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Abstract

The marine environment in the Gulf of Gabes (southern Tunisia) is severely impacted by

phosphate industries. Nowadays, three localities, Sfax, Skhira and Gabes produce phos-

phoric acid along the coasts of this Gulf and generate a large amount of phosphogypsum as

a waste product. The Gabes phosphate industry is the major cause of pollution in the Gulf

because most of the waste is directly discharged into the sea without preliminary treatment.

This study investigates the marine environment in the proximity of the phosphate industries

of Gabes and the coastal marine environment on the eastern coast of Djerba, without phos-

phate industry. This site can be considered as "pristine" and enables a direct comparison

between polluted and “clean” adjacent areas.

Phosphorous, by sequential extractions (SEDEX), Rock-Eval, C, H, N elemental analy-

sis, and stable carbon isotope composition of sedimentary organic matter, X-ray diffraction

(qualitative and quantitative analysis) were measured on sediments. Temperature, pH and

dissolved oxygen were measured on the water close to the sea floor of each station to esti-

mate environmental conditions. These analyses are coupled with video surveys of the sea

floor. This study reveals clear differentiations in pollution and eutrophication in the investi-

gated areas.

Introduction

Phosphorus plays a major role in several biological processes like energy transfer and is present

e.g., in genetic material and in bones [1–3]. It is also an important element of fertilizers in agri-

culture production. Two forms of crystallized phosphorus can be mainly found: “white phos-

phorus” with a tetrahedral structure, “red phosphorus” which is present under polymeric

forms and mineral forms such as phosphate [4].

Phosphate deposits in North Africa and in the Middle East have sedimentary origin [5].

Phosphate rocks (phosphorite) in Tunisia formed during Palaeocene-Eocene time in the Gafsa

basin in western part of Tunisia, around the Kasserine and Djeffara Islands and the Algerian
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promontory [6–11]. Phosphorites in the Gafsa basin contain authigenic apatite from pellets

and coprolites, phosphatized fossils, coated grains and oolites and biogenic apatite fossils such

as fish teeth and skeletal fragments [9].

Phosphorites are chemically treated to produce phosphoric acid. This process generates a

large volume of phosphogypsum (PG), around 5 tons per ton of phosphoric acid [12]. Phos-

phogypsum contains several pollutants like heavy metals, fluorine, phosphorus and even radio-

nuclides generating radioactivity [12–18]. In 2010, Tunisia was a leading country of phosphate

production (8 million tons) being the fifth phosphate producer worldwide with around 13 mil-

lion tons of phosphate ore extracted. Today the country treats 80% of his phosphorite produc-

tion in four main industries. Three of them are located along the coast of the Gulf of Gabes. At

Sfax and Skhira, PG is stored in large stacks around the industry complex.

The large industrial site at Gabes has several units of phosphorite treatment and the totality

of the waste (PG, industrial sludge, waste water) is directly discharged into the sea through a

canal [19] with relevant environmental impact [13, 14, 20, 21, 22, 23].

Consequence of the large production of PG is a severe heavy metal contamination of seawa-

ter and sediments (e.g., [24–28]), which has a strong impact on the marine fauna by bioaccu-

mulation effect since elementary phosphorus can be assimilated in sediments in various

phases [29–31].

The phosphorus sequential extraction (SEDEX) from sediments allows quantifying five sed-

imentary phosphorus reservoirs [29, 31] and provides important information about the phos-

phorus cycle also in context of polluted sites [2, 32, 33, 34, 35]. This study investigates the

effect of large quantity of PG wastes discharged into the Gulf of Gabes, the role of the 5 phos-

phorus phases of Ruttenberg et al. [31] in modifying environmental conditions and compares

the Gulf with an analogue coastal marine environment (eastern coast of Djerba), which has no

phosphate production industry and can consider as “pristine”.

As a nutrient, phosphorus has the potential to trigger phytoplankton blooms [36], thus to

increase organic matter (OM) input to the seafloor and consequently to trigger eutrophication

[37]. Therefore, this study also investigates the origin of OM to identify its origin and the pos-

sible link with pollutants.

Materials and methods

Ethic statement

No specific permissions were required to collect samples on the entire working area for this

study. All the locations where the samples were collected are public access. In addition, the

field studies did not involve endangered or protected species.

Study site and sampling strategy

The Gulf of Gabes is approximately 90 km wide, 100 km long and bounded by the Kerkhenna

Islands to the north and the Djerba Island to the south. It presents some unique characteristics

in the Mediterranean Sea such as a gently sloping bathymetry to a water depth of 50 m at

around 130 km from the coastline and tidal amplitude, which is the highest in the Mediterra-

nean Sea, exceeding 1.7 m [38].

The Gulf of Gabes plays an important role in Tunisian economy as a well-known fishing

reserve. In the past 25 years, 65% of Tunisian fishery was from this region [39]. At the begin-

ning of the 20th century, the majority of its seafloor was colonized by seagrass. Posidonia ocea-
nica was the dominant marine plant in the region providing an ideal nursery environment for

many species [39, 40].
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Seven coastal stations were sampled at>1 m water depth. They encompass over 200 km

along the eastern Tunisian coast from the Gulf of Hammamet to the northern edge of Djerba

Island but most of the stations are located along the Gulf of Gabes (Fig 1).

Two transects were sampled perpendicularly to the coast. The Gabes transect was sampled

between the industrial and the fishing harbours, it includes 16 stations from the phosphate

industries to offshore. Samples were collected approximately every 1 km from the coast to 17.3

km offshore. (Fig 1). The first station GBS-01 is located 400 m from the shoreline and 800 m

from the waste industry discharge area. Water depth ranges from 4.5 m (GBS-01) to 19.5 m

(GBS-10, GBS-11 and GBS-15). The Djerba transect includes 15 stations and is located on the

eastern coast of Djerba Island (Fig 1). Samples were collected along a 13.8 km long transect

with the first station DJB-01 at 600 m distance from the coast. Water depth ranges from 5.1 m

(DJB-01) to 26.8 m (DJB-15) (Fig 1).

Three additional samples were collected from the waste discharge canal of the phosphate

industries of Gabes. Two of them contain PG (PG-01 and PG-02) and were collected in

Fig 1. Maps of the study area showing the sampling sites. (A) Maps of Tunisia showing the location of the coastal

station CST-01. (B) Localities of the Gabes and, Djerba transects and other coastal stations inside the Gulf of Gabes.

