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Abstract

Background

Response to neoadjuvant chemotherapy (NACT), particularly pathologic complete

response (pCR), is an independent predictor of favorable clinical outcome in breast cancer

(BC). The accuracy of residual disease measurement and reporting is of critical importance

in treatment planning and prognosis for these patients. Currently, gross pathological evalua-

tion of the residual tumor bed is the greatest determinant for accurate reporting of NACT

response. Fluorescence imaging (FI) is a new technology that is being evaluated for use in

the detection of tumors in different oncological conditions.

Objective

The aim of this study was to evaluate whether indocyanine green fluorescence imaging

(ICG-FI) is able to detect residual breast tumor tissue after NACT in breast surgical opera-

tive specimens.

Methods

Patients who underwent NACT for BC and were admitted for breast surgery were selected

for participation in this study. Free ICG (0.25 mg/kg) was injected intraoperatively. Tumor-

to-background fluorescence ratio (TBFR) was calculated on ex vivo samples from the surgi-

cal specimen.

Results

One hundred and seventy-two samples from nine breast surgical specimens were evaluated

for their fluorescence intensity. Among them, 52 were malignant (30.2%) and 120 were
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benign (69.8%). The mean TBFR was 3.3 (SD 1.68) in malignant samples and 1.9 (SD

0.97) in benign samples (p = 0.0002). With a TBFR cut-off value of 1.3, the sensitivity, speci-

ficity, negative predictive value, false negative rate, and false positive rate of ICG-FI to pre-

dict residual tumoral disease in breast surgical samples post-NACT were 94.2%, 31.7%,

92.7%, 5.8%, and 68.3%, respectively. If we restricted our analysis to only patients who

achieved pCR, the negative predictive value for ICG-FI was 100%.

Conclusions

These first observations indicate that ex vivo ICG-FI is sensitive but not sufficiently specific

to discriminate between benign breast tissue and malignant residual tissue. Nevertheless,

its negative predictive value seems sufficiently accurate to exclude the presence of residual

breast tumor tissue on the operative specimen of patients treated by NACT, representing a

potential tool to assist pathologists in the assessment of breast surgical specimens.

Introduction

Breast cancer (BC) is by far the most frequently diagnosed malignant cancer among women

worldwide [1]. Despite the fact that early BC detection strategies are in place in Western

countries, almost a third of all BCs are diagnosed with advanced stage disease at presentation,

requiring neoadjuvant treatment [1,2], and at least 7% of women with localized disease will

also benefit from neoadjuvant treatment [3].

Historically, the primary goals of neoadjuvant chemotherapy (NACT) have been to

improve surgical options by downsizing the tumor before surgery, to provide a therapeutic

alternative for patients with unresectable disease, and to reduce the extent of surgery needed to

achieve adequate resection [2,4]. NACT also offers several other advantages. For example, it is

a unique opportunity for the evaluation of treatment response and individualized therapy, pro-

viding prognostic information that allows clinicians to change or discontinue treatment in the

case of unresponsive tumors. This evaluation is also useful in a research setting where response

to NACT is utilized as a surrogate endpoint in many clinical trials [3]. In addition, it offers the

possibility to collect tumor samples before, during, and after treatment, facilitating transla-

tional research to identify markers of response [4].

NACT trials have revealed the phenomenon of pathologic complete response (pCR) that

has been reported to be an independent predictor of favorable clinical outcomes for all molec-

ular subtypes of BC [3]. The overall rate of pCR attainment is relatively low (22%) and, conse-

quently, the goal of increasing the rate of pCR has become the end point of neoadjuvant trials

with an expectation that this will improve overall survival [2–4].

Response to NACT can be assessed by clinical examination, breast imaging techniques,

and, mainly, by histopathologic examination of the surgical specimen that remains the gold

standard for evaluation and for reporting tumor response to NACT. Grading of tumoral

response is of critical importance in treatment planning and prognosis of these patients. Cur-

rently, the accuracy of detection of residual disease at pathology depends on the correct locali-

zation and sampling of the suspected “residual tumor bed” on the operative specimen by gross

pathologic methods that represent the single greatest determinant for accurate reporting of

pCR [2–5].

