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Abstract

Deep learning techniques, e.g., Convolutional Neural Networks (CNNs), have been explo-

sively applied to the research in the fields of information retrieval and natural language

processing. However, few research efforts have addressed semantic indexing with deep

learning. The use of semantic indexing in the biomedical literature has been limited for sev-

eral reasons. For instance, MEDLINE citations contain a large number of semantic labels

from automatically annotated MeSH terms, and for a great deal of the literature, only the

information of the title and the abstract is readily available. In this paper, we propose a Boltz-

mann Convolutional neural network framework (B-CNN) for biomedicine semantic indexing.

In our hybrid learning framework, the CNN can adaptively deal with features of documents

that have sequence relationships, and can capture context information accordingly; the

Deep Boltzmann Machine (DBM) merges global (the entity in each document) and local

information through its training with undirected connections. Additionally, we have designed

a hierarchical coarse to fine style indexing structure for learning and classifying documents,

and a novel feature extension approach with word sequence embedding and Wikipedia cat-

egorization. Comparative experiments were conducted for semantic indexing of biomedical

abstract documents; these experiments verified the encouraged performance of our B-CNN

model.

1 Introduction

With the rapid development of biomedicine, there has been an increase in the amount of bio-

medical literature. Semantic indexing is vital for biomedicine document classification and

retrieval. Semantic indexing for biomedical documents is multi-label classification problem to

assign the articles with controlled vocabulary thesaurus, MeSH (Medical Subject Heading)

terms. Table 1 shows an example of a biomedical article with manually annotated MeSH

terms. The annotation work would consume immense manpower and financial resources. The

support for retrieving newly-published articles would also be delayed. The main purpose of the

task is to automatically classify new PubMed documents and approximate the results with the
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manually annotated classes from MeSH headings provided by Pubmed curators. As illustrated,

the original text of article title as well as abstract are given. Over 20 thousand descriptors in

MeSH headings are provided as candidates of which one or some are associated with the arti-

cle. There are two major research focuses with respect to semantic indexing [1–3]. The first is

based on shallow learning approaches, which usually contain a process of matching correlated

documents by comparing keywords. This is the most primitive and direct method. The other

is based on deep neural networks (DNNs) [4], which have emerged as a powerful machine

learning technology. DNNs have been widely applied and proved to be effective in image clas-

sification [5–7], speech recognition [8–10], and natural language processing (NLP) tasks [11–

13]. Through several comparisons, they are proved to have significant advantages compared to

state-of-the-art shallow learning methods for semantic indexing [14–16].

In 2011, researchers from Microsoft Research and Google used DNN technology for speech

recognition to decrease the error rate of 20% -30% [14]. In 2012, DNN technology was utilized

on ImageNet task [16], which reduce the error rate from 26% to 15%.

In the field of biomedicine, MeSH indexing, the mostly applied mainstream method, mines

the context of indexed PubMed and MEDLINE citations [17–21] based on the bag-of-words

model (BOW). Nowadays, several statistical models and language models in information

retrieval and text mining are introduced to combine with MeSH mapping [22–25]. However,

this type of feature representation only contains information related to word frequency. In many

common area cases like sentiment classification, deep learning has been effectively used to repre-

sent more semantic information other than frequency. However, in biomedicine, conventional

deep learning methods might face some more challenges, such as terminologies, synonyms

based on professional knowledge [26, 27]. The MeSH term “Luciferases Luminescence” in the

example within Table 1 cannot be easily mapped without professional knowledge. Indeed, index-

ing is hindered by a large quantity of professional terms, a lack of information (generally only

titles and abstracts, which may cause data sparsity for learning), and a high correlation between

different labels. Hence, few research efforts have addressed for indexing with deep learning.

Convolutional neural networks (CNNs) [28, 29] provide a flexible framework that can

be used to reduce variation and exploit spatial correlations using weight sharing and local

Table 1. An example PubMed article with manually annotated MeSH terms.

Journal: Photochemistry and photobiology

Year: 1983

Title: Kinetics of bacterial bioluminescence and the fluorescent transient.

Abstract: The addition of FMNH(2), to Vibrio harveyi luciferase at 2˚C in the

presence of tetradecanal results in the formation of a highly fluorescent transient

species with aspectral distribution indistinguishable from that of the bioluminescence.

The bioluminescence reachesmaximum intensity in 1.5 s and decays in a complex manner

with exponential componentsof 10(-1) s(-1), 7 x 10(-3)S(-1). and 7 x10(4)s(-1). The

fluorescent transient rises exponentially at7 x 10(-2)s(-1) and decays at 3 x 10 (4)s(-1).

The slowest bioluminescence component. comprising the bulk of the bioluminescence.

decays at twice the rate of the fluorescent transient under all variations of reaction

conditions: concentration of reactants. temperature 2–20˚C. and aldehyde chain length -

decana1, dodecanal and tetradecanal. The activation energy for both the slowest

bioluminescence decay and the transient fluorescence decay is 80 kJ-mol(-1). An energy

transfer scheme is proposed to explain the results where two distinct chemically energized

species utilize the fluorescent transient as emitter for the slower bioluminescences, and for

the faster process a fluorophore present in the protein preparation. Kinetic observations

suggest that typical preparations of V. harveyi luciferase comprise 15% active protein.

MeSH terms: “Flavin Mononucleotide” “Fluorescence” “Kinetics” “Luciferases Luminescence”

“Time Factors” “Vibrio”

https://doi.org/10.1371/journal.pone.0197933.t001
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connectivity. However, the sizes of the sliding windows of the convolutional kernels can be dif-

ficult to determine. Large windows can hinder training because they necessitate an enormous

number of parameters [30]. Conversely, small window sizes may lead to the loss of some criti-

cal information, which then needs to be estimated. The deep Boltzmann machine (DBM) [31]

represents a good feature extraction method in deep learning, as it can be used to effectively

combine global and local information. In this paper, taking biomedical abstract semantic

indexing as a case study, we propose a hierarchical CNNs-based (coarse to fine) indexing

framework and present a suitable loss function for handling specific domain terms and the

correlation of labels for hierarchical indexing of biomedical documents. As indexing must be

accomplished using only the title and abstract information of documents, we used word

sequence embedding together with Wikipedia categories and entity classes to enrich document

representation. Our empirical results verify that this improved representation is denser than

that obtained via the BOW model.

To summarize, this paper represents three major contributions to the semantic indexing lit-

erature. First, to the best of our knowledge, we present the first case study of biomedical docu-

ment semantic indexing with CNNs, including comparisons with several state-of-the-art

methods. Second, we offer a framework for combining CNNs with DBM to learn document

representation, where CNNs extract local information regarding the context and the DBM is

used to merge the global features. We use a suitable loss function for the training of this frame-

work, where multi-label classification is performed in a coarse-to-fine learning style. Third, we

propose a new way to enrich document representation using sequence information.

This paper is organized as follows. Related work is described in Section 2. In Section 3, we

describe the proposed method for semantic indexing with CNNs. In Section 4, we describe

semantic feature extension for a document. We demonstrate comparative experiments in Sec-

tion 5 and present final remarks in Section 6.

2 Related work

2.1 Semantic indexing for documents

The existing semantic indexing approaches can be divided into two main categories, according

to the semantic representation methods. One group of methods tend to represent semantics

with shallow artificial features, like the BOW and term frequency-inverse document frequency

(TF-IDF) models, which only contain information about word frequency. However in most

cases, the corresponding lexical matching would cause missing results because of different

expressions of significant concepts, for example aliases, synonyms or abbreviations. Several

learning methods have been proposed with attempt based on the shallow semantic features,

such as latent semantic indexing (LSI), latent Dirichlet allocation (LDA) and probabilistic

latent semantic indexing (pLSI) [32–34]. LSI aims at decomposing the feature matrices with

SVD (Singular Value Decomposition), to select a subset of the original features to represent

the semantics. The process is similar to dimension reduction with Principle Component Anal-

ysis. Through the removal process, which is implemented by assigning weights to 0, the unim-

portant latent semantic features are filtered out. A vital weakness of this method is the inability

of processing the problem of polysemy. pLSI constructs a semantic representation model in

which each document uses massive parameters. Consequently, when processing large number

of documents, the overfitting problem are unavoided. In order to solve the above limitation,

LDA was proposed to eliminate the dependency between the number of parameters in the

model and the number of documents. However, most of these above models are linear models

with unsupervised dimension reduction [35], and are based on the unordered hypothesis

(exchangeability). That is, the sequence of the words in the document is always ignored; thus,
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the semantic representation is inappropriate for some sequences [3]. Recently, some research-

ers have attempted to apply supervised learning techniques to optimize the semantic represen-

tation of documents. Typically, supervised LDA [36] adds an extra response variable to LDA

by generalizing linear models with respect to the EM (Expectation Maximization) algorithm

associated with each document. However, the query and the document are regarded as inde-

pendent and processed separately in the learning process. Supervised semantic indexing [37]

focuses on the correlations between words in queries and candidate documents, and learning

to rank algorithms are then utilized to select the best combination of features from a large fea-

ture set generated from all word pairs.