This figure is similar but not identical to the original image, and is therefore for illustrative purpose only.

https://doi.org/10.1371/journal.pone.0197731.g001
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different periods (PG-01 in January 2014 and PG-02 in July 2014). The BI sample, composed

of dark industrial sludge, was collected in July 2014. Geographical coordinates of transects and

coastal stations are in Table 1.

Sampling methods and in-situ data collection

Surface sediment samples (first centimetre) were collected for geochemical, sedimentological

and mineralogical analyses. An Ekman-Birge box core (15x15x30 cm) was deployed at each

station of both transects (Fig 1) to collect surface sediments. Sediments were photographed

and described to document sedimentary facies. Around 15 cm3 of the first centimetre of sur-

face sediment were collected in a falcon tube using a polyethylene spatula and all samples were

kept at 4˚C. Approximately 50 cm3 of surface sediment were subsampled at each station for

grain size analysis.

The following data were collected in-situ along the two transects: A video survey of the sea-

floor was performed on each station to have an overview of the environment (e.g., marine

flora and fauna, sedimentary facies). Videos were obtained by a GoPro1 camera and a water-

proof torch fixed on an aluminium frame. Water depth was measured with a Compass1 echo

sounder system. Water temperature, pH and dissolved oxygen were measured at the seafloor

at each station. Water temperatures were measured using a Campbell Scientific1 107 temper-

ature sensor with an accuracy of ±0.2˚C at a range of -0˚C to 50˚C. pH was measured with a

Campbell Scientific1 ISFET CS525 probe, which can operates down to 70 m water depth.

Temperature values are compensated with an accuracy of ±0.1 pH units at a temperature

range to 0–40˚C. Dissolved oxygen (DO) was measured with a Campbell Scientific1 CS512

probe ranging from 0 to 50 mg/L and operating between 0 and 40˚C at a pressure up to 2 bars

with an accuracy of ±0.2 mg/L. Sensors were attached to an aluminium frame equipped with a

tripod allowing the stability of system at the seafloor. A three-point calibration was performed

for the pH (pH at 4.01, 7.00 and 10.00), the DO was calibrated based on the atmospheric pres-

sure at sea level before sampling at each transect. Measurements were recorded on a datalogger

CR1000 (Campbell Scientific1).

Table 1. Geographical coordinates of stations of Gabes and Djerba transects and coastal stations.

Gabes transect Djerba transect Costal stations

Sample GPS coordinates Sample GPS coordinates Sample GPS coordinates

GBS-01 N 33˚54’36.66" / E 10˚ 6’34.74" DJB-01 N 33˚52’13.26" / E 10˚58’22.02" CST-01 N 35˚53’49.15" / E 10˚35’45.79"

GBS-02 N 33˚54’52.32" / E 10˚ 7’11.76" DJB-02 N 33˚52’33.12" / E 10˚59’1.86" CST-02 N 34˚17’19.98" / E 10˚ 5’45.00"

GBS-03 N 33˚55’9.54" / E 10˚ 7’44.10" DJB-03 N 33˚52’49.38" / E 10˚59’24.60" CST-03 N 34˚ 2’15.84" / E 10˚ 2’9.36"

GBS-04 N 33˚55’29.82" / E 10˚ 8’15.36" DJB-04 N 33˚53’3.84" / E 10˚59’57.84" CST-04 N 33˚53’5.76" / E 10˚ 7’13.92"

GBS-05 N 33˚55’48.00" / E 10˚ 8’46.92" DJB-05 N 33˚53’32.82" / E 11˚ 0’15.30" CST-05 N 33˚41’57.90" / E 10˚21’34.02"

GBS-06 N 33˚56’7.74" / E 10˚ 9’15.72" DJB-06 N 33˚53’53.34" / E 11˚ 0’31.20" CST-06 N 33˚43’39.00" / E 10˚44’22.50"

GBS-07 N 33˚56’30.60" / E 10˚ 9’46.74" DJB-07 N 33˚54’9.78" / E 11˚ 0’58.38" CST-07 N 33˚51’34.62" / E 10˚44’41.40"

GBS-08 N 33˚56’57.24" / E 10˚10’18.84" DJB-08 N 33˚54’45.54" / E 11˚ 1’21.84"

GBS-09 N 33˚57’16.20" / E 10˚10’53.82" DJB-09 N 33˚55’9.42" / E 11˚ 1’48.78" Waste industries

GBS-10 N 33˚57’29.34" / E 10˚11’36.24" DJB-10 N 33˚55’21.90" / E 11˚ 2’24.12" Sample GPS coordinates

GBS-11 N 33˚57’40.08" / E 10˚12’9.30" DJB-11 N 33˚55’48.36" / E 11˚ 3’4.68" PG-01; PG-02 & BI N 33˚54’46.62" / E 10˚ 5’53.82"

GBS-12 N 33˚57’56.64" / E 10˚12’47.04" DJB-12 N 33˚56’24.12" / E 11˚ 2’59.76"

GBS-13 N 33˚58’9.66" / E 10˚13’22.20" DJB-13 N 33˚56’53.16" / E 11˚ 3’36.36"

GBS-14 N 33˚58’14.04" / E 10˚13’58.86" DJB-14 N 33˚57’5.64" / E 11˚ 4’1.80"

GBS-15 N 33˚58’27.18" / E 10˚14’39.18" DJB-15 N 33˚57’30.36" / E 11˚ 4’9.84"

GBS-16 N 33˚58’53.16" / E 10˚16’15.60"

https://doi.org/10.1371/journal.pone.0197731.t001
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Geochemical analyses

The SEDEX phosphorus extraction was performed on all sediment samples. They were dried

at room temperature and manually grounded in an agate mortar to homogenize the sediment

and to obtain a fine powder. They were successively dry sieved trough a 125 μm mesh to

remove coarse particles, only the fine sediment fraction (<125 μm) was analysed. The phos-

phorus sequential extraction of Ruttenberg et al. [31], was performed on 80 mg of dry sedi-

ment to extract five phosphorus phases: 1) Exchangeable or loosely sorbed phosphorus (Pex);

2) Fe-bound phosphorus (PFe); 3) Authigenic apatite: carbonate fluorapatite (CFA) + biogenic

apatite + CaCO3-bound phosphorus (Pauthi); 4) Detrital apatite + other inorganic phosphorus

(Pdetr); 5) Organic phosphorus (Porg). The extraction was performed at the University of Fri-

bourg and extracted phases were measured with a Bio-Tek Uvikon XS spectrophotometer

using the molybdate blue method. The Fe-bound phosphorus (PFe) phase and the Iron content

were measured with an ICP-OES spectrometer Optima 7000 DV.