ICG-FI for pathological evaluation of breast cancer after neoadjuvant chemotherapy
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Fluorescence imaging (FI) using indocyanine green (ICG), a nonspecific fluorophore, has

been reported to be a new promising noninvasive technology for the detection of various pri-

mary tumors including hepatocarcinoma, head and neck cancers, lung cancers, and brain

tumors [6–9]. Hence, ICG-FI has been evaluated as a new imaging technique for the detection

of various metastatic deposits such as lymph nodes, and hepatic and peritoneal metastases

[10–14]. The mechanism for preferential uptake of ICG in tumor tissues is not fully under-

stood. The most likely hypothesis involves the enhanced permeability and retention (EPR)

effect observed in tumoral tissue secondary to neoangiogenesis [13,15]. If injected intrave-

nously, ICG molecules bind to serum proteins in vivo. In tumoral tissue, protein-bound ICG

molecules accumulated in the extravascular space can emit fluorescence (peak at 840 nm)

under near-infrared illumination, and the fluorescence signals emitted can be visualized

through connective tissue 5–10 mm thick. As the half-life of ICG in blood circulation is 3–5

minutes, ICG is rapidly washed-out from the intravascular space and the extravascular accu-

mulation of ICG will be responsible for the observed hyperfluorescence of tumoral tissue in

contrast to surrounding normal tissue [12,13,16].

Ntziachristos and colleagues were the first to report the detection of BC by ICG-FI after

ICG intravenous (IV) injection [17]. The use of in vivo ICG-FI has been reported for surgical

margin evaluation and primary tumor identification in BC but these data are very limited and

addressed only cases of early BC [18,19]. There are no data about the role of ICG-FI for the

detection of residual BC tissue after NACT.

On these bases, we hypothesized that ex vivo ICG-FI of breast surgical specimens after

intraoperative ICG IV injection could improve the detection of residual tumoral tissue in

patients treated for BC after neoadjuvant chemotherapy and help to guide the pathologist in

operative specimen sampling for further standard pathological examination.

Patients and methods

Study and patients

This was an exploratory study approved by the Investigational Review Board of the Institut

Jules Bordet (CE 2179) and registered with the Clinical Trials.gov Protocol Registration System

(NCT02032563: https://register.clinicaltrials.gov) (EUDRACT 2013-004496-12). All patients

provided written informed consent before inclusion in the study. The primary objective of the

study was to evaluate whether the ex vivo ICG-FI technique is feasible and able to detect resid-

ual BC tissue on operative specimens (paraffin embedding breast samples) according to the

fluorescence intensity of tumoral lesions, scars, and healthy tissue in patients treated with

surgery after NACT. Exclusion criteria were those mentioned in our previous ICG-FI studies

[10–12, 14].

Preoperative and operative treatment

All patients received NACT after a multidisciplinary oncologic consultation, according to

standard protocols based on national and international guidelines (anthracycline- and taxane-

based regimens; HER2-positive tumors were treated with a trastuzumab-based regimen). All

patients underwent mastectomy due to their locally advanced disease.

Histopathologic evaluation and assessment of residual disease

Complete macroscopic and microscopic examination, and immunohistochemistry were per-

formed using a routine clinical procedure according to international guidelines. Pathologic

examination was performed by an experienced breast pathologist (DL). Two systems of post-
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neoadjuvant pathologic tumor staging—Residual Cancer Burden (RCB) and the American

Joint Committee on Cancer post-neoadjuvant therapy staging system (ypTNM) were used

[20,21]. We defined pCR as histopathologic complete absence of invasive tumor cells in all

breast specimens removed as part of mastectomy (ypT0).

Fluorescence imaging

Free ICG (0.25 mg/kg; Pulsion Medical System, Belgium) was injected through a peripheral

venous line at induction time of anesthesia. Surgical breast operative specimens were imaged

during macroscopic pathological evaluation of the specimen in the pathology department (see

Fig 1A1–1H1) and further FI was performed on blocks (breast samples) after paraffin embed-

ding (PE) (see Fig 1A2–1H2).

Ex vivo ICG-FI was performed using a dedicated near-infrared NIR camera system, Fluo-

beam 800 (Fluoptics, Grenoble, France) an integrated NIR light source with a maximum

absorption between 750 nm and 800 nm and a maximum emission between 780 nm and 850

nm. The excitation was provided by a class 1 expanded laser source at 780 nm. The fluores-

cence signal was collected by a CCD through a high pass filter with high transmittance for

wavelength >830 nm. The working distance of video recorded was fixed at 15 cm and the

acquisition time of fluorescent signal was set to 167 milliseconds. All specimens were imaged

in standard conditions with the camera by two investigators (RB, FCP).

The fluorescence intensity of each PE sample from mastectomy operative specimens was

evaluated according to two methods using FI videos of the paraffin blocks. In the first method,

a visual evaluation (visual scale) was done by one investigator (FCP) and the samples were clas-

sified according to their fluorescence as not-fluorescent (defined as samples with little or no

fluorescence compared with the surrounding tissue), or as fluorescent (defined as samples with

obvious fluorescence compared with the surrounding tissue). In the second method, a semi-

quantitative analysis of the fluorescence intensity of each sample was performed using tumor-

to-background fluorescence ratio (TBFR) calculations (quantitative scale). For each specimen,

regions of interest (ROIs) were delineated over the suspected tumor sample (numerator) and

on the adjacent normal breast tissue (denominator). For each ROI, fluorescence intensity,

expressed in Arbitrary Units (AUs), was measured with the IC-Calc 2.0 program.

