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Abstract

The heritable endosymbiotic bacterium Spiroplasma is found in the harlequin ladybird Har-

monia axyridis. The proportion of beetles infected with Spiroplasma in different native H.

axyridis populations varies from 2% to 49%. We investigated the polymorphism of Spiro-

plasma strains in samples from individual beetles from Kyoto, Vladivostok, Troitsa Bay,

Novosibirsk, and Gorno-Altaisk. To identify Spiroplasma strains, we analyzed nucleotide

polymorphisms of the 16S rRNA gene and the ribosomal internal transcribed spacer (ITS1).

The majority of infected beetles were infected with two or more Spiroplasma strains. We

measured Spiroplasma density in beetles with different infection status using quantitative

PCR. The abundance of Spiroplasma in samples with a single infection is an order of magni-

tude lower than in samples with multiple infections. Density dependent biological effects of

Spiroplasma are discussed.

Introduction

Many insect species are infected with intracellular symbiotic bacteria, which are inherited mater-

nally and affect host reproduction. Among such bacteria, Wolbachia, Spiroplasma, Rickettsia, and

Cardinium are widely known. Spiroplasma is one of the most prevalent and well characterized fac-

ultative insect endosymbionts, and it is estimated to infect 5–10% of all insect species [1, 2]. This

bacterium is an endosymbiont of some members of all the main insect orders: Coleoptera [3–8],

Diptera [1, 9–15], Hemiptera [16–18], Homoptera [19–22], Lepidoptera [23, 24], and Odonata

[25]. Spiroplasma is found in the midgut, filter chamber, malpighian tubules, hindgut, fat tissues,

hemocytes, muscle, trachea, salivary glands, reproductive tissues and eggs [23, 26, 27]. Phyloge-

netic reconstruction of the genus Spiroplasma using the 16S rRNA gene sequences revealed that

the genus comprises four distinct clades: the Ixodetis clade, the Citri-Chrysopicola-Mirum clade,

the Apis clade sensu lato, and the Mycoides-Entomoplasmataceae clade [28, 29].

In insects, the effects of symbiosis with Spiroplasma range from mutualistic to parasitic. In

some insects, Spiroplasma determines male-killing at an embryogenesis stage [5, 8, 30], result-

ing in strongly female-biased offspring. The male-killing spiroplasmas are known in Drosoph-
ila [31, 32], ladybird beetles: Adalia bipunctata, Anisosticta novemdecimpunctata, Harmonia
axyridis, Menochilius sexmaculatus [3, 5, 6, 8, 33]; in lepidopterans: Danaus chrysippus, Ostrinia
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zaguliaevi [23, 24], and in Oriental tea tortrix (Homona magnanima) [34]. Male-killing Spiro-
plasmas from Drosophila belong to the Citri-Chrysopicola-Mirum clade [15]. The male-killing

effect for Spiroplasma strains in their native host is density-dependent [35]. Strains that do not

exhibit male-killing effect have a lower Spiroplasma density at all stages of the host’s life cycle

compared with the male-killing Spiroplasma strains. The highest density at all stages of the

Drosophila life cycle was noted for male-killing Spiroplasma which infects Drosophila melano-
gaster. A strain that causes male-killing in D. melanogaster (its native host) also does so in Dro-
sophila neotestacea, even though these insects diverged 40–60 mya, indicating that male-killing

is not strongly dependent on host genetic background [36]. In H. axyridis, Spiroplasma induces

early male-killing phenomena in some Japanese populations revealed by genetic and cytologi-

cal analysis [3], and much later Spiroplasma infection of Japanese and continental populations

of H. axyridis was confirmed by molecular-genetic methods [6, 33]. This Spiroplasma belongs

to the Ixodetis clade. Japanese populations of H. axyridis are infected with two strains of Spiro-
plasma, named HARFUKU1 and HARFUKU2 [37]. The proportion of females infected with

Spiroplasma in different populations was estimated to be 49% in Sapporo [38], 4% in Muika-

machi and 14% in Fukuyama [37], about 10% in Western Siberia [33], and about 2% in the

Altai [38]. In all these populations, there was a shift in the sex ratio toward females. In addition,

to male-killing, Spiroplasma also affects other biological characteristics of infected H. axyridis
females, such as reduced adult female survival and reduced female embryo survival [39, 40];

reduced development time, with the strongest effect seen at the larval stage; and increased

body size of infected insects [41]. Greater body size in Spiroplasma-infected H. axyridis corre-

sponds to a greater ovariole number [41]. Data on the effect of Sprioplasma on the H. axyridis
fertility are ambiguous. Some authors report a reduced fertility of females infected with Spiro-
plasma [39, 40], while others suggest an increase in potential fertility [39]. Shortening the

developmental time, increasing body size and fecundity in Spiroplasma infected H. axyridis,
and the effect on the sexual structure of the population may have important implications for

the H. axyridis biology [41].