Rock-Eval analyses were performed on surface sediment samples following Rock-Eval6

technology [41] to obtain Total Organic Carbon (TOC in wt.%), Hydrogen Index (HI), Oxy-

gen Index (OI), S1, S2 and S3 peaks, maximal temperature (Tmax) and mineral carbon (MINC)

values. This technique uses temperature programmed heating of rocky sample under inert

condition (anoxic). HI corresponds to the free hydrocarbons present in the sample (mg HC/g

TOC) and is measured on S1 peak. OI represents the amount of hydrocarbons and compounds

containing oxygen that are produced during the thermal cracking of kerogen (mg CO2/g

TOC) and is determined from the S2 and S3 peaks. Maximal temperature is measured at the

maximum of S2 peak. In addition, carbon oxidation is performed at high temperature (up to

850˚C), which allows MINC determination [42, 43].

Total carbon, hydrogen and nitrogen (C,H,N) content (in wt.%) were measured in all sur-

face sediment samples using a Thermo Finnigan Flash EA 1112 gas chromatography analyser.

Rock-Eval and C, H, N analysis were performed on approximately 100 mg bulk sediment at

the University of Lausanne.

Matrix effects, corresponding to carbon adsorption capacity of the sediment, can be quanti-

fied for a group of samples based on Rock-Eval data set. The positive intercepts of the regres-

sion line for a group of samples on S2 vs. TOC diagram indicate a matrix effect and the

position of the intercept is the measure of the amount of absorption (g of OM absorbed by 1g

of sediment) [44]. Matrix effect was quantified for samples from the Gabes and Djerba tran-

sects and coastal stations.

Different graphs can be used to qualify the type of the kerogen present in OM and deter-

mine its origin. For the present study, the S2 (mg/g) vs. TOC graph was used to determine if a

matrix effect influences the measurements [44, 45]; the HI vs. Tmax plot was used to determine

the origin of the sedimentary organic matter [46].

Molar C/N ratio is calculated for sediment samples, C was determined from the TOC con-

tent in the sediment and N from the total nitrogen content (TN). Total organic carbon and TN

values are converted into μmol/g to obtain the molar C/N ratio. However, for several samples

(CST-01; CST-04; CST-05 and PG-01; PG-02) TN values were below the detection limit.

Molar C/P is calculated for sediment samples, C was determined from the TOC content and P

from Porg phase of SEDEX extraction.

Total phosphorus (Ptotal) represents the sum of all phosphorus reservoirs (Ptotal = Pex + PFe +

Pauthi + Pdetr + Porg). Proportion of phosphorus reservoirs (Pex; PFe; Pauthi; Pdetr; Porg) is calcu-

lated in percentage depending of the total phosphorus (Ptotal) in sediment.

Stable carbon isotope composition of the sedimentary OM (δ13COM values) was measured

on surface sediment samples with sufficient material for this analysis. Carbonate minerals
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were dissolved using a 10% HCl solution at 50˚C and rinsed with milli-Q water, the process

was repeated twice. Stable carbon isotopes composition was measured at the Stable Isotopes

Laboratory (University of Lausanne) by flash combustion on a Carlo Erba 1108 elemental ana-

lyser (EA) connected to a Thermo Fisher Scientific Delta V IRMS that was operated in a con-

tinuous helium flow mode via a Conflo III split interface. Results were expressed as δ13C as the

per mil (‰) deviations of the ratio of the heavy to light isotopes (13C/12C) relative to Vienna

Pee Dee Belemnite (VPDB) standard. Reproducibility and accuracy were better than ± 0.1‰.

Sedimentary, mineralogical and petrographic analyses

Grain size analysis was performed on all samples except the industrial waste samples (PG-01,

PG-02 and BI) and GBS-03 because of their small volume. Sediments were wet sieved through

four mesh sieves: 500 μm, 250 μm, 125 μm and 63 μm. The grain size distribution was obtained

by weighing the size fractions and is expressed in percentage over the total dry sediment

weight.

Sediments from both transects were analysed by X-ray powder diffraction (XRD) using a

Powder X-ray diffractometer Rigaku Ultima IV with a cupper anode. Samples were powdered

with an agate mortar to obtain a fine powder with a grain size between 5 and 15 μm. The mea-

surements were operated at 40 kV and 40 mA using a 1-D DTEX detector with Bragg Brentano

Optics at step size of 0.02˚. The data were collected in the 5˚-120˚ 2θ angular range. X-ray pat-

tern treatment was carried out with Panalytical X’pert HighScore Plus to identify the mineral-

ogical phases. A Rietveld refinement was performed, with the same software, to quantify

mineralogical phases.

Five polished thin sections were obtained from the carbonate nodules and were analysed

under a polarized microscope. Three thin sections were made on nodules collected at station

GBS-03 (GBS-03A to C) and two at station GBS-04 (GBS-04A and GBS-04B).

Results

Water parameters

Water parameters measured along the two transects are presented in Table 2.

Gabes transect. Dissolved Oxygen (DO) values at the seafloor along the Gabes transect

fluctuate from 7.1 to 7.8 mg/L in most of the stations. Only exceptions are values of 6.9 mg/L

(Station GBS-05) and 6.1 and 6 mg/L (GBS-02 and GBS-16, respectively) (Fig 2). Bottom water

temperatures along the Gabes transect fluctuate around 27.3˚C, except for stations GBS-01

and GBS-02 where water temperatures exceed 28˚C (Fig 2). The pH varies from 7.8 and 8.0.

Remarkably lower pH values were measured at stations GBS-01 (6.2) and GBS-02 (5.7).