In the last several years, deep learning has arisen the focus of all researchers in the research

field of artificial intelligence, with a variety applications on image classification [16], object

recognition [38, 39], speech recognition [14], and NLP tasks [15, 40]. Like other applications,

there are some investigations about trying deep learning techniques for semantic indexing. Sal-

akhutdinov and Hinton [1] proposed a novel representation method for extending semantic

indexing. An deep auto-encoder model was proposed in that work with the combination of a

higher layer encoded with binary codes and a lower layer generated based on word frequency

vectors. The constrained Poisson model was also introduced to deal with documents with vari-

ous lengths. Another work was proposed by Mirowski [2] to improve the deep auto-encoder

model by introducing a dynamic variable. This variable is generated from a gradient-based

MAP (Maximum a Posteriori) inference and can help to compute the encoder and the

decoder. With an additional use of the document label, the classifiers can be successfully

trained. Socher [41] proposed a semantic indexing method with the recursive neural network,

which captures the semantics of sentences via a tree structure for labeled structure prediction.

This model has been found to be efficient for constructing sentence representations when

mapping to images. Wu [3] designed a deep structure with restricted Boltzmann machines

(RBMs) to compute semantic representation of documents. This model was improved in [42]

which develops the feature space can make labels less interdependent and easier to model and

predict at inference time. CNN was firstly utilized in semantic indexing in [43] with dynamic

max pooling and hidden bottleneck layers. There are also several studies working for semantic

indexing for images, videos, etc [44–46]. Through experiments in the above papers, deep

semantic embedding models with nonlinear features can grasp the semantics with more

accurate and robust representations. These models also use discriminative fine-tuning, and

improve the ranking of documents with more appropriate scoring functions. Indeed, deep

models are associated with an increase in indexing performances.

2.2 Biomedicine document classification

Several studies have been investigated natural language processing techniques in the health

domain [47–49]. MTI (Medical Text Indexer) [20] is a document indexing system that pro-

vides recommendations based on the Medical Subject Headings (MeSH) and MEDLINE data-

bases. MTI has two main components: MetaMap Indexing and PubMed Related Citations

(PRC). The MetaMap is a module that maps biomedicine documents to concepts in the UMLS

Metathesaurus. The PRC algorithm is a modified kNN algorithm that relies on document sim-

ilarity to assign MeSH headings. The results produced by the two paths are given weights via

post-processing (such as clustering and merging), and these can be used to retrieve a ranked

list of MeSH terms.

The MeSHUP system [21] explores the combination of different machine learning

approaches for classification of full class-sets. This system is highly scalable and capable of

improving biomedical IR from a ranked output of MeSH terms.

Biomedical literature classification with a CNNs-based hybrid learning network
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2.3 CNNs for document classification

Lai [30] proposed the recurrent convolutional neural networks (RCNN) model for document

classification, with the goal of overcoming the Recurrent Neural Network bias whereby later

words are more dominant than earlier words. The RCNN effectively utilizes the advantages

of the recurrent structure, which captures the contextual information, and learns the feature

representation of documents using CNN. Shen [50] proposed a new latent semantic represen-

tation for web searches based on CNN. The word n-gram (word sequence) information is set

as the local feature and is calculated via convolution and max pooling to learn the high-level

semantic representation. Johnson [51] explored the application of CNN for converting images

(2D structure) to text (1D structure). In documents, the word order is entered as a 1D struc-

ture, and each word representation uses a vector based on the BOW. Experiments indicated

that this model achieved good performance with respect to sentiment classification and topic

classification. Santos [26] proposed a deep convolutional neural networks model using charac-

ter-level, word-level, and sentence-level features for sentiment analysis of short texts. These

features are not based on handcrafted inputs but on word-level embedding. Additionally,

these features, which are operated by a convolutional layer, are able to capture the global

feature vectors of sentences and extract the relevant features from any part of a word.

3 Model

Considering the numerous classes of documents and the imbalance in the distributed samples,

we developed a framework in which hierarchical CNNs were combined with DBMs. This

framework can perform multi-class and multi-label semantic indexing with correlated labels

for biomedicine documents (we call this B-CNN). The architecture of our proposed frame-

work is shown in Fig 1.

The model consists of three parts, i.e., feature representation (the input of the framework),

the B-CNN model, and multi-label hierarchical classification (the output of the framework). In

this section, we mainly describe the B-CNN model and the components of hierarchical index-

ing. B-CNN combines the advantages of both CNNs and DBMs. CNNs are more suitable for

capturing context information from features with sequence relationships. DBMs are advanta-

geous in that they can merge global and local information through undirected connections,

thus effectively removing noise from different representations. The hierarchical B-CNN based

indexing is much better than flat classification for processing a large number of classes. More-

over, the coarse clustering step is an effective way to remove noise from unbalanced distributed

samples. In addition, we designed suitable loss functions for the learning process of this frame-

work. The details of these two parts are described as follows.

3.1 Convolutional neural networks

Since the error gradients and the BP (Back Propagation) algorithm into the CNNs to simlify

the training process [28, 29], CNNs become more widely-used for feature representations. A

simple CNN structure acting as sentence model is made up with one-dimensional convolu-

tional layer followed by a k-max pooling layer (see the CNN model in a single Fig 1). Different

from conventional neural networks, each neuron in convolutional layer is only connected with

a local subset of the neurons in the lower layer. In this way, the neuron merely aims at extract-

ing the local information of the corresponding lower layer. Each neuron represents local fea-

tures from the connecting receptive field (which may or may not overlap), depending on the

activation function within the neuron. As a result, convolution neurons play the role of feature

detectors, and the weights of the neural connections decide the characteristics of the reaction

(i.e., the degree of the reaction). Through feature detectors, several feature maps are generated

Biomedical literature classification with a CNNs-based hybrid learning network
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by convolution kernels and the networks can effectively detect the local features at every posi-

tion of the preceding layer. The parameters for each nodes within the same feature map are the

same for they share a same convolution kernel [30]. Due to this characteristics, the number of

parameters within the network can be eliminated to a large extent compared with conventional

neural networks, which makes the structure simpler and more flexible. Max pooling layer is

utilized for feature mapping, and the operator is a nonlinear subsampling function that returns

the maximum of a set of values [40].

In each convolution layer, every input sample vector is weighted with several different con-

volutional kernels, and various degrees of local features are extracted by varying the sizes of

sliding window. Following the feature representation layers(convolutional and pooling layers),

there are fully-connected layers where take the each feature maps as input and the neurons are

connected like conventional networks. Through a certain number of convolutional kernels,

the semantic representations of documents can be easily enriched.

Assume the input sequence matrix is A, the kernels used for convolution and pooling are K
and β. And b1

i ; b
2
i are respectively the bias vectors for convolutional layer and pooling layer.

The output of convolutional layer, pooling layer and fully-connected layer are:

a1
i ¼ f ðconv2ðA;KÞ þ b1

i Þ ð1Þ

a2
i ¼ f ðbdownða1

i Þ þ b2
i Þ ð2Þ

Fig 1. CNNs-based hybrid learning framework.

https://doi.org/10.1371/journal.pone.0197933.g001
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yc ¼ f ðwa2
i þ bÞ ð3Þ

where conv2 is the convolution of two matrices, down represents the sampling operation to

implement max-pooling, K; b; b1
i ; b

2
i and the parameters w in fully-connected neural networks

make up with the parameter set of CNN.