The aim of this work was to investigate the polymorphism of intracellular Spiroplasma bacte-

ria in Western and Eastern populations of H. axyridis and to study the relative density of differ-

ent bacterial strains in one host with single and multiple infections. A significant proportion of

infected females are characterized by multiple (e.g. double, triple) infections. The density of a

bacterial population in insects with multiple infections is an order of magnitude higher than the

density of a bacterial population in insects infected by a single Spiroplasma strain. We discuss

the potential consequences of multiple Spiroplasma infections.

Materials and methods

DNA sampling

To study Spiroplasma polymorphism from H. axyridis, we used DNA samples of 16 Spiro-
plasma-infected beetles from Eastern and Western populations, of which the infectious status

was determined previously by us [42]. Twelve samples originate from females from the Eastern

population, including six samples from Vladivostok (V) and Troitsa Bay (Tr) and two samples

from Kyoto (K), as well as four samples from females of the Western population, including

two samples from Novosibirsk (N) and two samples from Gorno-Altaisk (G). Map of H. axyri-
dis sampling locations in S1 Fig. In two H. axyridis samples from Novosibirsk, two new Spiro-
plasma strains (GenBank ID: KR363169, KR363170) were detected previously by us [42]. H.

axyridis is not a protected insect species. Collections of beetles were conducted in the territo-

ries of municipalities that do not limit the collection of H. axyridis. No specific permissions

were required for collecting H. axyridis in these territories.
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Ethical approval is not required for this study because we use only DNA preparations and

do not experiment in any way with living insects.

Amplification

All DNA samples from beetles were tested before use. To validate the prepared templates, the

mitochondrial cytochrome oxidase 1 (COI) gene region of H. axyridis was amplified by PCR

primers LCO1490 and HCO2198 [43]. To detect Spiroplasma infection and to study Spiro-
plasma diversity, we used Spiroplasma-specific primers that amplify the 301-bp DNA fragment

including ITS1 complete sequence [6], and Spiroplasma-specific primers that amplify the 1028

bp fragment of 16S rRNA gene [18] (Table 1). The amplification reaction was conducted

under the following conditions: initial denaturation (one cycle 4 min at 95˚), followed by 38

cycles that include denaturation (30 s at 95˚), annealing (40 s at 59˚ for ITS1 and 40 s at 53˚ for

gene fragment of 16S rRNA), and polymerization 40 s at 72˚. This was followed by a cycle of

final polymerization (5 min at 72˚). For a positive control, we used a DNA sample of H. axyri-
dis, infected by Spiropasma from the DNA collection at the Vavilov Institute of General Genet-

ics RAS. For a negative control, we used DNA samples from uninfected H. axyridis imago

from the same collection.

qPCR

Using a NanoDrop8000 (Termo Scientific, Germany), DNA concentrations were measured.

Samples were then diluted as necessary so that each were of the same DNA concentration for

qPCR. Real-time qPCR reactions were carried out in the ANK-32 real-time PCR system (Syn-

tol, Russia). Quantitative PCR was performed in 25-μL reactions containing Lightcycler 480

SYBR Green I (Invitrogen) and 0.5 μM of each of the primers. The following thermal cycling

protocol was applied: 95˚C for 5 min followed by 35 cycles at 95˚C for 10 s, 60˚C for 10 s, then

72˚C for 30 sec. Three technical replicates per biological sample were performed for each set of

primers, SP-ITS-JO4 and SP-ITS-N55 for the internal transcribed spacer (ITS1) of Spiroplasma
and CPS-F and CPS-R for the carbamoyl phosphate synthetase (CPS) gene of H. axyridis
(Table 1). Melting curves were examined to confirm the specificity of amplified products.

Cycle threshold (Ct) values were obtained using the ANK-32 real-time PCR system at default

threshold settings. The efficiency of each primer pair was predetermined in separate experi-

ments using serial 10-fold dilutions of the DNA samples. The amplification efficiency of CFP

(E = 1.94) is different from that of the Spiroplasma ITS1 sequence (E = 1.72). Therefore, qPCR

from CFP was used to confirm H. axyridis total DNA quantity (Table 2). To estimate

Table 1. Primers used in this work for amplification of Spiroplasma and H. axyridis sequences.