Djerba transect. Bottom water parameters along the Djerba transect are significantly dif-

ferent from those of the Gabes (Table 2; Figs 2 and 3). In particular, they decrease with

decreasing water depth from 26.7˚C to 25.6˚C. pH values increase from 7.7 at station DJB-01

to 7.9 at the more distal parts. Dissolved oxygen reaches a maximum of 9.1 mg/L at station

DJB-01 and values remain high exceeding 9 mg/L along the first 2.5 kilometres (until DJB-03)

(Fig 2). From station DJB-04 to station DJB-10, DO fluctuates from 8.7 to 9.2 mg/L. In the

remaining stations DO decreases to a minimum of 8.0 mg/L (Fig 2).

Sediment facies, mineralogy and nodule petrography

Along the Gabes transect, five sedimentary facies are identified (Figs 4 and 5):

Facies G1 is present at stations GBS-01 and GBS-02 and is characterized by high content of

siliciclastic grains (e.g. quartz).
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Facies G2 occurs only at station GBS-03. Nodules of few centimetres diameters cover the

seafloor forming a relatively hard substratum. The nodules are concretions of biogenic frag-

ments (e.g. bivalve, bryozoan, foraminifera and coral) partially dissolved.

Facies G3 is present at stations GBS-04 to GBS-06 and is characterized by carbonate sand

and biogenic fragments (bryozoans, bivalves, gastropods and coral).

Facies G4 is present at station GBS-07 and GBS-08, GBS-10 to GBS-16 and is characterized

by a mix of large biogenic fragments (up to few centimetres) and fine sediment (clay).

Facies G5 is only present at station GBS-09 and is characterized by very fine sediments

(clay and silt) and low content of biogenic fragments.

Along the Djerba transect three main sedimentary facies are identified (Figs 4 and 5):

Facies D1 is present from station DJB-01 to DJB-05 and at stations DJB-09 and DJB-10.

Fine siliciclastic grains (quartz) mainly characterize this facies.

Facies D2 occurs at stations DJB-06 to DJB-08. It consists of a mix of sand and small (few

millimetres) rounded biogenic fragments. Preservation state and shape of the biogenic frag-

ments is poor due to mechanic erosion.

Table 2. Bottom water parameters from stations of Gabes and Djerba transects.

Gabes transect Djerba transect

Station Distance from the

coastline

Water

depth

Water

temperature

pH Dissolved

oxygen

Station Distance from the

coastline

Water

depth

Water

temperature

pH Dissolved

oxygen

GBS-

01

0.4 4.5 28.1 6.2 7.6 DJB-

01

0.6 5.1 26.7 7.7 9.1

GBS-

02

1.5 7.3 28.6 5.7 6.1 DJB-

02

1.7 6.4 26.4 7.7 9.3

GBS-

03

2.4 9.6 27.4 7.8 7.7 DJB-

03

2.5 8.7 26.3 7.7 9.0

GBS-

04

3.5 9.1 27.3 7.8 7.8 DJB-

04

3.5 10.7 26.2 7.7 8.8

GBS-

05

4.4 12 27.3 7.9 7.8 DJB-

05

4.4 12.7 26.2 7.7 8.8

GBS-

06

5.4 12.9 27.5 7.8 6.9 DJB-

06

5.1 12.2 26.1 7.7 8.9

GBS-

07

6.4 14.4 27.3 7.9 7.4 DJB-

07

6.0 14 26.1 7.8 9.2

GBS-

08

7.6 15 27.3 7.9 7.5 DJB-

08

7.1 17.2 25.9 7.8 8.8

GBS-

09

8.7 18 27.3 7.9 7.1 DJB-

09

8.2 17.6 25.8 7.8 9.0

GBS-

10

9.8 19.5 27.4 7.9 7.3 DJB-

10

9.1 21.3 25.3 7.6 8.7

GBS-

11

10.7 19.5 27.4 7.9 7.2 DJB-

11

10.4 22 25.6 7.9 8.0

GBS-

12

11.8 15.4 27.4 8.0 7.6 DJB-

12

11.1 24 25.6 7.9 8.0

GBS-

13

12.7 19.5 27.4 8.0 7.5 DJB-

13

12.4 25.3 25.6 7.9 8.0

GBS-

14

13.6 17.6 27.4 8.0 7.1 DJB-

14

13.1 26 25.6 7.9 8.0

GBS-

15

14.7 19.5 27.4 8.0 7.4 DJB-

15

13.8 26.8 25.6 7.9 8.0

GBS-

16

17.3 18 27.2 8.0 6

Distance from the coastline (km), water depth (m), water temperature (˚C), pH and dissolved oxygen (mg/L) at the seafloor.

https://doi.org/10.1371/journal.pone.0197731.t002
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Facies D3 is present from station DJB-11 to DJB-15 and is composed by relatively well-pre-

served biogenic fragments of bivalves, calcareous algae, gastropods and bryozoans.

The seafloor at stations DBJ-01 and DJB-02 is densely covered by P. oceanica forming a sea-

grass barrier (Figs 4 and 5). Rhizomes of the sea-grass trap sediment forming small mounds or

barrier reef meadow of P. oceanica (e.g. [48]). Ripple marks are observed at several stations

(Fig 5) and are generally well developed (30 cm high).

All XRD analysis and Rietveld refinement results are presented in the Table 3. The main

minerals present is surface sediment along the Gabes transect are aragonite, calcite, Mg-calcite

and quartz (Fig 2). Additional minerals like orthoclase, halite, gypsum, sphalerite and kaolinite

are also present, whereas calcite is relatively scarce. This mineral is absent at stations GBS-01

and GBS-02, while stations GBS-04 and GBS-05 have highest calcite contents of 7.1 and 8.2 wt.
%, respectively. From station GBS-06 to GBS-16, the calcite content is relatively constant with

an average of 2.8 wt.%. Mg-calcite reaches maximum value of 88.6 wt.% at GBS-04 station and

it is absent at station GBS-01. It is abundant between GBS-02 to GBS-05 station but decreases

between GBS-06 to GBS-16 (average is 39 wt.%). Aragonite is also absent in sample GBS-01

and relatively scarce in samples GBS-02 and GBS-03 with 11.1 wt.% and 3.9 wt.%, respectively.