3.2 Deep Boltzmann machines

The DBM [31, 52], which is composed of RBMs, is an undirected graph network of symmetri-

cally stochastic binary units. The RBM [53] is a generated neural network that can learn

probability distribution over a set of inputs. More specifically, an RBM is a kind of Boltzmann

machine in which all visible and hidden units are fully-connected between layers and not

connected within each layer. The visible units (V) represent the input of data, and the hidden

units (h) represent features learned from the visible units. The DBM has many advantages: it

retains and discovers layer presentations of the input with an efficient pertaining procedure; it

can be trained on unlabeled data, and parameters of all layers can be optimized jointly in the

likelihood function. Fig 2 shows how the layer nodes are constructed in the DBM. This is a

three-layer network with no within-layer connections. h1, h2 and h3 are three hidden layers

with a different number of nodes for each level. The energy of the state {V, h1, h2, h3} is defined

as:

EðV; h1; h2; h3; yÞ ¼ � VTW1h1 � hT
1
W2h2 � hT

2
W3h3; ð4Þ

where θ = {W1, W2, W3} are the model parameters, representing symmetric interaction terms.

During the process of calculating the value of the nodes in each layer, the undirected con-

nection in each visible and hidden layers, which incorporates top-down feedback, plays a criti-

cal role in the performance of a DBM. This is the case for the DBM both as a generative and

discriminative model. Additionally, this quality makes the feature representation of the DBM

perform better than the deep belief network (DBN) [31].

Fig 2. Deep Boltzmann machines.

https://doi.org/10.1371/journal.pone.0197933.g002
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3.3 Boltzmann-Convolutional neural network (B-CNN)

3.3.1 Principle analysis. CNNs perform well when extracting local information about

context. But for articles for which the abstract is the only available information, more global

information may be required. Mikolov [54] showed that adding external context information

can improve the performance of the model. The entity occupies an important position in the

field of biomedicine indexing [55], so we combined the entity, as the complementary global

feature information, with the input vector in each document.

The DBM, which updates weights using a priori knowledge learned from undirected

graphs, represents a good feature extraction method in deep learning. Additionally, when ana-

lyzing the data structure of documents, we have found that the DBM can remove noise intro-

duced by the document input. The DBM uses the nodes of both the former layer and the latter

layer, as a result, hidden node sampling is more accurate. However, the DBM is disadvanta-

geous in that the training time grows exponentially with the number of layers and nodes, as

well as with the magnitude of the connection strengths [52]. To decrease the time complexity,

we used a two-layer DBM, thus taking both training time and model accuracy into consider-

ation for biomedicine indexing.

3.3.2 Framework analysis. In Fig 1, the entity feature, which represents the global features

of each document, is a vector with the same dimensions as yc. The values (V) in the input layer

of the DBM are computed as follows:

V ¼ f ðCyc þ EyeÞ; ð5Þ

where

f ðxÞ ¼
1

1þ e� x
: ð6Þ

C, E are the weight matrices for which the likelihood of the training data is maximized. yc is

the output of the CNNs model, and ye is the entity feature corresponding to each document.

W1, W2, Wlab represent weight connections between the visible layer and the h1 layer,

h1 layer and h2 layer, and h2 layer and the label layer, respectively. We calculated the values

(V0 − V) and (h0
1
� h1), updating for weight. V0 and h0, which are the reconstruction represen-

tations after each sampling (corresponding to V and h, respectively), represent the state of the

visible and hidden nodes, respectively. The process of sampling the nodes in the h1 layer and

h2 layer is shown in Fig 3,

h1 ! h2 : h2 ¼ h1 �W2 þ tar �WT
lab þ bias1; ð7Þ

h2 ! h0
1

: h0
1
¼ V �W1 þ h2 �W

T
2
þ bias2; ð8Þ

h0
1
! h0

2
: h0

2
¼ h0

1
�W2 þ tar �WT

lab þ bias3; ð9Þ

where tar represents the real label of the training sample, and bias is the bias value between the

visible and hidden layers.

The node values in the h1 and h2 hidden layers are calculated according to the nodes in the

previous and next layers. After the unsupervised pre-training process, we used a supervised

fine-tuning process in which we introduced the labels of the samples. The purpose of the fine-

tuning is to update the weights connecting visible (hidden) and hidden layers, and the objec-

tive function is to minimize the energy function in the model. The DBM is an undirected

graph model, in which each neuron node in the same layer is computed according to the

Biomedical literature classification with a CNNs-based hybrid learning network
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adjacent related lower and upper nodes. As the test sample labels are unknown, unlike the

training sample labels, the training and testing processes of the DBM model are different. The

details are described in the following section (Fig 4 is the training process and Fig 5 is the test-

ing process)(Note that the 2W1 represents the 2W1 parameters illustrated in Fig 2 between

layer V and layer h1):

In the training process: During the training process, the model is sampled in the initial state

and the nodes are reconstructed for each layer. After sampling the hidden layer nodes in the

initial state (h1), which are calculated according to the visible layer nodes (V), the subsequent

calculation has two steps: calculate the status of the nodes in the second hidden layer (h2) (top

row in Fig 4), and reconstruct the status of the nodes in the visible layer (V 0

) (the lower row in

Fig 4). Next, the labels of each sample are calculated, the status of h
0

1 and h
0

2 are determined

Fig 3. Layer’s nodes sampling process.

https://doi.org/10.1371/journal.pone.0197933.g003

Fig 4. Training process.

https://doi.org/10.1371/journal.pone.0197933.g004

Fig 5. Testing process.

https://doi.org/10.1371/journal.pone.0197933.g005
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based on the current status (h2), the error is calculated, and then the weights between the node

connections are updated.

In the testing process: During the testing process, according to the DBM model node calcu-

lation rules (calculating the node status in the current layer according to the upper and lower

layers), the weights obtained through the training process cannot be directly used to predict

the test sample target. Indeed, the status of the h1 layer nodes (termed h
0

1) must be re-sampled

after calculating the h2 layer nodes. We sampled the status of the nodes in h
0

1 according to the

visual layer and the h2 hidden layer. We then re-calculated the h2 hidden layer nodes (h
0

2) and

predicted the labels of the test samples (details in Fig 5).

The rectified linear unit (ReLU) can be used to increase the nonlinear properties of the net-

work, as well as the sparsity, without affecting the receptive fields of the convolution layer [56].

The ReLU function, which is also the neuron’s output, is:

f ðxÞ ¼
x; x � 0

0; x < 0

(

The sigmoid function, which is used widely in deep learning with excessive layers, suffers

from the vanishing gradient problem; the training process is therefore difficult. Using the

ReLU instead of the sigmoid function in a deep network ensures that the network neurons are

modestly sparse after training, thus eliminating the issue of vanishing gradients along with the

paths of active hidden units [16]. In addition, the ReLU enables faster network training com-

pared with other options and does not require pre-training or advanced optimization strate-

gies. Indeed, the ReLU can achieve performance comparable to a pre-trained model with the

sigmoid function.

The recently introduced technique called “dropout” can reduce over-fitting by decreasing

the complexity of co-adaptation of data [57]. Neurons are “dropped out” by randomly setting

50% of the nodes in each hidden layer in the network to 0, which means that 50% do not par-

ticipate in the forward pass or back-propagation processes. In our system, “dropout” is used in

all convolutional and fully-connected layers.

In the testing phase, dropout is regarded as a kind of mean network because for each input

sample (which may be one sample or a batch of samples), the corresponding network struc-

tures are different but share the hidden node’s weight at the same time. Hidden nodes appear

randomly in a certain probability when updating weights in the network. One of the advan-

tages of dropout is that it guarantees that every node does not appear at the same time. Hence,

weight updating no longer depends on the interaction relationship between each pair of hid-

den nodes. This can prevent certain characteristics from affected by other specific characteris-

tics so that each individual hidden unit can learn useful features without relying on other

specific hidden units to correct its mistakes.

On the one hand, CNN has a great advantage on feature engineering. On the other hand,

DBM shows great capability in generating the labels for documents while suffers from large

number of parameters, which would lead to unbearable time cost. Compared with them,

B-CNN is a combination of CNN and DBM, while the number of hidden layers in DBM can

be reduced, replaced by CNN for extracting features from documents. As a result, in terms

of time consumption, obviously B-CNN requires a larger computation cost than simple

CNN or DBM with two hidden layers due to its complex pipeline. However, these methods

cannot achieve the performances of B-CNN. Or if adding hidden layers to DBM, the time

consumption cannot be controlled. Actually in practice, the feature engineering process,

including CNN and meta feature extraction can be accomplished at the same time. With the

Biomedical literature classification with a CNNs-based hybrid learning network
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optimized parameters, the testing process would not be influenced by the complex architec-

ture that much.