PCR fragment name Fragment length

(bp)

Primer name Primers sequence Primers melting temperature

(Tm).

Reference

Fragments of the rRNA repeat of Spiroplasma sp
ITS1 301 SP-ITS-JO4 5'-GCCAGAAGTCAGTGTCCTAACCG-

3'
Tm = 59˚C [6]

SP-ITS-N55 5'-ATTCCAAGCCATCCACCATACG-3' Tm = 59˚C

16S rRNA 1028 spi_f1 5'-GGGTGAGTAACACGTATCT-3' Tm = 53˚C [17]

spi_r3 5'-CCTTCCTCTAGCTTACACTA-3' Tm = 53˚C

Fragments of the nuclear gene of H. axyridis
carbamoylphosphate synthetase

(CPS)

711 CPS-F 5'-TGGCCAGTAAAGCAACTGGT-3' Tm = 60˚C This

paperCPS-R 5'-CCATCACATGTTCCTCATCAA-3' Tm = 59˚ C

https://doi.org/10.1371/journal.pone.0198190.t001
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differences in Spiroplasma DNA quantities between samples, ratios of Spiroplasma DNA quan-

tities between samples were calculated as: No/Mo = EΔCt, where (No) is the initial concentra-

tion in sample N, (Mo) is the initial concentration in sample M, and (ΔCt) is the difference in

the number of control cycles between samples N and M. The quantity of Spiroplasma ITS1

DNA in sample N19 was used as a proxy for Spiroplasma DNA titers in other samples. To

determine the 95% confidence interval of the mean Ct, the one-sample Student t test was used.

To compare relative quantifications of Spiroplasma DNA in samples with single and multiple

infections, the Mann-Whitney test was used.

Electrophoresis, elution, cloning, and sequencing

PCR products were run on an 1.5% agarose gel, then extracted from the gel and purified with

an elution kit (Zymoclean™ Gel DNA Recovery Kit, Zymo Research, USA), according to the

manufacturer’s instructions. PCR product cloning was performed using the pGEM1-T Easy

Vector System, according to standard protocols (Fermentas InsTAclone™ PCR Cloning Kit).

We use random sampling of the clones for sequencing. Sequencing of the amplification prod-

ucts was conducted with both primers on an ABI PRISM 3500 instrument using a BigDye1

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, United States), according to the

manufacturer’s instructions.

Multiple sequence alignment and phylogenetic analysis

Sequences were aligned using the Clustal W algorithm in the MEGA 4.00 program package

[44]. As a reference sequence for the rRNA gene cluster, we used Spiroplasma sequence from

the closely related H. axyridis species of ladybirds Anisosticta novemdecimpunctata (GenBank

ID: AM087471). The Median-Joining network of the Spiroplasma rRNA genes from different

strains was constructed in the PopART program [45] using the TCS algorithm [46].

Table 2. Measurement of H. axyridis samples DNA concentration.

Beetle

number

Identified Spiroplasma strains DNA concentration

(ng/ul)

Ct FAM

(CFP gene of H. axyridis) Three

technical PCR replicates

Mean number of Ct FAM

(CFP gene of H. axyridis) with 95%

confidence interval

1 G9 HARFUKU2 1.2 26.33; 26.91; 26.62 26.62 ± 0.72

2 G13 HARFUKU2 1.2 26.05; 26.88; 26.72 26.55 ± 1.09

3 N1 Sib1 1.2 25.80; 26.01; 26.12 26.21 ± 0.64

4 N19 Sib19 1.2 26.38; 26.98; 26.11 26.49 ± 1.11

5 G 16 HARFUKU1; HARFUKU2 1.2 26.50; 26.10; 25.79 26.13 ± 0.88

6 V37 HARFUKU1; HARFUKU2; Bi24 1.2 26.89; 26.55; 27.32 26.92 ± 0.96

7 V42 HARFUKU2; Bi10 1.2 27.19; 26.15; 26.67 26.67 ± 1.29

8 T5 HARFUKU1; HARFUKU2; Bi22;

Tr54; Tr55

1.2 26.11; 26.55; 26.00 26.22 ± 0.72

9 21 HARFUKU1; HARFUKU2; Tr21 1.2 26.32; 25.95; 26.69 26.32 ± 0.92

10 Bi16 HARFUKU1; HARFUKU2; Bi24;

Bi10

1.2 26.60; 26.53; 27.06 26.73 ± 0.72

11 Bi29 HARFUKU1; HARFUKU2; Bi24;

Bi22

1.2 27.84; 26.54; 26.14 26.84 ± 2.21

12 K11 HARFUKU1; HARFUKU2 1.2 25.94; 26.85; 26.17 26.32 ± 1.18

13 K15 HARFUKU1; HARFUKU2 1.2 26.72; 26.78; 27.20 26.90 ± 0.65

Ct FAM–The value of the reference cycle (fluorescent dye: SYBR Green I).