Residual tumor assessment by ICG-FI

To further quantify residual tumor assessment prediction by ICG-FI, the following parameters

were assessed: sensitivity (Se), specificity (Sp), negative predictive value (NPV), false negative

rate (FNR), and false positive rate (FPR). To analyze the complementary contribution of

ICG-FI for residual tumor assessment, histopathological slides of fluorescent samples were

reviewed by an experimented pathologist (DL). Furthermore, for the samples that were classi-

fied as hyperfluorescent but with normal benign features at first histopathological examina-

tion, serial sections at 150, 300, and 450 μm were performed on paraffin blocks to exclude the

presence of residual malignant fluorescent tissue within the sample.

Statistical analyses

Fluorescence intensity was assessed using visual (clinical) and quantitative scales. TBFR of the

mastectomy samples was analyzed as a continuous and categorical variable using a cut-off of

1.3 (<1.3 /� 1.3). The cut-off threshold value of 1.3 was determined to provide the best agree-

ment between the visual and the quantitative scale. As the size of the sample was not the vari-

able of interest but only an adjustment variable, the analysis was performed in a continuous

way. Because the unit of analysis was the mastectomy sample and not the patient, and the data

ICG-FI for pathological evaluation of breast cancer after neoadjuvant chemotherapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0197857 May 25, 2018 4 / 13

https://doi.org/10.1371/journal.pone.0197857


Fig 1. Breast surgical specimens during gross pathology preparation in standard white light (A1, C1, E1, G1) and by fluorescence imaging, for patient

with residual disease (P5 and P4) and hyperfluorescence (B1 and F1) and for patient with a pCR (P6 and P3) and hypofluorescence (D1 and H1).

Corresponding breast samples in paraffin-embedded blocks of selected patients (P5, P3, P4, P6) under white light (A2, C2, E2 and G2). The same

samples under fluorescence imaging showing hyperfluorescence (B2 and F2) and hypofluorescence (D2 and H2).

https://doi.org/10.1371/journal.pone.0197857.g001
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are not independent, we used the Generalized Estimating Equations (GEE) model (for contin-

uous and categorical variables) in order to take into account the correlation structure within

the patient. In the GEE analyses, empirical instead of model-based standard errors were

used because they are more robust against misspecification of the correlation structure. An

exchangeable covariance matrix was used. Fluorescence was analyzed in univariate GEE.

Results

Patients and tumor characteristics

Between July 2013 to October 2014, eight women treated with NACT for BC were enrolled to

participate in this study. One patient had bilateral BC. The mean age was 52.4 years (range,

31–65 years). There were 8 invasive ductal carcinomas (IDC) and 1 invasive lobular carcinoma

(ILC). According to intrinsic subtype classification, 7 BCs were luminal B tumors and 2 were

triple-negative (TN) tumors. Seven patients had locally advanced BC, with clinical T3 (4

patients) or T4 (3 patients) disease, and 2 of them had metastatic disease. Four BCs were multi-

focal. For 7 patients, the NACT was an anthracycline- and taxane-based regimen, one patient

had 6 courses of 5-fluoro-uracil (5-FU) in association with cisplatin regimens. There were 4

patients with human epidermal growth factor receptor 2 (HER2) positive tumors, 3 were

treated with a trastuzumab-based regimen, and 1 with a trastuzumab emtansine regimen. A

complete imaging response using magnetic resonance imaging (MRI) was reported in 3

patients and final histopathological examination confirmed a pCR in 4 patients. Clinical and

tumoral characteristics of the evaluated patients are detailed in Table 1.

ICG-FI and visual scale analysis

Across the 8 patients, a total of 196 PE samples (blocks) from 9 mastectomy operative speci-

mens were analyzed by histopathology. One hundred and seventy-two of them were evaluated

Table 1. Patient and tumor characteristics: Breast tumor characteristics of study patients and their response to neoadjuvant chemotherapy evaluated by MRI and

final pathology.