Quartz is very abundant at station GBS-01 with 80.5 wt.% but the quartz content fall to 3.7 wt.
% at station GBS-04. From station GBS-07 to GBS-16, quartz content varies between 9.5 and

31.7 wt.%. Orthoclase was identified only at station GBS-01 with 18.3 wt.%. Gypsum was iden-

tified at several stations: GBS-02, GBS-07, GBS-08 to -10 and GBS-13 and is especially abun-

dant at station GBS-02 with 42.6 wt.%. Sphalerite was detected only at the station GBS-02 with

0.3 wt.% and kaolinite with only 1.1 wt.% at station GBS-09.

Fig 2. Variation in mineralogical composition and seawater parameters. (A) Gabes Transect. (B) Djerba transect.

https://doi.org/10.1371/journal.pone.0197731.g002
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Fig 3. Isosurface in the Gulf of Gabes. Water parameters, TOC, carbon isotope composition of sedimentary organic matter, phosphorus reservoir concentrations are plot

on a 2D Maps of the Gulf of Gabes. The maps are drawn by using the Ocean Data View software [47].

https://doi.org/10.1371/journal.pone.0197731.g003
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Along the Djerba transect, only four minerals were identified: calcite, Mg-calcite, aragonite

and quartz (Fig 2). Calcite is minor component in all samples and its content (1.7–4.9 wt.%)

does not show any important fluctuation. Mg-calcite is abundant in all samples with an aver-

age of 27.8 wt.%. Only sample in DJB-02 it reaches values of 8 wt.%. The maximum Mg-calcite

content is reached in sample DJB-11 with 42.9 wt.%. Aragonite is the most abundant mineral

Fig 4. Illustration of the sedimentary facies. Images of seafloor and relative Box-Cores representing the sedimentary facies of (A) the Gabes and (B) the Djerba transects.

https://doi.org/10.1371/journal.pone.0197731.g004
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with an average of 35.3 wt.%. Maximum aragonite content of 55.4 wt.% is reached at station

DJB-15. Stations DJB-02 and DJB-03 show the lowest aragonite content, hoverer, its content

increases from the coast to offshore. Quartz has an inverse trend and its content increases

towards the shoreline (Fig 2). The maximum quartz content occurs at station DJB-02 with 81

wt.% and decreases to 3.5 wt.% at station DJB-15.

Nodule GBS-03A (Fig 6) is the only one composed of dolomite crystals. The shape of the

crystals is relatively regular with rhombohedral shapes, however, some grains are rounded and

a zonation may be visible. In a few cases, the centre is dissolved and only the rim of the crystal

is remaining. This nodule does not contain quartz grains, bioclasts or pores. The carbonate

nodule GBS-03B (Fig 6) has a high porosity and many rounded quartz grains and bioclasts

(bivalves, foraminifera and bryozoan). Micrite is abundant and represents a large part of the

nodule. Some pores have the shape of a bivalve fragment and indicate a total dissolution of bio-

clasts inside the nodule, in some cases the bioclast is partially dissolved. The internal edging of

the pores is filled with very fine carbonate needles perpendicular to the porosity border. The

nodule GBS-03C (Fig 6) is a coral fragment filled with micrite. The polished thin section is a

cross section of the coral fragment showing wall, columella, septum and the external part cov-

ered by an encrusting bryozoan colony. The coral skeleton is micritic and pores are filled with

Fig 5. Sediment distribution. (A) Gabes transect. (B) Djerba transect.

https://doi.org/10.1371/journal.pone.0197731.g005
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micrite, rounded quartz grains, perpendicular carbonate needles also cover internal margins.

Nodules from station GBS-04 are similar (Fig 6). Rounded quartz grains and bioclast are abun-

dant and a large part of the nodules is micrite. The nodules contain large pores where perpen-

dicular carbonate needles cover the internal margins and small pores are generally entirely

filled by carbonate needles.

Organic matter and phosphorus in surface sediment

Rock-Eval and C, H, N data are presented in Table 4. Along the Gabes transect, high TOC con-

tent is measured in samples GBS-02 and GBS-09 with values of 3.34 wt.% and 3.38 wt.%,

respectively. Except for station GBS-02, TOC does not exceed 0.80 wt.% along the first seven

kilometres of the Gabes transect. Along the rest of transect, TOC increases with values exceed-

ing 1 wt.% (Fig 3). The HI and OI values vary from 143 to 378 mg HC/g TOC and 128 to 1083

mg CO2/g TOC, respectively. The average of TN content for the Gabes transect is 0.12 wt.%
with a maximum of 0.33 wt.% at station GBS-09 and a minimum of 0.02 wt.% at station GBS-

02. The total hydrogen content in samples from the Gabes transect is clearly higher than in the

Table 3. Mineralogical composition of surface sediment from Gabes and Djerba transects.

Sample

Number

Total carbonate

[wt.%]

Aragonite

[wt.%]

Calcite

magnesian [wt.%]

Calcite

[wt.%]

Quartz

[wt.%]

Halite

[wt.%]

Gypsum

[wt.%]

Orthoclase

[wt.%]

Sphalerite

[wt.%]

Kaolinite

[wt.%]