3.4 Hierarchical indexing

Document classification aims at predicting the categories of an unknown document in a cer-

tain class collection. The task can be categorized into two groups through the number of target

classes. Multi-class classification [58] is a common task in which there are obvious boundaries

between each pair of classes and a given document can only belong to one class. Binary classifi-

cation is a classical application of multi-class classification. Another task is multi-label classifi-

cation [58], where each sample can be assigned with more than one class. The target labels can

be either independent or associated which brings more challenging work for classifiers.

As a result, multi-label classifications are not simply repeated multi-class classifications due

to the dependencies among labels. In fact, appropriate use of the dependencies can effectively

improve the performances of classification. In case there are a large number of labels, through

unsupervised clustering as pre-processing, the labels can be grouped into coarse subsets, which

can greatly improve the efficiency of classification. Recently, word2vec [59] was developed

to represent the word semantics from corpus through a continuous vectors, which has been

found useful for obtaining the relationship between words by letting related or compositional

words appear closed in the vector space. Based on this toolkit, Ioannis Pavlopoulos trained

the word representation for biomedicine labels (http://participants-area.bioasq.org/), which is

applied in our research. Based on the word vector representation, we design an indexing struc-

ture that introduces label (word) embedding for multi-label classification (shown in the third

part of Fig 1). In our framework, the error function of the clustered coarse classes (categories)

and the weight updating are used as follows.

E ¼
1

NC

X

C

X

N

ðf ðx;wÞ � ycÞ
2
; Dw ¼

@E
@w

; ð10Þ

where C is the number of coarse clustering categories, N is the number of training samples, x is

the output label of B-CNN, w is weights which connect the output layer and the coarse cluster

layer, f(x, w) is the output probabilities of a certain label while y is the target value. For each C,

the hierarchical classification function is:

Jk ¼
1

nk

X
ðf ðx;wkÞ � yÞ2; Dwk ¼

@Jk
@w

; ð11Þ

where k is the number of categories within the corresponding coarse classes subset. The whole

process is firstly clustering the labels into coarse classes with word2vec, and then deciding the

final label within the coarse classes.

For forward propagation, through Eqs (4), (5) and (6), the output of the whole network can

be computed with the input vectors and the parameters of CNN and DBM. Note that yc can be

represented by a function of input vectors and the parameters of CNN. For backward propaga-

tion, the parameters in CNN and DBM can be optimized simultaneously through stochastic

gradient descent on the cost function.

4 Semantic feature representation

Currently, the main feature representation method is the vector space model with the BOW.

However, the BOW model only contains information about word frequency, which is shallow

and insufficient when dealing with NLP tasks, e.g., biomedicine indexing. In this paper, we

describe a novel method for vector representation with document word sequence embedding
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(DSE) for biomedicine documents, which is based on word sequence information. Our goal

was to improve the feature representation (input of the framework). This model enables us

to take advantage of the strength of the CNN, which is more suitable for dealing with the fea-

tures of sequence relationships. We used the sequence of words in the documents as the basic

features, and combined categorical information from Wikipedia with entity meta-features

constructed from MetaMap keywords from biomedicine fields as a synonym for expansion.

Afterwards, we used word embedding to represent these features, rendering this feature repre-

sentation more informational for biomedicine tasks.

In the following, we first describe the meta-features composed via DSE representation, and

then introduce the algorithm in detail. Wikipedia is a multi-language encyclopedia, covering a

wide range of information on individual wiki pages. Wikipedia is an actual corpus, and with

the rapid changes in social information, it is constantly being expanded and updated. Wu [60]

exploited Wikipedia as a source of external knowledge for extending documents. Considering

the nature of our task with biomedical abstracts, we adopted this idea and used Wikipedia

to extend the documents. Named entity occupies an important position in addressing NLP

tasks, e.g., information extraction and information retrieval. Named entity is a representative

feature in biomedicine [61], e.g., the prediction of gene sequences and identification of pro-

teins. Word vectors [59] are a good tool for the representation and mining of existing semantic

relationships between words. Among existing deep learning methods, many models that

obtain good performance are based on word vectors. Thus, for the input of the model, we used

word vectors to represent Wikipedia and the named entity features.

4.1 Meta-features

4.1.1 Wikipedia as meta-feature enrich document representation. For the task of index-

ing biomedical documents, we enriched the document representation by using Wikipedia

category information together with MetaMap keywords. This enabled us to overcome the

shortcomings of the BOW. MetaMap (http://metamap.nlm.nih.gov/) is a widely used open

source toolkit that extracts concepts in the UMLS metathesaurus. We computed the distribu-

tion of categories-words according to the known distribution of word-documents and cate-

gory-documents using a process referred to as LDA (see Fig 6). This is discussed later in this

document.

Parameter description: n is the number of distinct words in the documents, m is the total

number of classes in all documents, and t is the number of Wikipedia categories. Matrix P1

represents the distribution of words and documents, where the row wi is the probability that

the word wi will appear in m classes of documents, denoted as wij. Matrix P2 represents the dis-

tribution of words and Wikipedia categories, where the row wi is the probability that a word wi

will correspond to a Wikipedia category, denoted as wik. Matrix P3 represents the distribution

Fig 6. Words mapping with Wikipedia.

https://doi.org/10.1371/journal.pone.0197933.g006
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of Wikipedia categories and document classes, where the row ck is the probability that the cate-

gory ck will appear in the documents, denoted as ckj.
We were able to use the Wikipedia categories for the corresponding anchor words to calcu-

late the Wikipedia categories of non-anchor words (P2). This form of document representa-

tion combines global (the proportion of the words in all documents categories) and local

(anchor words in each document category) information. Hence, through the text representa-

tion, we were able to learn more semantic information via the model.

4.1.2 Entity as meta-feature enriches document representation. Conditional random

fields (CRFs) are undirected statistical graphical models that have been used successfully in a

large number of studies on named entity recognition. CRFs take advantage of sequence label-

ing, which is a linear chain that corresponds with conditional training to treat each sentence

as a sequence of tokens. In this paper, we used the Machine Learning for Language Toolkit

(http://mallet.cs.umass.edu/) (MALLET), as an implementation of CRFs [62], to recognize

entity class in biomedicine abstracts. We used biomedicine entities to enrich document repre-

sentation in two different ways. First, we used the entity properties in the DSE, and second, the

entities were included in the DBM inputs as an entity feature vector.

4.1.3 Word vector. The word vector model can be seen as a language model that consists

of n-dimensional continuous valued vectors, where each dimension of the word embeddings

expresses a latent feature of the words, exposing useful semantic and syntactic regularities [59].

The vector creates features without human intervention. Based on individual words and ran-

dom initialization, it can make highly accurate guesses about the meaning of each word with

enough data, usage, and context. These features are also called the distributed representation

of the words.

Mikolov trained word representations using an effective neural network model that seeks

to maximize accuracy while minimizing computational complexity [63]. The representation of

vectors after training not only positions similar words close to each other in the vector space,

but can also help to define implicit relationships among words across a distance. For example,

the word vector (“King”) − vector (“Man”) + vector (“Woman”) can have specific properties

such that it results in the vector that is closest to the vector representation of the word Queen

[64].

4.2 Document word sequence embedding (DSE)

We preprocessed all documents by removing stop-words and stemming. To fix the length of

all document input features, we generated the following process. The document is represented

as follows: if the document length after preprocessing is less than the average length L, we use

the Unknown word as a supplement until the document length reaches L. If the document

length is longer than L, we reprocess the document and retrieve high frequency words until

the length of the document matches that of L, and then use word embedding according to the

sequence of the words in the document. This process was termed algorithm 1.