https://doi.org/10.1371/journal.pone.0198190.t002
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Results

Spiroplasma ITS1 and the fragment of 16S rRNA gene nucleotide variability are presented in

Tables 3 and 4. Spiroplasma sequences from females G9, K13, N19, and N1 showed no evi-

dence of ambiguous nucleotide positions. This allowed us to conclude that these females were

infected with a single Spiroplasma strain. The ITS1 sequences from G9 and K13 females were

identical to the sequence of the Spiroplasma strain HARFUKU2 that was previously found in

H. axyridis from Japan (GenBank ID: AB127933) [37]. The ITS1 sequences in samples N1 and

N19 were previously recorded as the Sib1 strain (GenBank ID: KR363169) and Sib19 strain

(GenBank ID: KR363170), respectively.

However, in most Spiroplasma-infected H. axyridis females from Gorno-Altaisk (G16),

Birobidzhan (Bi16, Bi29), Troitsa Bay (T5, T21), Vladivostok (V37, V42), and Kyoto (K11,

K15), some nucleotides were ambiguously read at phylogenetically informative sites of both

ITS1 and in the fragment of 16S rRNA gene. Because the emergence of ambiguous sites could

indicate multiple infections in females, we cloned PCR fragments and then a set of individual

clones were sequenced. We cloned the ITS1 fragment with ambiguous sites of all samples and

the 16S gene fragment of three samples: G16, V37 and Tr21.

Spiroplasma strain identification of individual clones is presented in Tables 5 and 6. Newly

obtained sequences of the Spiroplasma 16S rRNA gene and ITS1 were deposited into GenBank

(GenBank ID: KR363166-KR363168, MF543310-MF543312). Multiple infections with Spiro-
plasma strains were detected in H. axyridis females from five studied populations in both

(western and eastern) parts of the native range. HARFUKU1 and HARFUKU2 Spiroplasma
strains co-occur in most females with multiple infections. HARFUKU1 strain is absent only in

one female from Vladivostok (V42, Table 5). Rare Spiroplasma strains were detected in multi-

ply infected females from Birobidzhan, Vladivostok and Troitsa Bay. One beetle from Japan

(K13) and one beetle from the Gorno-Altaisk (G9) are infected only by HARFUKU2. The

sequences of the Sib19 strain and Bi22 strain found in females from Troitsa Bay and Birobi-

dzhan were identical.

Table 3. Spiroplasma ITS1 nucleotide variability. Nucleotides of phylogenetically informative polymorphic positions are indicated.

Names of H. axyridis infected females Names of Spiroplasma strains Nucleotide positions��

1

4

8

4

1

4

9

7

1

5

3

5

1

5

3

8

1

5

4

7

1

5

6

2

1

5

6

8

1

5

6

9

1

5

7

3

1

5

8

5

1

5

8

8

1

5

9

2

1

5

9

8

1

6

2

8

1

6

6

0

HARFUKU1� T G A G T G A T C C T G C C

HARFUKU2
�

C A A T

G9; K13; HARFUKU2� C A A T

N19 Sib19 C

N1 Sib1 G C G T C T G C A A C T

G16;

Bi16, Bi29;

T5, T21;

V37, V42;

K11, K15

Y R M Y

�according to [37]

�� As a reference sequence we used ribosomal genes cluster of Spiroplasma from A. novemdecimpunctata (GenBank ID: AM087471). The letters indicate the collection

site: Bi–Birobidzhan, G–Gorno-Altaisk, K–Kyoto, N–Novosibirsk, T–Troitsa Bay, V–Vladivostok. The characters indicate the sample numbers.

https://doi.org/10.1371/journal.pone.0198190.t003
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Because HARFUKU1 and HARFUKU2 have the same length and differ only by few point

nucleotide substitutions that do not alter the structure of the PCR fragments ends, we assume

that possible differences in the amplification efficiency of these fragments in one reaction and

possible differences in the cloning efficiency are negligible. Therefore, we approximate the

quantitative relationship of Spiroplasma strains in the case of multiple infection from the num-

ber of plasmid clones of different types in a random sampling of clones (Tables 5 and 6). In a

random sampling of clones, we found a total of 26 HARFUKU1 and 87 HARFUKU2 strains.