GBS-01 0 0 0 0.0 80.5 1.2 0 18.3 0 0

GBS-02 32.0 11.1 20.9 0.0 12.9 12.2 42.6 0 0.3 0

GBS-04 96.3 3.9 85.3 7.1 3.7 0 0 0 0 0

GBS-05 99.3 34.9 56.2 8.2 0.7 0 0 0 0 0

GBS-06 98.9 53.3 42.3 3.3 1.1 0 0 0 0 0

GBS-07 80.9 59.7 17.3 3.9 16.2 0 2.9 0 0 0

GBS-08 65.3 39.0 23.1 3.2 19.9 0 14.7 0 0 0

GBS-09 73.9 47.2 21.3 5.4 24.9 0 0.1 0 0 1.1

GBS-10 73.0 46.3 23.9 2.8 23.4 0 3.7 0 0 0

GBS-11 68.3 42.0 23.5 2.8 31.7 0 0 0 0 0

GBS-12 90.6 42.8 45.5 2.3 9.5 0 0 0 0 0

GBS-13 78.3 47.0 30.7 0.6 21.6 0 0.1 0 0 0

GBS-14 88.4 56.6 29.1 2.7 11.5 0 0 0 0 0

GBS-15 78.9 38.3 38.3 2.3 21.1 0 0 0 0 0

GBS-16 86.2 30.3 54.2 1.7 13.6 0 0 0 0 0

DJB-01 55.4 19.0 33.7 2.7 44.5 0 0 0 0 0

DJB-02 19.0 7.8 8.0 3.2 81.0 0 0 0 0 0

DJB-03 27.8 7.3 18.8 1.7 72.2 0 0 0 0 0

DJB-04 43.5 27.4 13.2 2.9 56.4 0 0 0 0 0

DJB-05 68.3 45.7 19.8 2.8 31.7 0 0 0 0 0

DJB-06 61.3 27.2 31.7 2.4 38.7 0 0 0 0 0

DJB-07 79.0 44.5 30.6 3.9 21.0 0 0 0 0 0

DJB-08 61.5 36.1 23.1 2.3 38.5 0 0 0 0 0

DJB-09 71.0 41.4 26.7 2.9 28.9 0 0 0 0 0

DJB-10 62.7 37.1 23.0 2.6 37.4 0 0 0 0 0

DJB-11 88.5 42.0 42.9 3.6 11.5 0 0 0 0 0

DJB-12 86.8 48.3 36.1 2.4 13.2 0 0 0 0 0

DJB-13 89.7 50.4 36.0 3.3 10.2 0 0 0 0 0

DJB-14 79.2 39.4 36.7 3.1 20.8 0 0 0 0 0

DJB-15 96.5 55.4 36.2 4.9 3.5 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0197731.t003
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samples from the Djerba transect with an average of 0.47 wt.% and with a maximum of 0.99

wt.% at station GBS-09 and a minimum of 0.15 wt.% at station GBS-04. Highest matrix effect

is reached in the Gabes transect samples with 0.3863 g of OM where absorbed per gram of sed-

iment (Fig 7). Station GBS-05 has the lowest atomic C/N ratio of the whole Gabes transect.

Atomic C/N ratio is especially high on the first two stations (GBS-01 and GBS-02) with molar

ratio up to 24.7. The rest of samples from the Gabes transect (from GBS-05 to GBS-16) have

molar C/N ratio slightly fluctuating from 16.3 (GBS-08) to 7.0 (GBS-15). Along the Djerba

transect, only sample DJB-01 has a very high TOC content with 2.73% (Fig 3). In the remain-

ing samples TOC does not exceed 0.63% (DJB-10) whereas, the average content is about 0.39

wt.%. Very low TOC contents are measured at stations DJB-02, DJB-03 and DJB-04 with val-

ues of 0.08 wt.%, 0.13 wt.% and 0.11 wt.%, respectively. The HI and OI values vary from 148 to

354 mg HC/g TOC and 273 to 2369 mg CO2/g TOC. Total nitrogen content is very low for all

samples except for DJB-01 where the maximum is reached with 0.21 wt.%. Indeed the TN is

Fig 6. Thin section images of carbonate nodules. (A) Dolomite nodule from station GBS-03. (B) Nodule from station

GBS-03 with bioclasts (foraminifera), quartz grains embedded in micrite. (C) Nodule from station GBS-03 with coral

fragments and micrite. (D) Nodule from station GBS-04 with bioclasts, quartz grains into micrite. (E) Nodule from

station GBS-04 with bioclasts, quartz grains embedded in micrite.

https://doi.org/10.1371/journal.pone.0197731.g006
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around 0.02 wt.% for the majority of sample with an average of 0.04 wt.%. The same trend is

observed for the total hydrogen content, where the maximum value is reached at sample DJB-

01 with 0.53% while the average of the samples from the Djerba transect is around 0.21 wt.%.

Table 4. Geochemical data of OM and elemental composition of sediment.