We sorted all words in a document k according to their frequency in the document. We

then collected the top words in the document until the document length equaled L. D repre-

sents documents after the process of removing stop-words and stemming, Dk represents

document k, and Unknown refers to the word Unknown, which is used for effective word

embedding in a large corpus. When the document length is less than L, we use this word to

supplement the length. L −m in UnknownL−m refers to the number of Unknown words. If

the document had only one Unknown word, we just used Unknown1. Rkm refers to the word

embedding of the m word in document k, and Rnewkm describes m word embedding in the

sequence of new words after the document is rearranged.
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Algorithm 1: Document word sequence embedding (DSE)
Input: D
Output: document representation R
1. L = average length of D
2. for k = 1..N do
3. m = length (Dk)
4. if m < L
5. R = [Rk1, Rk2, . . ., Rkm, Unknown1, . . ., UnknownL−m];
6. else if m = L
7. R = [Rk1, Rk2, Rk3, . . ., Rkm];
8. else if m > L
9. sort all words in document k according to their

frequency in this document. Then take the top words
in all place of this document until the length equal
to L. R = [Rnewk1, Rnewk2, . . ., Rnewkm, . . ., RnewkL];

10. end if
11. end for
12. Return R

In addition, we use the entity and Wikipedia categories for the corresponding anchor

words to enrich document representation [65]. These were based on MetaMap keywords in

the dataset of the biomedicine literature. Some words in the document may be both biomedical

entities and also anchor words in Wikipedia. In these cases, there may be substantial corre-

sponding category information. Taking into account the integrity of the model input, we

selected three words to enrich document representation for each word in the R. These words

were selected from the corresponding categories and entities. The extension of word order fol-

lowed that of the original words. Then, word embedding was used to represent each word.

When the number of categories was less than three, we used the word itself in the document,

together with its categories. Each sentence in the document was thus represented by word

embedding, in which each word was represented by one 50-dimensional vector. As a conse-

quence, each document was represented by a 200 (50×4)×L matrix. The details of the process

are shown in the feature representation section of Fig 1.

5 Experiments

5.1 Dataset and experimental setup

Dataset 1 (http://tinyurl.com/m2c8se6) was a labeled corpus of English scientific medical

abstracts. All data were downloaded from the Springer website. Dataset 2 (http://biotext.

berkeley.edu/data.html) was a collection of BioText data. Dataset 3 (http://www.bioasq.org/

participate/challenges) was a group of MEDLINE documents. For dataset 3, we downloaded

all data for the years up to and including 2013 from the website. Each article contained only

the article title and abstract, and there were 5 to 20 classes (termed Medical Subject Headings

in the medical field (MeSH)) for each article on average. Altogether, there were 27149 MeSH

headings. Yepes [27] selected the top 10 most frequent MeSH headings to address the

extremely unbalanced distribution of the dataset. Similarly, we selected the top 150 MeSH

headings because only about 150 of these appear in more than 1% of all the data on MEDLINE.

To extend our experiments, we plan to introduce some unbalanced samples and select the top

2000 categories. Dataset 4 (http://qwone.com/~jason/20Newsgroups) was organized into dif-

ferent newsgroups, each corresponding to a different topic. The website offered three versions

of this dataset, and we selected the third, which had 18828 documents. This dataset can be

used in two ways, as it can be organized into twenty classes or four major categories (comp,

politics, rec, and religion). To ensure that our results were comparable to those of Lai [30], we
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choose to use the same four categories of the dataset 4. For more information about the data-

sets, see Table 2.

On dataset 1 and 2, we aim to primarily compare the performance of different models and

different feature representations. To simplify the complexity, on dataset 3, we choose not to

conduct the experiment on the BOW+ feature representation because of the unsatisfying per-

formance, compared with DSE. Dataset 4 is used to verify the extensions of the proposed

model on fields other than biomedicine, so we directly compare our model with state-of-the-

art models in the chosen field, rather than the baselines of the former datasets.

These experiments are repeated ten times. In order to avoid insufficient testing set to vali-

date the effectiveness, as well as to guarantee the training set sizes, at each time, 70% of the

entire dataset is randomly selected as training samples, and the remaining 30% as testing sam-

ples. The presented results are the average of results of the repeated experiments. Moreover,

for each, within the selected training samples, 10-fold cross validation is employed to select the

optimal parameters. The parameters of the B-CNN model include the settings of the convolu-

tional and pooling layers in CNN, the size of the sliding window in CNN, the interlayer con-

nection weights (e.g. W1, W2, and Wlab in DBM, the connection parameters of weights from

the high-level representation layer in B-CNN, and the initial values in the pre-training process

and the overall learning rate, and so on. We applied the widely-used cuda-convnet package to

train our model on a single GPU. The experimental performance presented below was con-

ducted entirely with the test set.

5.2 Details

Based on our DSE feature extension, we also enriched BOW representation through Wikipedia

and the entity class based on MetaMap. We used this as our baseline, denoted as BOW+

(BOW+ is better than BOW representation. BOW+ adopts indeed the same representation

approaches of conventional BOW). In addition, we made some changes when training CNNs.

As our purpose was to learn about the structure of the document and the semantic information

between words, we fixed the size of the slide window to make it equal in dimension to that of

word embedding (50-dimension). We used a step down sliding window position of 50 by 50,

as this prevented each sliding window from changing the word vector embedding associated

with the features of the word. In this way, information about the document was gathered by

changing the length of sliding window.

5.2.1 Evaluation protocols. We used Macro- and Micro-averages of the precision (P),

recall (R), similarity (S), and F1-measures as the evaluation criteria [66–69]. The Macro-aver-

age weights all the classes equally, regardless of how many documents are included. The

Micro-average weights all the documents equally, thus favoring the performance of common

classes. Hence, the Macro-average reflects the performance of each category, and the Micro-

average reflects the performance of each document. MacroP (MaP), MacroR (MaR), MacroF1

Table 2. Datasets details.

Dataset Sample Classes Type Field

dataset 1 9666 39 multi-class biomedicine

dataset 2 1000 168 multi-class

dataset 3 1,000,000 150 multi-label

2,000 multi-label

dataset 4 18,828 20 multi-class newsgroups

4 multi-class

https://doi.org/10.1371/journal.pone.0197933.t002

Biomedical literature classification with a CNNs-based hybrid learning network

PLOS ONE | https://doi.org/10.1371/journal.pone.0197933 July 26, 2018 15 / 31

https://doi.org/10.1371/journal.pone.0197933.t002
https://doi.org/10.1371/journal.pone.0197933


(MaF1), MicroP (MiP), MicroR (MiR), and MicroF1 (MiF1) are comprehensive assessment

metrics, defined as:

MacroP ¼
PK

k¼1
Pk

K
; ð12Þ

MacroR ¼
PK

k¼1
Rk

K
; ð13Þ

MacroF1 ¼

PK
k¼1

F1k

K
; ð14Þ

MicroP ¼
PK

k¼1
TPk

PK
k¼1

TPk þ
PK

k¼1
FPk

; ð15Þ

MicroR ¼
PK

k¼1
TPk

PK
k¼1

TPk þ
PK

k¼1
FNk

; ð16Þ

MicroF1 ¼
MicroP �MicroR� 2

MicroP þMicroR
; ð17Þ

where K is the number of categories. Precision (P) is defined as: P ¼ TP
ðTPþFPÞ and recall (R) as:

R ¼ TP
TPþFN. F1, Macro-similarity (MaS) and Micro-similarity (MiS) are defined as:

F1 ¼
2� P � R
ðP þ RÞ

; ð18Þ

MaS ¼ MiS ¼
TP

ðTPþ FPþ FNÞ
; ð19Þ

where TP refers to the number of true positives, FP is the number of false positives, FN is the

number of false negatives, and we also use TN which is the number of true negatives in the Roc

graph.

A ROC [70] graph depicts the relative tradeoffs between the benefits (TP, true positives)

and costs (FP, false positives). ROC curves are two-dimensional graphs in which the TPR (true

positive rate) is plotted on the Y axis and the FPR (false positive rate) is plotted on the X axis.