Pat. ID˚ Histology Tumor

Grade

Intrinsic

Subtype

MRI Response to Neoadjuvant

Chemotherapy

Residual Tumor Bed in

mm

ypTNM RCB Samples

(Samples +)

1 IDC 3 TN PR 60 ypT3N0 2 17 (11)

2 ILC 2 Lum B HER2- SD 130 ypT3(m)

N3a

3 19 (17)

3 IDC 3 LumB HER2- CR 90 ypT0N0 pCR 30 (0)

4 IDC 3 LumB HER2+ ND 52 ypT3N1a 3 15 (5)

5 IDC 2 LumB HER2+ PR 40 ypT2(m)

N3a

3 16 (15)

6 IDC 3 TN PR 100 ypT0is(m)

N0

pCR 13(1is)

7 IDC 3 LumB HER2+ CR 80 ypT1bN0 1 19 (1)

8R IDC 3 LumB HER2+ PR 55 ypT0is(m)

N0

pCR 19(1is)

8L IDC 3 LumB HER2- CR 70 ypT0isN0 pCR 24(1is)

Pat.ID, patient identifier; R, right breast; L, left breast; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; TN, triple-negative; Lum B, Luminal B; HER2,

human epidermal growth factor receptor 2; MRI, magnetic resonance imaging; CR, complete response; PR, partial response; SD, stable disease; ND, not done; ypTNM,

pathological classification post neoadjuvant treatment of tumor—nodes—metastasis (see ref. [21]); m, multifocal; is, ductal carcinoma in situ; RCB, residual cancer

burden; pCR, pathological complete response;
+, malignant samples;

https://doi.org/10.1371/journal.pone.0197857.t001

ICG-FI for pathological evaluation of breast cancer after neoadjuvant chemotherapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0197857 May 25, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0197857.t001
https://doi.org/10.1371/journal.pone.0197857


for fluorescence intensity (87.8%). Twenty-four samples could not be evaluated for their fluo-

rescence intensity due to the proximity of high fluorescent background from nipple (n = 9) or

breast skin (n = 15). The median time between ICG injection and mastectomy specimen resec-

tion was 90 minutes (mean: 89.2 min, range: 47–135 min). There was residual tumoral tissue

in 52 samples (30.2%) and no residual tumoral tissue in 120 (69.8%) at final histopathology.

The sizes of malignant and benign mastectomy samples were not significantly different, 24.4

mm (SD 4.7) and 22.5 mm (SD 5.6) (p = 0.89), respectively. Mastectomy sample characteristics

are detailed in Table 2. According to visual evaluation, 56 samples (32.4%) were classified as

nonfluorescent. The sensitivity and specificity were 94.2% (49/52) and 44.2% (53/120), respec-

tively. The NPV, FNR, and FPR of ICG-FI in predicting residual tumoral cells in mastectomy

specimens were 94.6% (53/56), 5.8% (3/52), and 55.8% (67/120), respectively.

Quantitative scale analysis of ICG-FI in mastectomy samples

Among the 172 analyzed mastectomy samples imaged by ICG-FI, the mean of maximal fluo-

rescence was 15.8 AUs (SD 13.9) in pathologically positive samples and 6.2 AUs (SD 4.8) in

Table 2. Pathological and fluorescence imaging characteristics of mastectomy samples: Characteristics of mastectomy samples evaluated by indocyanine green-

fluorescence imaging after standard pathological evaluation of the 9 breast tumor surgical specimens.

Mastectomy Samples Total Malignant n % Benign n % p

Number 172 52 30.2% 120 69.8% NA

Size (in mm)

Mean (SD) 23.1(5.4) 24.4 (4.7) 22.5 (5.6) 0.89

Type of Tumor < 0.0001

IDC 153 35 22.9 118 77.1

ILC 19 17 89.5 2 10.5

Grade of Tumor

2 35 32 91.4 3 8.6 < 0.0001

3 137 20 14.6 117 85.4

Intrinsic Subtype

Luminal B HER2- 73 18 24.7 55 75.3 0.99

Luminal B HER2+ 69 22 31.9 47 68.1

Triple Negative 30 12 40 18 60

Microscopic Scaring

Yes 45 17 32.7 28 23.3 0.39

No 127 35 67.3 92 76.7

Samples from Patient with

pCR 86 3� 3.5 83 96.5 NA

No-pCR 86 49 57 37 43

Visual Fluorescence Scale < 0.0001

Hyperfluorescent 116 49 42.2 67 57.8

Nonfluorescent 56 3 5.4 53 94.6

Fluorescence in AUs < 0.0001

Mean (SD) 9.1(9.6) 15.8(13.87) 6.2(4.83)

TBFR < 0.0001

Mean (SD) 2.3(1.4) 3.3(1.68) 1.9(0.97)

p, p value; SD, standard deviation; NA, not applicable; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; HER2, human epidermal growth factor receptor

2; pCR, pathological complete response;

�, ductal carcinoma in situ only; AUs, arbitrary units; TBFR, tumor-to-background fluorescence ratio.

https://doi.org/10.1371/journal.pone.0197857.t002
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negative samples (p<0.0001). The mean TBFR was 3.3 (SD 1.68) in malignant samples and

1.9 (SD 0.97) in benign samples (p = 0.0002). With a cut-off TBFR value of 1.3, the Se, Sp,

NPV, FNR, and FPR of ICG-FI in predicting residual tumoral disease in mastectomy samples

post-NACT were 94.2% (49/52), 31.7% (38/120), 92.7% (38/41), 5.8% (3/52), and 68.3% (82/

120), respectively.