Based on this data, we propose that the density of HARFUKU2 may be more than twice the

density of HARFUKU1 in beetles with double infection. Analysis of the 16S rRNA gene poly-

morphism confirms the presence of multiple infections in females. Overall, we identified 45

clones of this fragment: 27 clones corresponding to the Ha-2 strain and 18 clones correspond-

ing to the Ha-1 strain. One beetle from Japan (K13) and one beetle from the Altai (G9) are

infected only by Ha-2 strain. Since it is known that the ITS1 sequence is physically linked to

the 16S rRNA sequence in the ribosomal gene cluster and based on the infection of the beetles

K13 and G9 with only one Spiroplasma strain it can be assumed that Ha2 16S rRNA fragment

is physically linked to HARFUKU2 fragment of ITS1. Consequently Ha1 16S rRNA fragment

is linked to HARFUKU1 fragment of ITS1. Quantitative data of the number of clones of differ-

ent types supports this assumption. Obviously, the 3 sequence of the 16S rRNA fragment

found in the V37 female, is linked with the Bi24 ITS1 strain and Ha4 and Ha5 sequences of the

16S rRNA fragment found in females from Novosibirsk infected with a single Spiroplasma
strain, are linked with Sib1 and Sib19 fragments of ITS1 respectively.

Phylogenetic analysis

The results of the phylogenetic analysis of ITS1 and the 16S rRNA gene fragment of Spiro-
plasma from H. axyridis are presented in Figs 1 and 2. All identified Spiroplasma strains belong

to the Ixodetis clade. The nucleotide divergence of the ITS1 fragment is π = 0.0091. There are

17 variable sites, and of these, there are 16 phylogenetically informative sites. The nucleotide

divergence of the 16S rRNA fragment is π = 0.002. There are 19 variable sites, four of them are

phylogenetically informative.

Survey for abundance of Spiroplasma in H. axyridis
The Spiroplasma relative densitys were measured in 13 DNA samples from H. axyridis. The

results are shown in Table 7. To verify the data we divided our sampling into two groups. The

Table 4. Nucleotide variability of 16S rRNA fragments of Spiroplasma of H. axyridis. Nucleotides of phylogenetically informative polymorphic positions are indicated.

Names of H. axyridis infected females Nucleotide positions��

1

7

7

1

8

2

1

8

7

2

1

6

2

3

2

2

6

2

2

6

5

2

6

6

2

6

9

4

4

4

4

4

5

4

5

8

4

6

6

6

1

7

6

2

3

6

9

5

8

9

0

9

8

3

1

0

5

1

Reference strain -Spiroplasma from A. novemdecimpunctata G A G N A T C G G G A T C C G G C G G

N19 G G

N1 A A G G C T T T C G T T A T A C

G9; K13; A A

G16; Bi16, Bi29; T5, T21; V37, V42; K11, K15 R K R

�� The numbers of the variable nucleotides are given by the sequence of the ribosomal genes cluster of A. novemdecimpunctata (GenBank ID: AM087471), which was

used as a reference sequence.

https://doi.org/10.1371/journal.pone.0198190.t004
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first group included four beetles (G9, G13, N1, N19) infected with only one Spiroplasma strain.

The second group included beetles with multiple infections. Comparison of the groups based

on the value of Spiroplasma relative densities was performed using the Mann-Whitney test.

The value of Mann–Whitney U test (U-empirical = 0. Is less then U-critical = 3 for p�0.01)

confirms that this groups are different. We may conclude that the relative density of Spiro-
plasma in samples with a single infection is lower than in samples with multiple infections. All

samples with high Spiroplasma density are infected simultaneously with strains HARFUKU1

and HARFUKU2. This is likely to be one of the necessary conditions to achieve high Spiro-
plasma density.

Table 5. ITS1 based identification of Spiroplasma strains from individual females of H. axyridis.

Female number of H. axyridis Strain name (number of clones in parenthesis) GenBank ID:

Western populations

G16 (1)–HARFUKU1 AB127932

(5)–HARFUKU2 AB127933

G9 HARFUKU2 AB127933

N1 Sib1 KR363169

N19 Sib19 KR363170

Eastern populations

Bi16 (2)–HARFUKU1 AB127932

(14)–HARFUKU2 AB127933

(2)–Bi24 KR363168

(1)–Bi10 KR363166

Bi29 (3)–HARFUKU1 AB127932

(11)–HARFUKU2 AB127933

(1)–Bi24 KR363168

(2)–Bi22 KR363167

V37 (7)–HARFUKU1 AB127932

(6)–HARFUKU2 AB127933

(1)–Bi24 KR363168

V42 (14)–HARFUKU2 AB127933

(1)–Bi10 KR363166

T5 (6)–HARFUKU1 AB127932

(6)–HARFUKU2 AB127933

(4)–Bi22 KR363167

(4)–Tr54 MF543310

(2)–Tr55 MF543311

T21 (6)–HARFUKU1 AB127932

(10)–HARFUKU2 AB127933

(3)–Tr21 MF543312

K11 (2)–HARFUKU1 AB127932

(12)–HARFUKU2 AB127933

K15 (5)–HARFUKU1 AB127932

(9)–HARFUKU2 AB127933

K13 HARFUKU2 AB127933

Note: the numbers in parentheses indicate the number of plasmid clones of this type in a random sample set of

clones.

https://doi.org/10.1371/journal.pone.0198190.t005
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Discussion

We detected nine Spiroplasma strains within populations of the H. axyridis native range. The

two most common strains–HARFUKU1 and HARFUKU2 –as well as two minor strains–Sib1

and Sib19 –have been previously noted in Japanese and Novosibirsk populations, respectively

[42, 37]; the rest of the strains described here are recorded for the first time. Our study is the

first to note the diversity of Spiroplasma from a single host. Previously, the diversity of Spiro-
plasma strains was investigated in the genus Drosophila. In Drosophilidae, the infected species

has a single Spiroplasma strain [15]. However, a diversity of strains that infect one host species

have been repeatedly discussed for other reproductive endosymbiotic bacteria. In particular,

the diversity of Wolbachia strains was found in Drosophiala simulans, Drosophila melanogaster,
Culex pipiens [47, 48, 49]; a diversity of Rickettsia and Arsenophonus strains were found in

Bemisia tabaci invasive biotype [50]. Interpretation of the data of Rickettsia and Arsenophonus
diversity in B. tabaci requires some caution; it is known that B. tabaci is a cryptic species com-

plex comprising at least 24 morphologically indistinguishable species [51].

All Spiroplasma strains previously detected in H. axyridis belong to the Ixodetis clade. The

Sib1 strain belongs to the Spiroplasma cluster whose members infect arachnids; three other

strains are phylogenetically close to the male-killing Spiroplasma from A. bipunctata [42]. Five

new Spiroplasma lines (Fig 2), which differ from previously identified strains by single nucleo-

tide substitutions, also belong to the Ixodetis clade and are phylogenetically close to Spiro-
plasma from the ladybird beetle Anistotica novemdecempunctata. The position on the median

network (Fig 1) of the Bi22 strain, which is closely related to the Spiroplasma strain from Ixo-
dites ricinus, suggests that this strain is ancestral to the remaining Spiroplasma strains of H.

axyridis, with the exception of the Sib1 strain. The remaining strains can be considered to be

derivatives of the primary ones via the accumulation of point mutations. However, on the

other hand, the HARFUKU2 strain could be acquired independently by H. axyridis. In this

case, the Bi10 and Bi24 strains could arise as a result of recombination between HARFUKU1

and HARFUKU2, which is possible when the strains coexist in one individual. Such coexis-

tence has been demonstrated in our study. The formation of new lines via the recombination

Table 6. 16S rRNA based identification of Spiroplasma strains from individual females of H. axyridis.

Female number of H. axyridis and geographical

locations

Strain name (number of clones in

parenthesis)

GenBank ID:

Western populations

G16 (8) Ha1 MF538703

(7) Ha2 MF538704

G9; Ha2 MF538704

N1 Ha4 MG672513

N19 Ha5 MG672514

Eastern populations

V37 (8) Ha1 MF538703

(7) Ha2 MF538704

(2) Ha3 MF538705

Tr21 (2) Ha1 MF538703

(13) Ha2 MF538704

K13 Ha2 MF538704

Note: the numbers in parentheses indicate the number of plasmid clones of this type in a random sample set of

clones.

https://doi.org/10.1371/journal.pone.0198190.t006
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of the original lines coexisting in the same organism was previously noted in Wolbachia [52–

57]. However, evidence of Spiroplasma strain recombination requires an analysis of a longer

genome fragment than we had in our possession. The Sib1 strain, found only in one female

from the Novosibirsk population, likely infected H. axyridis independently. The uniqueness of

the Spiroplasma Sib1 strain infecting female N1 from Novosiborsk is supported by data per-

taining to the variability of both ITS1 and 16S rDNA (Figs 1 and 2).