In the ROC curve, the closer the point to the top left, the better the model. The TPR and the

FPR of a classifier are estimated as:

TPR ¼
Positive correctly classified

Total positives
¼

TP
ðTPþ FNÞ

; ð20Þ

FPR ¼
Negatives incorrectly classified

Total negatives
¼

FP
ðFPþ TNÞ

: ð21Þ

5.2.2 Comparative methods. We compared the performance of our best model (with five

pooling layers, each of which follows a convolutional layer, and three fully-connected layers at

the end of CNNs) with MTI, MeSHUP, which we have described in our related work, and typi-

cal methods, as follows.
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Pattern Matching (PM) [19]: By comparing MeSH labels with words in the documents, we

were able to predict document labels. During the matching process, we added some artificial

rules: convert all words in the MeSH label into lowercase. In addition, we determined the char-

acters in MeSH labels using fuzzy matching. For example, it might be unlikely to see pain bone
in a MeSH label, but very likely to find pain in bone in a document.

Latent Dirichlet Allocation (LDA) [33]: The LDA is a directed graphical model, also

referred to as the topic model. This model is an unsupervised learning technique for extracting

thematic information from a corpus. LDA, HLDA (Hierarchical LDA), and PLSA (probabilis-

tic latent semantic analysis) have been extensively used for classification because the nonpara-

metric extensions of these models have been quite effective [71]. The main purpose of LDA is

to reduce the dimensions of document representation using thematic dimension representa-

tions instead of the dictionary. This motivation of the LDA method is similar to that of deep

learning, in which features are extracted from high-dimensional space. Variational EM algo-

rithms and Gibbs sampling are used in the LDA model, which makes two of the parameters,

i.e., document-topics and topic-words, easier to predict.

Support Vector Machines (SVM) [72]: In machine learning and data mining, the SVM

is supervised learning models with associated learning algorithms that analyze data used for

classification and regression analysis. In this paper, the multi-label classification produced by

SVMs is regarded as a group of multiple binary classification problems. The samples from

each class in the dataset have an unbalanced distribution. For each class, positive samples are

defined as current class samples, and negative samples are two to three times the size of the

positive samples. As described in the reference [73], when the number of features is small, one

often maps data to higher dimensional spaces (i.e., using nonlinear kernels). Considering the

datasets in the experiments, the RBF (Radial Basis Function) kernel is selected and used which

has two parameters, C and γ. In SVM, the RBF kernel is selected by considering two factors:

the first reason is that this kernel nonlinearly maps samples into a higher dimensional space;

correspondingly the second reason is the number of hyper-parameters that influences the

complexity of our model. In the experiments, cross-validation was applied to select the best

pair of (C, γ) from various pairs of candidate parameters. In addition, we also tried the linear

kernel (LIBNEAR) to compare with LIBSVM with the RBF kernel.

Naive Bayesian (NB) [74]: The NB is a supervised probabilistic learning method. The

basic idea of this method involves the calculation of appearance probability under some class,

returning the label of the maximum probability.

Logistic Regression (LR) [74]: The most simple form of regression is linear regression. In

LR, a logic function is applied on the basis of linear regression. In LR, a set of weights is learned

by training with classifiers. In the test phase, the set of weights can discriminate results accord-

ing to training samples. Unlike LR, which uses logistical loss as the objective function, the

SVM uses the hinge loss function. The SVM method considers support vectors, which are the

most relevant points for defining the classification boundary when training the classifiers.

Alternatively, the LR method uses nonlinear regression mapping, which greatly reduces the

weight of points that are far away from the classification boundary, and relatively improves the

weight of the most relevant points.

Hierarchical CNN (HC): In HC, the feature representation of a document is learned by

CNN training only, and then hierarchical classification is conducted.

CNN+DBN: We verified the validity and necessity of the DBM component of our B-CNN

model by using DBN instead of DBM for biomedicine indexing. DBN is also a good feature

extraction method in deep learning, and like DBM, is composed of stacked RBMs. However,

the two differ in that the DBN is a directed graph model, that calculates the hidden layer nodes

based on the previous layer nodes only, while the DBM is an undirected graph model, in
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which the state of hidden layer nodes is decided jointly by the upper and lower layers (the

detailed calculation process is shown in Figs 4 and 5). To compare the DBM and DBN in this

paper, we selected two-layer RBMs for feature representation.

Directly Binary Classification (DBC): In our experiments, in order to verify the validity

of the hierarchical classification in our model, we compared our method to flat classification

based on the CNN model, called DBC. For each class, a binary classification can be utilized to

extend each node into two nodes. The labels are modified for each document as follows: if they

are labeled (1, 0), it means the document belongs to this class, and if they are labeled (0, 1), it

does not belong to the class. The output values of the nodes are computed by the sigmoid func-

tion. Comparing the values of the two nodes determines whether the document belongs to a

specific class.

5.3 Experimental results

In this section, we analyzed the model performance using 11 models with four evaluation met-

rics, four datasets, and two feature representations. We conducted experiments in three parts.

In the first part, we compared and analyzed biomedicine indexing performance with different

feature representations using dataset 1 and dataset 2. In the second part, we analyzed the

effects of the different models in terms of features representations using dataset 3. ROC analy-

sis and significance tests are described in the third part.

We present the experimental results for the 11 methods based on the DSE and BOW+ fea-

tures in the tables listed in the experimental results section for dataset 1 and dataset 2 (horizon-

tal comparative analysis of the models with different features, comparative analysis of the

longitudinal effects of different models with the same features). The figures show the experi-

mental results for dataset 3. As dataset 4 was not from a biomedical field (we wanted to verify

the extensions of the B-CNN model), these data are analyzed separately in section 5.4.

5.3.1 Experiment with different feature representations. When comparing BOW+ in

terms of DSE features, each document is represented as a matrix based on the DSE feature or

as a vector based on the BOW+ feature. The SVM, LDA, LR, and NB methods involve learning

global features, so the input features (DSE) of the document are read by the columns of the

matrix during training; that is, each document is represented as a vector of 200×L.

As can be seen in Tables 3, 4 and 5, our B-CNN method with DSE feature representation

had the best performance among the models. However, for the shallow learning (except HC,

CNN+DBN, and DBC) models, the DSE was not superior to the BOW+. This is likely because

these models learn using global features, and different documents in the same dimension

can be represented by the same word in BOW feature representation. Conversely, the DSE

cannot distinguish between different words in these shallow learning models, and so there is

an increase in noise.

While the DSE is not suitable for these shallow learning models, it does show good perfor-

mance in the CNN model. There are several reasons for this. First, this representation consid-

ers the words sequence of the document. As mentioned above, CNNs are more suitable for

dealing with features with a sequence relationship, which is also the reason behind their contri-

bution to speech research [14, 51]. Although the words in the same dimension are not fixed,

each word has a 50-dimensional word embedding representation that is easily distinguished

from that of other words. Indeed, setting the size of the sliding window and learning the local

information between words can suppress the emergence of noise. The noise comes mainly

from the stochastic gradient descent procedure. It can be attributed to the approximate sam-

pling procedure what cause systematically biased estimates of the gradient [75]. DBM can be

trained in a semi-supervised manner with labels connected to the top layer. It can improve
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performance and simplify the training of deep generative models. It also controls noise and

enables training via backpropagation like standard deep supervised networks [76]. Finally,

CNNs are trained by convolution, pooling, and ReLU, and these nonlinear layers also repre-

sent a good solution for the information interference problem introduced by using Unknown
word when the document length is less than L.

Second, the BOW+ representation is too sparse, especially in the case of unbalanced data,

where the difference between the feature representations of documents is small. Categories

with a large number of samples greatly interfere with categories with fewer samples, leading to

predictions that are generally biased to high frequency labels.

Summarily, a comparison of our experimental results for DSE and BOW+ features shows

that the DSE (based on word embedding) clearly retrieves more semantic knowledge and

extracts a more accurate representation of the document.

5.3.2 Experiment with different models. The HC model, in which the entity characteris-

tics do not enrich the document, has high precision but low recall. Upon further examination

of the labels of the classification results, we found that most of the missing labels classified by

CNNs are MeSH terms. Few samples belong to these tags in the datasets, so it is not easy for

CNNs to capture these features. However, the advantages gained by combining the CNN with

Table 3. Classification results (%) on dataset 1.