The three false-negative ICG-FI samples (B10, B19.2, and B20) were found in patient

identifier (ID) 1 with an IDC subtype TN with high Ki 67 value (at 95%) and high malignant

cellularity (95%, 100%, and 85%). Table 3 shows the crosstabs between fluorescence and mas-

tectomy sample status among the entire sample population. If we restricted our analysis to the

cases with a histopathological pCR, the NPV, FNR, and FPR in predicting pCR in mastectomy

samples post-NACT were 100% (29/29), 0% (0/3), and 65.1% (54/83), respectively.

On univariate analyses (for malignancy), intrinsic subtype, the presence of scar cells at

pathology, and mastectomy sample size were not significantly different between malignant

and benign samples. Conversely, the type and grade of tumor, as well as the fluorescence inten-

sity evaluation performed by visual scale and by quantitative scale, were statistically different

between malignant and benign samples (Table 2). After adjustment for size, type, and grade,

fluorescence evaluation remained statistically associated with malignancy of the lesion.

ICG-FI and secondary histopathological evaluation for residual tumor

assessment

The second histopathological evaluation of mastectomy samples guided by ICG-FI failed to

detect any additional residual malignancy. Additional analyses by serial section performed on

PE blocks that presented with hyperfluorescence and benign normal features (without benign

breast lesions) were done on 17 samples from 6 mastectomy specimens. The histopathological

examination was performed by the same pathologist (DL). Serial sectioning found, in one case,

an additional residual invasive tumor in patient ID 7, sample A02, but this was not related to

the fluorescence of the sample. The tumor cellularity of this additional malignant focus was

only 1%. These additional findings did not change the RCB 1 status of the initial histopatholog-

ical report.

Discussion

Neoadjuvant chemotherapy has not yet demonstrated a definitive benefit over adjuvant ther-

apy with regard to improving survival outcomes except in the patient subgroup with a patho-

logical complete response to therapy at the time of surgical resection [22]. Precise assessment

of breast tumor response after NACT is very important for these patients in whom a pCR

can be accurately detected and remains the ultimate goal [4]. Clinical evaluation of NACT

response is difficult, especially in tumors that have responded to therapy where it is difficult to

Table 3. Fluorescence intensity (Visual and quantitative scale) by mastectomy sample status and ICG-FI accuracy.

Mastectomy Sample Status ICG-FI Accuracy

Fluorescence Malignant Benign Total Se Sp NPV

Visual Scale Positive (fluorescent) 49 67 116 94.2 44.2 94.6

Negative (nonfluorescent) 3 53 56

TBFR Positive (ratio� 1.3) 49 82 131 94.2 31.7 92.7

Negative (ratio < 1.3) 3 38 41

TBFR, tumor-to-background fluorescence ratio; ICG-FI, indocyanine green-fluorescence imaging; Se, sensitivity; Sp, specificity; NPV, negative predictive value.

https://doi.org/10.1371/journal.pone.0197857.t003
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assess the actual tumor size versus treatment-induced changes [23]. Current imaging tech-

niques such as mammography and ultrasound are not considered adequate for assessment of

tumor response. The response to NACT relies essentially on the use of MRI to monitor the dis-

ease [24] but histopathological examination of tumor response to NACT remains the gold

standard for final evaluation and for reporting complete responses [2–5].

The cornerstone of good pathological assessment of breast surgical specimens after NACT

is the identification of the area that correlates best with clinical and radiological findings.

Radiological tumor marking (clips, carbon) before NACT helps, but cannot define the tumor

bed accurately. Therefore, handling and gross (macroscopic) examination of the operative

specimen remains the gold standard technique for the selection of suspected areas on the oper-

ative breast specimen for further standard pathological microscopic analyses. After slicing sur-

gical specimens into 3–5 mm sections, the largest pretreatment area should be selected for

sampling. The extent of tissue sampling varies from in “toto” (for small specimens < 5 cm) to

1 or 2 tissue blocks from every 1 cm of pretreatment tumor size (for specimens larger than 5

cm) [5], or 10 blocks at least from an entire specimen [25]. Because histologic patterns of resid-

ual breast tumor tissue after NACT are diverse, different sampling methods can yield different

evaluation results, potentially resulting in sampling errors and inappropriate final histopatho-

logical reports [26].

Therefore, a standard approach for evaluating surgical specimens post-NACT is essential

for an accurate evaluation of the pathological response that could be used as an indicator of

treatment response to current and novel therapies. Since 2015, the recommendations specifi-

cally designed for standardized pathological evaluation and reporting of neoadjuvant BC oper-

ative specimens have advised that improvements in our ability to compare pathology results

could provide better personalized cancer therapy [5, 26].