The Spiroplasma strains detected in this study exist in various combinations and quantita-

tive ratios in different females and in different populations of the native range of H. axyridis.
The proportion of HARFUKU2 (Ha2) (Tables 5 and 6) in the total strain pool is more than

62%. This strain is found in females with both multiple and single infections (Table 5). The

HARFUKU1 strain is also widespread in the H. axyridis area, where it is detected at a fre-

quency of nearly 22%. Although we found this strain only in multiply infected females in com-

bination with the strain HARFUKU2, in Japanese populations HARFUKU1 occurs in females

with a single infection [42]. The Bi22 strain, which is identical to the Sib19 strain (5% in the

total strain pool) was detected in H. axyridis as a single infection only in Novosibirsk (as

Sib19), and as a multiple infection in females from the eastern part of the range (Table 5).

Minor strains of Tr21, Tr55 and Tr54 were found only in two females with multiple infections

in the Troitsa Bay population. The Bi10 and Bi24 strains were detected in four females from

two different populations of the eastern part of the range.

Single-strain Spiroplasma female infections were detected only in Novosibirsk (Sib1, Sib19),

Gorno-Altaisk (HARFUKU2), and Kyoto (HARFUKU2) populations, which are all located on

the periphery of the native range. In the same edge populations (Gorno-Altaisk and Kyoto),

the diversity of Spiroplasma strains was reduced in multiply infected females, which carry only

two Spiroplasma strains (HARFUKU1 and HARFUKU2). The number of Spiroplasma strains

ranged from 3–5 in multiply infected females from other populations (Table 5). We hypothe-

size that a decrease in the overall diversity of Spiroplasma strains from the center to the periph-

ery of the range, both in one host individual and in populations as a whole, reflects the well-

known pattern of the microevolutionary process, which consists of reductions in diversity in

edge populations [58–60]. The possibility cannot be excluded that Spiroplasma reduces the fit-

ness of infected beetles in conditions of ecological pessimum at the border of the H. axyridis
native range (Novosibirsk, Gorno-Altaisk). In this case, a mono infection and a decrease in

bacterial abundance may be considered to be a stage of Spiroplasma elimination from the pop-

ulations of H. axyridis. The assumption of the negative Spiroplasma effect on the viability of H.

axyridis is indirectly supported by the absence (or very low occurrence) of Spiroplasma in inva-

sive populations of H. axyridis [61].

The diversity of Spiroplasma strains in H. axyridis is the result of at least two events of infec-

tion of the host. The existence of repeated infections of H. axyridis was previously shown for

its symbiotic bacteria Rickettsia [61] and Wolbachia [62]. Multiple infection events are known

for other symbiotic pairs. D. simulans is infected by five strains of Wolbachia that span across

both supergroup A and B, including three supergroup A strains and two supergroup B strains

[47, 63]. These strains attained a different density in the host cells and, accordingly, deter-

mined different levels of cytoplasmic incompatibility, as well as different levels of protection

against pathogens.

Fig 1. ITS1 median network of Spiroplasma strains from H. axyridis. A reconstruction based on the analysis of the

internal transcribed spacer ITS1 polymorphism. ITS1 strain sequences are shown in Table 5. Mutations are indicated

by dashes. The size of the circles is proportional to the number of sequences in each group. Spiroplasma from Ixodites
ricinus was used as a control.

https://doi.org/10.1371/journal.pone.0198190.g001
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In most of the samples studied, we detected infection with two or more Spiroplasma strains.

The same type of infection, more than a single strain in one host–can be assumed in ticks. At

least in the study of the symbiotic community structure in Zygiella x-notata Clerck, 1757 (Ara-

neae: Araneidae) within the Spiroplasma, there was evidence for several “heterozygous nucleo-

tide positions”. Individual Spiroplasma ITS sequences contained up to eight such sites [64],

which we suggest is the result of multiple infections. Multiple infections are also known for

Wolbachia [65–67]. Because multiple infections are widespread among Spiroplasma infected

individuals (88%), it is possible that such co-infections are functionally significant for H. axyri-
dis and favored by selection.

The effects of symbiotic bacteria are density-dependent. Male-killing correlates with Spiro-
plasma density in species of the genus Drosophila [35]. The level of cytoplasmic incompatibility

and the level of antiviral protection in Drosophila positively correlate with Wolbachia density

[48, 68–71]. Until now, the mechanisms of density formation for Spiroplasma remain

unknown. Mechanisms of density formation were studied for Wolbachia, and these mecha-

nisms depend both on the characteristics of the host and bacterial genomes. In most cases of

multiple Wolbachia infections, the density of each strain is under independent host control.