Sample Nitrogen Carbon Hydrogen δ13C MINC TOC HI OI Tmax S1 S2 S3 C/N

GBS-01 0.02 0.43 0.32 -23.94 0.21 0.43 290 161 412 0.01 1.25 0.69 20.9

GBS-02 0.16 3.34 0.78 NA 6.38 3.34 378 128 411 0.07 12.62 4.26 24.7

GBS-04 0.03 0.13 0.15 -20.88 10.69 0.13 148 1083 405 0.00 0.20 1.43 5.8

GBS-05 0.03 0.23 0.19 -19.04 10.85 0.23 143 835 419 0.01 0.33 1.94 10.3

GBS-06 0.07 0.80 0.30 -18.58 10.32 0.80 229 333 416 0.01 1.82 2.65 13.1

GBS-07 0.06 0.60 0.29 -21.09 9.01 0.60 281 496 418 0.01 1.69 2.97 12.3

GBS-08 0.14 1.93 0.56 NA 7.54 1.93 284 233 414 0.02 5.49 4.50 16.2

GBS-09 0.33 3.38 0.99 -21.11 5.70 3.38 296 247 421 0.03 10.01 8.35 11.9

GBS-10 0.14 1.40 0.52 NA 7.56 1.40 271 359 422 0.02 3.80 5.02 12.1

GBS-11 0.17 1.30 0.48 NA 7.40 1.30 342 345 417 0.02 4.45 4.50 9.2

GBS-12 0.10 0.67 0.55 NA 8.99 0.67 305 566 423 0.01 2.03 3.76 8.0

GBS-13 0.16 1.66 0.51 -19.91 7.16 1.66 226 273 424 0.02 3.76 4.54 12.3

GBS-14 0.09 0.64 0.40 -20.44 9.12 0.63 315 572 425 0.01 2.00 3.63 8.1

GBS-15 0.20 1.18 0.49 -19.85 8.07 1.18 370 369 418 0.01 4.35 4.34 7.0

GBS-16 0.19 1.30 0.60 NA 7.15 1.30 347 393 421 0.02 4.51 5.11 8.1

DJB-01 0.21 2.73 0.53 -16.13 7.95 2.73 276 273 303 0.02 7.55 7.45 15.5

DJB-02 0.01 0.08 0.08 -18.59 3.58 0.08 279 1227 418 0.01 0.24 1.03 9.3

DJB-03 0.01 0.13 0.09 -17.78 4.94 0.13 470 849 391 0.01 0.59 1.06 10.8

DJB-04 0.01 0.11 0.11 -18.60 6.17 0.11 285 1303 427 0.01 0.32 1.48 10.7

DJB-05 0.03 0.18 0.16 -17.23 8.89 0.18 297 986 441 0.01 0.52 1.73 8.4

DJB-06 0.02 0.05 0.19 -18.46 0.28 0.05 354 2369 419 0.00 0.18 1.18 3.4

DJB-07 0.02 0.19 0.14 -12.82 8.41 0.19 148 991 422 0.01 0.27 1.84 11.1

DJB-08 0.02 0.15 0.17 -21.01 8.45 0.14 224 1475 431 0.01 0.32 2.14 6.8

DJB-09 0.04 0.38 0.20 -16.99 9.77 0.38 187 494 436 0.01 0.72 1.89 10.8

DJB-10 0.05 0.63 0.32 -15.84 8.55 0.63 199 687 432 0.02 1.25 4.30 16.3

DJB-11 0.05 0.35 0.27 -15.32 11.03 0.35 284 666 426 0.02 1.00 2.35 7.7

DJB-12 0.05 0.34 0.24 NA 11.24 0.33 284 638 430 0.01 0.95 2.14 8.2

DJB-13 0.04 0.21 0.23 -17.19 10.91 0.21 249 1093 421 0.01 0.52 2.28 6.1

DJB-14 0.03 0.13 0.18 -16.76 10.87 0.13 309 1082 426 0.00 0.41 1.44 4.7

DJB-15 0.03 0.27 0.18 -10.68 10.70 0.27 162 579 424 0.01 0.44 1.58 9.3

CST-01 0.00 0.05 0.01 -23.94 0.36 0.05 225 118 496 0.00 0.12 0.06 NA

CST-02 0.03 0.21 0.10 -14.12 1.78 0.21 246 321 409 0.01 0.51 0.67 9.1

CST-03 0.02 0.16 0.08 -19.02 4.66 0.16 313 439 428 0.01 0.49 0.69 11.7

CST-04 0.00 0.04 0.08 -21.25 1.93 0.04 360 396 402 0.00 0.15 0.16 NA

CST-05 0.00 0.22 0.15 -18.96 3.04 0.22 249 359 425 0.01 0.55 0.80 NA

CST-06 0.06 0.46 0.20 -13.10 6.24 0.46 341 366 424 0.01 1.58 1.69 8.8

CST-07 0.04 0.35 0.16 -13.15 6.68 0.35 461 376 420 0.01 1.61 1.31 9.3

PG-01 0.00 0.48 2.14 -25.53 0.06 0.48 292 24 406 0.02 1.40 0.11 NA

PG-02 0.00 0.06 2.33 -25.69 0.03 0.04 912 436 604 0.00 0.33 0.16 NA

BI 0.02 0.85 2.24 -25.58 0.12 0.72 387 41 398 0.04 2.79 0.29 30.0

Nitrogen, total carbon content and hydrogen contents (wt.%) δ13C of OM (‰), mineral carbon (MINC in %), Total Organic Carbon (TOC in %), Hydrogen Index (HI

in mg HC/g TOC), Oxygen Index (OI in mg CO2/g TOC), Temperature maximum (Tmax in˚C), S1, S2 and S2b S3 peaks (mg HC/g) and molar C/N ratio.

https://doi.org/10.1371/journal.pone.0197731.t004
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Matrix effect is relatively low for the sample from Djerba transect, with 0.0645 g of OM

adsorbed per gram of sediment (Fig 7). Molar C/N ratios fluctuate significantly from 3.4 (DJB-

06) to 16.3 (DJB-10), however most of the samples have molar ration close to 10 (DJB-02 to

DJB-05; DJB-07; DJB-09; DJB-12; DJB-15). Total organic carbon in coastal samples is signifi-

cantly lower than the samples from the Gabes transect but similar to the Djerba transect. It

fluctuates from 0.05 to 0.35 wt.% and the maximum is reached at station CST-06 with 0.46 wt.
%. The HI and OI vary from 224 to 359 mg HC/g TOC and 117 to 438 mg CO2/g TOC. Very

low TN content not exceeding 0.06 wt.% characterizes coastal samples. In some stations, TN is

below the detection limit (CST-01, CST-03, and CST-05). The total hydrogen content for

coastal station samples varies from 0.01 to 0.20 wt.%. Matrix effect is the lower for the coastal

stations with 0.114 g of OM adsorbed per gram of sediment (Fig 7). Industrial waste TOC val-

ues fluctuate from 0.04% (PG-02) to 0.72% (BI). The HI and OI values fluctuate significantly

between the samples, from 292 mg HC/g TOC (PG-01) to 912 mg HC/g TOC (BI) and from

Fig 7. Origin of organic matter from surface sediments in the Gulf of Gabes. (A) S2 versus TOC diagram. (B) HI versus T max diagram. (C) The three clusters based

on OM δ13C value.

https://doi.org/10.1371/journal.pone.0197731.g007
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23 mg CO2/g TOC (PG-01) to 436 CO2/g TOC (PG-02). Total nitrogen content is low or equal

to zero; however, waste industries are characterized by high total hydrogen content (up to

2.33%). Molar C/N ratio cannot be calculated for PG-01 and PG-02 because TN is below detec-

tion limit but the sample BI has the highest ratio (30.0) of the whole sample set.

Stable carbon isotopes data of OM (δ13COM) are presented in Table 4, they vary from –25.6

to –10.7 ‰ (Fig 7). The average δ 13COM values of the Gabes transect samples is –20.2 ‰ with

minimum values of –23.9 ‰ and maximum values of –18.6‰. Values from samples of the

Djerba transect have higher δ13COM values ranging between –21.0 and –10.7 ‰. Lowest values

are documented from the waste discharge site samples with values close to –25.6‰. In coastal

stations, significant variations in values of δ13C are observed. Station CST-01, located in the

Gulf of Hammamet has a δ13COM of -–23.9 ‰. Within the Gulf of Gabes, δ13C values decrease

significantly close to the discharge area When at Skhira (CST-02) or at Djerba Island the

δ13COM values are relatively high.