Many imaging techniques have been used for evaluation of tumor changes after NACT,

mainly functional imaging techniques such as dynamic contrast-enhanced MRI, diffusion-

weighted MRI, and nuclear imaging (with 18-FDG) [24, 27, 28]. MRI is recognized as the stan-

dard imaging technique for the assessment of NACT response in BC. A recent meta-analysis

showed that MRI had significantly higher accuracy for the detection of residual cancer with a

median sensitivity of 92% but a median specificity of 60% for the detection of pCR and an

NPV of 88% [24]. The NPV rate associated with MRI in pCR prediction is, however, highly

variable in the literature from 44% to 96%, with FNRs ranging from 4% to 56% [24, 27]. The

sensitivity and specificity of positron emission tomography-computed tomography (PET-CT)

in predicting breast tumor response to NACT in a meta-analysis that pooled results of 19 stud-

ies and included 920 patients were 84% and 66%, respectively [28]. The accuracy of PET-CT

for prediction of pCR showed a lot of interstudy variability for NPV, ranging from 12% to

86%, and differences in imaging performance across BC subtypes were observed [29].

Based on our findings, the use of ICG-FI on breast surgical specimen slices and/or specimen

samples (blocks) could represent a complementary technique to guide and to standardize path-

ological evaluation of BC after NACT. The NPV and FNR of ICG-FI were 92.7% and 5.8%,

respectively, and, thus, ICG-FI might predict pathologic tumoral response in a sufficiently

accurate way to avoid pathological sampling of breast surgical slices that are not fluorescent. In

addition, it was hypothesized that ICG-FI could allow the pathologist to focus attention on

additional breast specimen slices that present with a hyperfluorescent appearance. However,

this was not supported by our findings on the serial section of PE blocks that presented with

hyperfluorescence without evidence of the presence of tumoral cells on correspondent patho-

logic slices. These serial sections guided by fluorescence were not useful for detection of resid-

ual tumoral tissue. This limitation is related to the low Sp (31.7%) and to the high FPR (68.3%)

of the technique. These results can be partially explained by the inflammatory changes that
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occur in the breast tissue due to NACT, and/or foreign bodies (like pre-treatment tumor mark-

ing). Moreover, benign breast lesions may be, to some extent, responsible for the appearance

of hyperfluorescence. An example of the limitations of our technique, but also of the difficulty

of the pathological examination of breast surgical specimens after NACT, is our detection of a

residual invasive tumor focus on additional serial sections performed on a hyperfluorescent

sample (block) with an initial negative pathological slice. This discovery is likely to be just a

fortuitous discovery of a residual focus among the ‘Swiss cheese’ pattern of tumor response,

characterized by scattered microscopic residual viable tumour foci, rather than tumoral ICG-

related fluorescence from the sample.

Another interesting finding in our study is the cut-off value of TBFR (1.3: obtained with

Fluobeam camera) that was determined to have the best agreement between the visual (clini-

cal) and quantitative scales of fluorescence intensity in the “ex vivo” setting. This corresponds

to the value of the TBFR threshold determined (with PDE camera) in the “in vivo” FI evalua-

tion in a previous study [12,14]. This may indicate the value of human eye threshold detection

for FI, without depending on the cancer type, type of evaluation (“in vivo” or “ex vivo”), and

FI camera (PDE or Fluobeam). We must take this into account in future studies of tumor cell

analysis with ICG-FI.

Our study has several limitations. The first one is represented by the small number of breast

tumors analyzed (with the related patient and tumor characteristics that may influence FI). In

this study, we used ICG-FI to evaluate tumor changes after NACT on breast surgical specimen

samples (blocks) but we did not evaluate breast tumors as a whole as was done for the assess-

ment of NACT response in BC by imaging technique and by pathological reports. This could

be a source of error for our technique of ex vivo ICG-FI for the final evaluation of the patients’

breast tumor response due to differences in response to NACT related to tumor heterogeneity.

Future studies of ICG-FI evaluation of residual tumor tissue after NACT with a larger number

of patients are needed to better clarify this very important point. The second limitation is rep-

resented by the standard selection of the pathological specimens in each patient which did not

take into account the “extra” hyperfluorescent samples (which might have a possible impact

on disease plan change management if ICG-FI residual malignancy would have been identified

in addition to the standard pathological examination).