Method BOW+ DSE

MiP MiR MiF1 MaP MaR MaF1 MiP MiR MiF1 MaP MaR MaF1

PM 21.90 31.56 25.86 22.12 39.45 28.35 21.90 31.56 25.86 22.12 39.45 28.35

LDA 55.15 54.77 54.96 56.28 55.89 56.08 50.98 50.98 50.98 51.49 50.98 51.23

SVM 57.44 57.04 57.24 58.02 57.61 57.82 47.43 47.00 47.21 47.05 46.63 46.84

NB 53.47 55.86 54.64 55.70 55.31 55.50 50.53 49.93 50.23 50.64 50.43 50.53

LR 54.98 53.54 54.25 54.54 55.19 54.86 50.56 46.52 48.46 50.97 46.89 48.85

MTI 62.03 63.86 62.93 62.66 62.61 62.63 52.27 52.11 52.19 52.22 52.06 52.14

MeshUP 63.95 59.62 61.71 62.69 62.10 62.40 50.66 50.20 50.43 50.56 50.10 50.33

HC 60.65 58.36 59.48 61.89 59.55 60.70 63.20 61.05 62.11 66.93 63.75 65.30

CNN+DBN 63.56 61.93 62.73 63.00 61.80 62.40 65.98 64.36 65.16 68.19 64.94 66.52

DBC 54.84 52.39 53.59 55.12 52.91 53.99 58.96 57.56 58.25 59.08 58.26 58.67

B-CNN 64.96 63.30 64.12 64.54 62.87 63.69 68.51 66.89 67.69 70.31 66.20 68.19

https://doi.org/10.1371/journal.pone.0197933.t003

Table 4. Classification results (%) on dataset 2.

Method BOW+ DSE

MiP MiR MiF1 MaP MaR MaF1 MiP MiR MiF1 MaP MaR MaF1

PM 25.57 36.78 30.17 25.27 36.78 30.17 25.57 36.78 30.17 25.27 36.78 30.17

LDA 47.27 46.94 47.11 47.04 46.00 46.52 40.06 39.66 39.86 40.10 39.70 39.90

SVM 48.74 49.71 49.22 48.79 49.76 49.27 40.96 40.59 40.77 40.87 40.14 40.50

NB 46.79 46.46 46.62 45.71 44.97 45.34 40.68 40.28 40.48 39.46 38.67 39.06

LR 45.81 45.90 45.86 45.03 45.12 45.08 38.11 35.06 36.63 38.30 36.05 37.14

MTI 52.01 51.96 51.99 49.93 50.92 50.42 42.28 42.16 42.22 44.52 41.31 42.86

MeshUP 51.41 52.90 52.14 51.51 53.06 52.27 39.54 39.19 39.37 39.47 40.09 39.78

HC 52.00 50.51 51.25 51.39 47.32 49.27 56.01 54.23 55.11 53.21 50.43 51.78

CNN+DBN 54.70 52.57 53.61 53.85 50.07 51.89 58.60 56.19 57.37 55.87 52.50 54.13

DBC 47.30 43.51 45.32 46.96 43.08 44.94 49.50 50.50 49.99 48.95 48.93 48.94

B-CNN 56.52 54.46 55.47 55.97 52.51 54.18 60.94 58.49 59.69 58.92 55.94 57.39

https://doi.org/10.1371/journal.pone.0197933.t004
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the entity features retrieved by the DBM compensate for the tendency of the CNN to focus on

local information.

We compared the CNN+DBN model with a version of the B-CNN model in which the

DBM had been replaced by the DBN. From Figs 7, 8, and 9, we can see that the CNN+DBN

Table 5. Similarity measure (%) on dataset 1 and dataset 2.

Method dataset 1 dataset 2

BOW+ DSE BOW+ DSE

MiS Mas MiS MaS MiS MaS MiS MaS

PM 40.56 41.94 40.56 41.94 42.08 42.08 42.08 42.08

LDA 52.61 53.24 50.49 50.62 48.60 48.32 45.40 45.41

SVM 53.90 54.24 48.64 48.47 49.62 49.64 45.78 45.66

NB 52.45 52.91 50.12 50.27 48.37 47.77 45.65 45.07

LR 52.22 52.56 49.28 49.47 48.01 47.65 44.09 44.32

MTI 57.44 57.23 51.12 51.09 51.01 50.21 46.39 46.69

MeshUP 56.68 57.08 50.22 50.17 51.10 51.17 45.19 45.36

HC 55.25 56.00 56.90 59.06 50.64 49.68 52.70 50.93

CNN+DBN 57.30 57.08 58.94 59.93 51.89 51.00 53.99 52.18

DBC 51.87 52.09 54.50 54.75 47.80 47.63 50.00 49.48

B-CNN 58.23 57.94 60.75 61.17 52.90 52.21 55.38 54.02

https://doi.org/10.1371/journal.pone.0197933.t005

Fig 7. Measures (Precision recall F1 similarity) on dataset 3 (C = 150).

https://doi.org/10.1371/journal.pone.0197933.g007
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model is better than the HC model but still not as good as the B-CNN model. This undirected

graph model can adjust the weights that connect the nodes between visible and hidden neu-

rons, and it is thus more flexible. To further explore why the B-CNN performs better than the

CNN+DBN model, we checked the document representation in the high-level components of

the DBM and DBN. We found that the cosine value calculated in the DBN model was larger

than that in the B-CNN model. Generally, a larger cosine value indicates that the two samples

are more similar. Although the input vector of the document was the same, the representation

of the document differed between the two models. The smaller cosine value for the B-CNN

model indicates that the test document representation of the model output node dimensions

was more refined. This also means that the B-CNN model can learn more deeply distributed

representations from documents between different samples, which can help the new test docu-

ment retrieve more similar samples from the training samples.

For the DBC model, Tables 3 and 4 and Fig 9 (this figure shows the performance of hierar-

chical classification on the C = 2000 dataset, which has a similar performance on C = 150) all

show that hierarchical indexing performed much better than flat classification (DBC) when

processing a large number of classes. Moreover, the coarse cluster step is an effective way to

remove noise from the unbalanced distributed samples. By analyzing the results from the

test documents, we found that most test samples were predicted to be negative by the model.

Fig 8. Measures (Precision recall F1 similarity) on dataset 3 (C = 2000).

https://doi.org/10.1371/journal.pone.0197933.g008
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Further evaluation of the training stage revealed very few class numbers of positive samples.

Too many nodes were connected in the model, and the adjustment of their weights was not

updated in the fine-tuning process. Specifically, more weights were updated in the negative

samples compared with the positive samples.

Our proposed hierarchical semantic indexing method (B-CNN) greatly increased the classi-

fication precision for the positive samples in the first layer. Fig 10 is the label embedding repre-

sentation of coarse clusters. This figure shows the classification results of the samples, which

were previously colored based on the actual classes of the chosen samples. The distances

between each two clusters proves the effectiveness of clustering of the proposed model. As

shown in the figure, through the coarse classification process, the samples are grouped into 10

obvious clusters. The colors of the samples are based on the co-occurrence of the words. That

is, if two labels contain some similar words, they may be in the same or similar colors. The phe-

nomenon whereby the points with the same color are not grouped together indicates the fact

that the co-occurrence of the words cannot completely represent the semantics. In summary,

the distance between each pair of clusters proves the effectiveness of coarse classification, while

the distribution of the same colors indicates that the relations among labels cannot be repre-

sented by co-occurrence. Hence, our future research work should consider other relations

among the labels to better construct a hierarchical classification tree. This hierarchical seman-

tic framework can effectively reduce the negative impact of negative samples, and mainly

updates the weights connected with previous layer nodes during the next layer classification.

Fig 9. F1-measure curves on dataset 3.

https://doi.org/10.1371/journal.pone.0197933.g009
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The updates to weights of nodes that are connected with different previous layer nodes are

independent from one other (see Eq 11), which greatly improves the efficacy of this model for

training of positive samples. We also compared the ReLU with the sigmoid function in our

B-CNN model. The network neurons with ReLU were reasonably sparse after training.

To summarize, the efficacy of our approach owes not only to the hierarchical indexing

architecture, but also the feature representation. MetaMap can extract concepts that appear in

the UMLS from biomedical texts. These vocabularies can provide better representations for

retrieving relevant MEDLINE citations.

