes used in DCLs knockdown assays. S: sense strand, AS: anti-

sense strand of siRNA duplexes.

(PDF)

S3 Table. Target prediction of two validated milRNAs in C. cinerea. Predicted targets of (a)

cci-milR-12c and (b) cci-milR-13e-5p. Norm_MYC and Norm_PRI represent normalized

expression levels at the mycelium (MYC) and primordium (PRI) stages based on previously

published microarray data of C. cinerea [25]. Targets were predicted by using miRanda, PITA

and microTar and selected by several rounds of functional annotation. Description and

domain information are downloaded from http://www.broadinstitute.org.

(PDF)

S4 Table. Domain information about the annotated Dicer-like proteins in different asco-

mycetes and some predicted Dicer-like homologs in C. cinerea, L. bicolor and G. marginata.
1 Accession/ Protein IDs were extracted from the database of Uniprot or JGI. 2 ResIII: Type III

restriction enzyme, res subunit. Helicase_C: Helicase conserved C-terminal domain. Dicer-

dimer: Dicer dimerization domain. Ribonuclease_#: Ribonuclease III domain. DEAD: DEAD/

DEAH box helicase.

(PDF)
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