Additional limitations of our exploratory study are related to the underlying pathophysio-

logical mechanism of ICG, the timing of ICG-FI, and the statistical analysis. The exact patho-

physiological mechanism of ICG-FI in the detection of malignant breast tissue and the best

timing for performing ICG-FI imaging in this setting remain uncertain. The EPR effect is

assumed to be the mechanism of action here, as is hypothesized for other malignancies [15]. In

our study, the median time observed between ICG injection and the resection of the operative

specimen was 90 minutes, corresponding to the optimal delay for ICG-FI seen in other onco-

logical conditions [10–14]. Finally, this ‘‘proof of concept” study is limited in terms of method-

ological aspects related to the use of “per block” ICG-FI analyses which evaluated breast

surgical specimen sample blocks and not the breast tumors as a whole. This factor, and the lim-

ited number of patients included in this study, impeded our ability to perform a multivariate

analysis. These small samples of breast tumors are not representative of the breast tumor popu-

lation in terms of diversity of morphological (histologic type, tumor grade) and immunohisto-

chemical (Ki67 index, estrogen, progesterone, HER expression) characteristics, making a

functioning model of ICG-FI to differentiate malignant breast tissue and benign breast tissue

very difficult to build.

In conclusion, these first observations indicate that the ex-vivo use of ICG-FI in the detec-

tion of residual tumoral tissue in patients treated for BC after neoadjuvant chemotherapy is

sufficiently sensitive, but not specific enough to discriminate between benign breast tissue and
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malignant residual tissue. Nevertheless, the negative predictive value of ICG-FI seems suffi-

ciently accurate to identify breast operative specimen with pCR after NACT representing an

interesting tool for future appropriate pathological assessment and pathology reporting of

residual breast disease in surgical specimens. Further studies on larger population are needed

to confirm our results.

Acknowledgments

We thank the “Group R&D for the Clinical Application of Fluorescence Imaging at the Jules

Bordet Institute”for the financial and technical support of this study. The authors acknowledge

the contribution of a medical writer, Sandy Field, PhD, for editing this manuscript.

Author Contributions

Conceptualization: Isabelle Veys, Catalin-Florin Pop, Pierre Bourgeois.

Data curation: Catalin-Florin Pop, Romain Barbieux, Pierre Bourgeois.

Formal analysis: Catalin-Florin Pop, Michel Moreau, Pierre Bourgeois.

Funding acquisition: Pierre Bourgeois.

Investigation: Isabelle Veys, Danielle Noterman, Filip De Neubourg, Jean-Marie Nogaret,

Denis Larsimont, Pierre Bourgeois.

Methodology: Isabelle Veys, Catalin-Florin Pop, Romain Barbieux, Denis Larsimont, Pierre

Bourgeois.

Project administration: Pierre Bourgeois.

Resources: Isabelle Veys, Romain Barbieux, Michel Moreau, Danielle Noterman, Filip De

Neubourg, Jean-Marie Nogaret, Denis Larsimont, Pierre Bourgeois.

Supervision: Gabriel Liberale, Denis Larsimont, Pierre Bourgeois.

Visualization: Isabelle Veys, Catalin-Florin Pop, Romain Barbieux.

Writing – original draft: Isabelle Veys, Catalin-Florin Pop.

Writing – review & editing: Isabelle Veys, Catalin-Florin Pop, Romain Barbieux, Michel

Moreau, Danielle Noterman, Filip De Neubourg, Jean-Marie Nogaret, Gabriel Liberale,

Denis Larsimont, Pierre Bourgeois.

References
1. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics,

2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;

66:31–42. https://doi.org/10.3322/caac.21320 PMID: 26513636

2. Kaufmann M, von Minckwitz G, Mamounas EP, Cameron D, Carey LA, Cristofanilli M, et al. Recom-

mendations from an international consensus conference on the current status and future of neoadjuvant

systemic therapy in primary breast cancer. Ann Surg Oncol. 2012; 19: 1508–1516. https://doi.org/10.

1245/s10434-011-2108-2 PMID: 22193884

3. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete

response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;

384:164–172. https://doi.org/10.1016/S0140-6736(13)62422-8 PMID: 24529560

4. Bonnefoi H, Litière S, Piccart M, MacGrogan G, Fumoleau P, Brain E, et al. Pathological complete

response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified

breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/

BIG 1–00 phase III trial. Ann Oncol. 2014; 25: 1128–1136. https://doi.org/10.1093/annonc/mdu118

PMID: 24618153

ICG-FI for pathological evaluation of breast cancer after neoadjuvant chemotherapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0197857 May 25, 2018 11 / 13

https://doi.org/10.3322/caac.21320
http://www.ncbi.nlm.nih.gov/pubmed/26513636
https://doi.org/10.1245/s10434-011-2108-2
https://doi.org/10.1245/s10434-011-2108-2
http://www.ncbi.nlm.nih.gov/pubmed/22193884
https://doi.org/10.1016/S0140-6736(13)62422-8
http://www.ncbi.nlm.nih.gov/pubmed/24529560
https://doi.org/10.1093/annonc/mdu118
http://www.ncbi.nlm.nih.gov/pubmed/24618153
https://doi.org/10.1371/journal.pone.0197857


5. Provenzano E, Bossuyt V, Viale G, Cameron D, Badve S, Denkert C, et al. Standardization of patho-

logic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recom-

mendations from an international working group. Mod Pathol. 2015; 28: 1185–1201. https://doi.org/10.