5.3.3 ROC analysis. The four ROC curves (shown in Fig 11) for the three biomedical

datasets were produced by six different methods (the SVM and LDA are state-of-the-art classi-

fication methods in shallow learning, and the others are deep learning methods). The reasons

to select the ROC measure to analyze the performances are mainly derived from the effective-

ness (compared with precision, recall, F1-measure, and similarity) and the robustness of differ-

ent models. These two performances can be effectively evaluated through the trend of the

ROC curves of different models. Obviously, the best curve trend is continuously rising. To bet-

ter analyze and compare the performance of different methods, we amplified and focused on

the results of the ROC partial curve (the abscissa range only shows the data values between

0 and 0.5). We followed the papers [77, 78] and downloaded the codes from (http://www.

mathworks.com/matlabcentral/profile/authors/1336198-stefan-schroedl).

Fig 11 shows the ROC graphs, from which the performances of different models can be

apparently distinguished. In these figures, the closer to the upper left the curve is, the better the

performance of the corresponding model is. These curves shows our analysis of the effects of

different models on the datasets: (1) all of the curves in the figure are accompanied by a slight

Fig 10. Coarse clusters of label embedding.

https://doi.org/10.1371/journal.pone.0197933.g010
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fluctuation. We analyze the main reason for the decrease. The major reason is also derived

from the robustness analysis of these models. When FPR reaches a certain threshold (about

fpr = 0.1), the TPR performance decreases, and this decrease is significant in dataset 2. We

checked the labels of the samples predicted by these models to examine why FPR increased

while TPR performance decreased. It appears that the samples with fewer class numbers

(sparse category) were not correctly judged. As there were few samples in these categories, the

samples could be overlooked when training the classifiers with these models. Thus, when these

categories appeared in the test set, the classifiers lost their identification capabilities, leading to

downward curve fluctuations. (2) Fig 11 shows that the effects of our model (B-CNN) on data-

set 1, dataset 2, and dataset 3 (C = 150) are superior to those produced by other methods (the

curve is the closest to the top left corner). However, for dataset 3 (C = 2,000), the B-CNN

model outperforms CNN+DBN only when the FPR is less than 0.1. Otherwise, our model per-

forms more poorly than CNN+DBN. We examined these results by checking the predicted

label samples and found that under the same feature space, the document representations

learned by the CNN+DBN model were more similar within documents (larger cosine). Thus,

when the FPR is low, which also means the error rate requirements are small, the B-CNN has

Fig 11. Roc curves on all datasets.

https://doi.org/10.1371/journal.pone.0197933.g011
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better performance. When FPR increases, the error rate is able to be larger. As the document

representation learned by the CNN+DBN model has small differences, making it easier to cat-

egorize the documents properly, it is better than the B-CNN model when the FPR is high.

Although our model showed good performance for multi-class and multi-label tasks, and

was able to overcome problems caused by unbalanced samples within a certain dimension

range, the ROC curve was not always optimal when the number of categories in the unbal-

anced samples was extremely large (e.g., only 150 of the classes in dataset 3 exceeded 1%).

Therefore, we plan to introduce one-shot learning to forecast the characteristics of unbalanced

samples in our future research.

5.3.4 Significance test. Fig 12 shows the F1-measure comparison of performance between

our method and other shallow and deep learning approaches. From this figure, we can observe

the following. (1) The deep learning methods had better performance than the shallow learn-

ing methods. (2) The hierarchical indexing framework was better than the flat learning meth-

ods. (3) Our B-CNN method and the CNN+DBN were ranked first and second, respectively,

among all of the methods. This indicates that the feature fusion method between global and

local entities in each document benefits from the advantages of DBM.

5.3.5 Friedman test. The Friedman test is a non-parametric statistical test and is used to

detect differences in treatments across multiple test attempts. The statistic test is calculated

by converting the original results to rank results (the best performing algorithm ranks the

1st, the second best one ranks the 2nd, etc.,). Then, the Friedman test needs the computation

of the average ranking [79]. Table 6 shows a comparison of performances with the metric F1-

measure among the eight algorithms selected in the experimental study. With the eight algo-

rithms and the four data sets, FF is distributed according to the F distribution with 8-1 = 7

Fig 12. Significant test on all datasets.

https://doi.org/10.1371/journal.pone.0197933.g012
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and (8-1)�(4-1) = 21 degrees of freedom. According to the F(7,21) distribution, the com-

puted p-value is lower than 0.01, so the null hypothesis is rejected at a high level of signifi-

cance. From this table, we can observe the following statements. (1) The proposed B-CNN

model achieves the best performance (which is ranked the 1st). (2) The DBC and CNN+DBN

models performs slightly poorer than the B-CNN model, and the performance of the

CNN+DBN model is superior to that of the DBC because the CNN+DBN is based on the

hierarchical classification, which can improve the results greatly.

5.4 From biomedicine indexing to newsgroup classification

In Fig 13, we can see that our B-CNN framework achieved good results not only for biomedi-

cal indexing but also for other areas of text classification. For dataset 4 (20 newsgroups,

C = 20), we choose the LDA extension instead of the entity feature extension, as LDA can be

used to represent conventional topics. Using the LDA as the features (this is the global feature

in each document) served to enrich the dataset 4 document representation. The experimental

results indicated that the B-CNN framework for the 20 newsgroups dataset was slightly better

than those of the other methods. We plan to investigate other features relevant to the news-

groups dataset in future research.

Table 7 shows the results for the 20 newsgroups dataset with four classes. We compared the

best results obtained from our model with those obtained by Hingmire [80] and Lai [30]. The

CNN in this table is described in [29], and we directly quote the results from Lai’s paper. We

used the word embedding representation on a general dataset rather than the newsgroups

dataset. Unsurprisingly, our result was similar to Lai’s. Our model performed better than the

CNN, which indicates that combining the global features of the two models (merged by the

DBM model) can increase the performance of the model. Furthermore, this concept is applica-

ble to other fields.

6 Conclusion

This paper presents a new model (B-CNN) for semantic indexing, which is based on the CNN

and can learn semantic representations. We tested this model using the task of indexing bio-

medical abstracts. Our experimental results demonstrate that the low-dimensional representa-

tion of the output layer in our framework is more compact and effective compared with a

number of alternative methods. We have found that adaptively grouping word2vec categories

into (coarse) subsets via clustering is an effective way to remove noise from unbalanced dis-

tributed samples. This is especially the case when dealing with a large number of labels and a

massive number of biomedicine documents. Our proposed hierarchical indexing structure

achieves effective performance, and can be easily extended to other multi-class indexing tasks.

However, our model faces the problem of gradients vanishing when the number of categories

in the unbalanced samples is extremely large. The long short term memory network can

Table 6. Comparison of F measure (%) among the eight algorithms selected in the experimental study. The ranks are used in the computation of the Friedman test.

Data set LDA SVM NB LR HC CNN+DBN DBC B-CNN

dataset 1 46.52 (6) 49.27 (4) 45.34 (7) 45.08 (8) 55.11 (2) 54.13 (3) 48.94 (5) 57.39 (1)

dataset 2 51.43 (6) 49.50 (7) 46.44 (8) 54.86 (4) 62.65 (3) 66.52 (2) 53.45 (5) 68.19 (1)

dataset 3 (C = 150) 56.08 (6) 57.82 (5) 55.50 (8) 55.54 (7) 65.30 (3) 69.97 (2) 58.67 (4) 72.02 (1)

dataset 3 (C = 2000) 66.48 (5) 63.97 (6) 59.01 (7) 56.89 (8) 71.04 (4) 76.03 (2) 74.03 (3) 76.95 (1)

average rank 5.75 5.5 6 6.75 5 3 3.5 1

https://doi.org/10.1371/journal.pone.0197933.t006
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effectively learn features and also obtain strong results on a variety of sequence modeling tasks.

Therefore, we plan to introduce this model in our future research.

There are three issues in our future research: 1) how to effectively construct the hierarchical

indexing label tree with different dependencies among labels to improve the accuracy of multi-

Fig 13. F1-measure curves on dataset 4 (C = 20).

https://doi.org/10.1371/journal.pone.0197933.g013

Table 7. Classification results (%) on dataset 4 (C = 4).

Model 20 News

ClassifyLDA-EM [80] 93.60%

RCNN [30] 96.49%

CNN [29] 94.79%

B-CNN 95.13%

https://doi.org/10.1371/journal.pone.0197933.t007
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label classification, e.g., label embedding relations (already mentioned in this paper) and co-

occurrence relations; 2) how to develop an approach to predict labels with variable lengths in

multi-label prediction; and 3) how to extend our approach to apply to image’s text classifica-

tion [81–83].
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