The strains do not compete with each other, except for the only known case today, when one

Wolbachia strain was shown to be suppressed by another strain during co-infection [65, 67,

68, 72–76]. Bacterial density may be under the control of bacterial genes. The density of

Fig 2. 16S rRNA median network of Spiroplasma strains from H. axyridis. This reconstruction is based on the analysis of 16S

rRNA gene fragment polymorphisms. Characteristics of the strains are presented in Table 6. Mutations are indicated by dashes.

The size of the circles is proportional to the number of sequences in each group. Spiroplasma from A. novemdecimpunctata, a

closely related ladybird species, was used as a control.

https://doi.org/10.1371/journal.pone.0198190.g002

Table 7. Relative density of Spiroplasma in females with single and multiple infections.

Beatle

number

Identified Spiroplasma
strains

DNA concentration

(ng/ul)

Ct FAM

(ITS1 Spiroplasma) of three

technical PCR replicates

Mean number of Ct FAM (ITS1

Spiroplasma) with 95% confidence

interval

Spiroplasma
density �

1 G9 HARFUKU2 1.2 32.44; 31.90; 31.27 31.87 ± 1.45 1.53

2 G13 HARFUKU2 1.2 31.39; 31.90; 32.50 31.93 ± 1.39 1.49

3 N1 Sib1 1.2 33.05; 32.40; 31.00 32.15 ± 2.60 2.27

4 N19 Sib19 1.2 31.95; 33.00; 33.03 32.66 ± 1.53 1.00

5 G 16 HARFUKU1; HARFUKU2 1.2 24.92; 24.60; 24.49 24.67± 0.55 76.18

6 V37 HARFUKU1; HARFUKU2;

Bi24

1.2 25.22; 25.12; 23.79 24.71 ± 1.98 74.55

7 V42 HARFUKU2; Bi10 1.2 26.22; 26.33; 26.47 26.34 ± 0.31 30.80

8 T5 HARFUKU1; HARFUKU2;

Bi22; Tr54; Tr55

1.2 25.02; 24.57; 23.91 24.50 ± 1.39 83.54

9 21 HARFUKU1; HARFUKU2;

Tr21

1.2 23.61; 25.34; 23.05 24.00 ± 2.97 109.56

10 Bi16 HARFUKU1; HARFUKU2;

Bi24; Bi10

1.2 23.07; 23.89; 25.40 24.12 ± 2.94 102.66

11 Bi29 HARFUKU1; HARFUKU2;

Bi24; Bi22

1.2 23.22; 24.43; 24.11 23.92 ± 1.56 114.42

12 K11 HARFUKU1; HARFUKU2 1.2 24.22; 23.92; 23.26 23.80 ± 1.22 122.12

13 K15 HARFUKU1; HARFUKU2 1.2 24.22; 24.11; 23.04 23.79 ± 1.62 122.78

� The Spiroplasma density in sample N19 was used as a proxy for Spiroplasma titers.

Ct FAM–The value of the reference cycle (fluorescent dye: SYBR Green I).

https://doi.org/10.1371/journal.pone.0198190.t007
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Wolbachia strain wMelPop depends on the number of copies of a special operon named Octo-

mom [48, 77]. Ambient temperature and the host diet also influence the bacterial density [75,

78, 79]. The density of symbiotic bacteria is consistently increased during embryonic and larval

development [35]. In this study, we showed that two parameters—infections type (mono- or

multiple infection) and Spiroplasma density are correlated. Molecular mechanisms of genetic

control of the Spiroplasma density, as well as the biological consequences of single and multiple

infections, remain unclear. It can be assumed that the increased density of Spiroplasma in bee-

tles infected with several strains can increase the stability of the infection, reducing the likeli-

hood of spontaneous loss of Spiroplasma, which explains the wide spread of multiple infection

in H. axyridis. Quite possible Spiroplasma strains can interact according to the principle of

complementarity. Our data can be the basis for further experimental study of the genetic con-

trol of Spiroplasma density in H. axyridis.
The diversity of strains seems to provide Spiroplasma with a variety of manipulations with

the reproductive strategy of the host. Cytological studies of Spiroplasma revealed two scenarios

of interactions with H. axyridis embryos. In the first case, embryo development stops at the

stage of yellow eggs, and there are four critical development points, after which embryos die.

In the second scenario, embryos died at the stage of gray eggs immediately before hatching

[80]. We suggest that such differences can be the result of competition between two Spiro-
plasma strains with different and density dependent effects. Therefore, it is of considerable

interest to investigate associations between the type of infection (single or multiple), and the

degree of manifestation of male-killing and probably cytoplasmic incompatibility, which has

not been shown in H. axyridis.
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