1038/modpathol.2015.74 PMID: 26205180

6. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T et al. Real-time identification of

liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009; 115:2491–2504. https://

doi.org/10.1002/cncr.24291 PMID: 19326450

7. Yokoyama J, Fujimaki M, Ohba S, Anzai T, Yoshii R, Ito S et al. A feasibility study of NIR fluorescent

image-guided surgery in head and neck cancer based on the assessment of optimum surgical time as

revealed through dynamic imaging. Onco Targets Ther 2013; 6:325–330. https://doi.org/10.2147/OTT.

S42006 PMID: 23630424

8. Kim HK, Quan YH, Choi BH, Park JH, Han KN, Choi Y, et al. Intraoperative pulmonary neoplasm identi-

fication using near-infrared fluorescence imaging. Eur J Cardiothorac Surg. 2016; 49:1497–1502.

https://doi.org/10.1093/ejcts/ezv367 PMID: 26503731

9. Ferroli P, Acerbi F, Albanese E, Tringali G, Broggi M, Franzini A, et al. Application of intraoperative indo-

cyanine green angiography for CNS tumors: results on the first 100 cases. Acta Neurochir Suppl. 2011;

109:251–257. https://doi.org/10.1007/978-3-211-99651-5_40 PMID: 20960352

10. Liberale G, Galdon MG, Moreau M, Vankerckhove S, El Nakadi I, Larsimont D, et al. Ex vivo detection

of tumoral lymph nodes of colorectal origin with fluorescence imaging after intraoperative intravenous

injection of indocyanine green. J Surg Oncol. 2016; 114:348–353. https://doi.org/10.1002/jso.24318

PMID: 27264200

11. Digonnet A, van Kerckhove S, Moreau M, Willemse E, Quiriny M, Ahmed B, et al. Near infrared fluores-

cent imaging after intravenous injection of indocyanine green during neck dissection in patients with

head and neck cancer: A feasibility study. Head Neck. 2016; 38:E1833–E1837. https://doi.org/10.1002/

hed.24331 PMID: 26699164

12. Liberale G, Vankerckhove S, Galdon MG, Ahmed B, Moreau M, El Nakadi I, et al. Fluorescence imaging

after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytore-

ductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg. 2016;

264:1110–1115. https://doi.org/10.1097/SLA.0000000000001618 PMID: 27828822

13. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, Ishizawa T. Indocyanine green fluores-

cence-guided surgery after IV injection in metastatic colorectal cancer: A systematic review. Eur J Surg

Oncol. 2017; 43:1656–1667. https://doi.org/10.1016/j.ejso.2017.04.015 PMID: 28579357

14. Veys I, Pop F-C, Vankerckhove S, Barbieux R, Chintinne M, Moreau M, et al. ICG-fluorescence imaging

for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: A

pilot study. J Surg Oncol. 2017;1–8. https://doi.org/10.1002/jso.24807 PMID: 28787759

15. Maeda H,Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in mac-

romolecular therapeutics. J Control Release. 2000; 65:271–284. PMID: 10699287

16. Alacam B, Yazici B, Intes X, Chance B. Extended kalman filtering for the modeling and analysis of ICG

pharmacokinetics in cancerous tumors using NIR optical methods. IEEE Trans Biomed Eng. 2006;

53:1861–1871. https://doi.org/10.1109/TBME.2006.881796 PMID: 17019849

17. Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of

breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 2000; 97:2767–2772. https://

doi.org/10.1073/pnas.040570597 PMID: 10706610

18. Keating J, Tchou J, Okusanya O, Fisher C, Batiste R, Jiang J, et al. Identification of breast cancer mar-

gins using intraoperative near-infrared imaging. J Surg Oncol. 2016; 113: 508–514. https://doi.org/10.

1002/jso.24167 PMID: 26843131

19. Liu J, Guo W, Tong M. Intraoperative indocyanine green fluorescence guidance for excision of nonpalp-

able breast cancer. World J Surg Oncol. 2016; 14:266. https://doi.org/10.1186/s12957-016-1014-2

PMID: 27756411

20. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual

breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007; 25:4414–

4422. https://doi.org/10.1200/JCO.2007.10.6823 PMID: 17785706

21. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC cancer staging manual.

7th ed. New York, NY: Springer; 2010.

22. Thompson AM, Moulder-Thompson SL. Neoadjuvant treatment of breast cancer. Ann Oncol. 2012; 23

Suppl 10: x231–x236. https://doi.org/10.1093/annonc/mds324 PMID: 22987968
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