Phosphorus concentrations, proportions of the different phosphorus reservoir and molar

ratios are in the Table 5. The Ptotal concentrations fluctuate considerably from 6.51 μmol P/g at

the coastal station CST-01 to 347.64 μmol P/g at the station GBS-02. Concentrations are signif-

icantly higher along the Gabes transect (Figs 3 and 8), where the minimum value is reached at

GBS-14 with 28.67 μmol P/g. Coastal stations and Djerba transect samples have similar con-

centrations with values fluctuating from 6.51 μmol P/g to 20.11 μmol P/g. Only PG-01 has con-

centrations reaching 58.85 μmol P/g. The Pex concentrations are exceptionally high for waste

industries with values up to 36.36 μmol P/g (Fig 8). All other samples have relatively low values

from 0.41 μmol P/g for DJB-01 to 6.83 μmol P/g for GBS-02. Very high PFe concentrations are

reached at station GBS-01 and GBS-02 (Fig 8) with respectively 130.7 μmol P/g and 183.23

μmol P/g. Except for these two stations, PFe concentration along the Gabes transect fluctuates

from 20.5 μmol P/g (GBS-12) to 53.15 μmol P/g (GBS-09). Lower PFe concentrations were

measured along the Djerba transect and at coastal stations with values between 2.86 μmol P/g

(DJB-07) and 9.31 μmol P/g (CST-01). High Pauthi concentrations were measured at station

GBS-01 (Fig 8) with 70.61 μmol P/g. For the remaining samples of the Gabes transect, Pauthi

concentrations are high but range between 4.6 and 58.59 μmol P/g. Pauthi concentrations on

coastal stations are higher along the Djerba transect. The maximum Pauthi concentration

for the Djerba transect is reached at station DJB-13 with 2.15 μmol P/g whereas it reaches

5.22 μmol P/g at the coastal station CST-04. The Pdetr concentrations are extremely high at sta-

tions GBS-01 and GBS-02 with respectively 63.56 μmol P/g and 57.95 μmol P/g. The remaining

samples have relatively low concentrations with 0.35 μmol P/g (DJB-06) to 7.65 μmol P/g

(GBS-09) (Fig 3). The Porg concentrations are very high at stations GBS-01 and GBS-02 with

11.47 μmol P/g and 41.05 μmol P/g, respectively. At all other stations, the Porg concentration

does not exceed 7.69 μmol P/g. Highest Pex proportion is in sample PG-01 at the waste dis-

charge site (Fig 8) with 61.8 wt.%. However, Pex proportions of coastal stations are significantly

higher (between 21.8 and 37.2 wt.%) compared to the Djerba and Gabes transect samples,

where they do not exceed 5.8 wt.%. Samples from the Djerba transect have the highest PFe pro-

portion (Fig 8), between 74.8 and 86.3 wt.%. Gabes transect samples have relatively high pro-

portion of PFe (between 46 and 68.7 wt.%) but the coastal station and samples from industrial

waste sites have the lowest PFe proportion, especially CST-01 with only 9.2 wt.%. The Pauthi

proportions are especially high for coastal stations (between 31.3 and 46.2 wt.%) (Fig 8). Sam-

ples GBS-01 to -02, and GBS-04 to GBS-06 have significant high proportion of Pauti (>16.9 wt.
%). Lowest Pauthi proportions are reached for the Djerba transect and waste industries values

do not exceed 10 wt.% (Fig 8). Pdetr proportion is relatively low for the whole samples (between

1.3 and 8.8 wt.%) except for GBS-01 and GBS-02 with respectively 22.5 and 16.7 wt.% (Fig 8).

Highest Porg proportion is reached for sample GBS-16 with 16.2 wt.%. Except for some samples
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Table 5. Phosphorus reservoirs distribution in surface sediments.

Phosphorus reservoir concentration [μmol P/g] Phosphorus reservoir

proportion [%]

Molar ratios

Sample number Distance from the coast

(km)

Pex PFe Fe Pauthi Pdetr Porg Ptotal Pex PFe Pauthi Pdetr Porg C/P PFe/Fe Fe/PFe

GBS-01 0.4 5.60 130.70 12.15 70.61 63.56 11.47 281.94 2.0 46.4 25.0 22.5 4.1 31.2 10.8 0.1

GBS-02 1.5 6.83 183.23 14.86 58.59 57.95 41.05 347.64 2.0 52.7 16.9 16.7 11.8 67.8 12.3 0.1

GBS-04 3.5 3.24 34.02 10.39 46.45 2.24 1.12 87.07 3.7 39.1 53.3 2.6 1.3 97.0 3.3 0.3

GBS-05 4.4 2.43 27.54 13.28 26.05 1.25 1.64 58.91 4.1 46.7 44.2 2.1 2.8 116.6 2.1 0.5

GBS-06 5.4 2.15 28.28 9.05 11.17 0.79 2.29 44.68 4.8 63.3 25.0 1.8 5.1 291.6 3.1 0.3

GBS-07 6.4 1.90 24.11 7.69 4.45 0.98 2.17 33.61 5.7 71.7 13.2 2.9 6.5 230.3 3.1 0.3

GBS-08 7.6 3.02 51.58 12.11 15.07 7.42 7.69 84.78 3.6 60.8 17.8 8.7 9.1 209.1 4.3 0.2

GBS-09 8.7 3.48 53.15 19.82 15.04 7.65 7.10 86.40 4.0 61.5 17.4 8.8 8.2 396.9 2.7 0.4

GBS-10 9.8 1.85 28.23 11.73 4.99 3.05 5.65 43.77 4.2 64.5 11.4 7.0 12.9 206.4 2.4 0.4

GBS-11 10.7 1.72 26.38 11.63 5.80 2.63 4.30 40.83 4.2 64.6 14.2 6.4 10.5 251.8 2.3 0.4

GBS-12 11.8 1.21 20.50 6.53 4.52 0.84 2.77 29.84 4.1 68.7 15.1 2.8 9.3 201.8 3.1 0.3

GBS-13 12.7 1.34 21.75 8.42 4.87 2.20 5.13 35.29 3.8 61.6 13.8 6.2 14.5 269.9 2.6 0.4

GBS-14 13.6 1.06 21.59 7.81 2.89 0.65 2.49 28.67 3.7 75.3 10.1 2.3 8.7 211.2 2.8 0.4

GBS-15 14.7 1.16 24.15 11.92 4.60 1.59 5.68 37.17 3.1 65.0 12.4 4.3 15.3 173.2 2.0 0.5

GBS-16 17.3 1.32 24.45 10.90 5.19 1.89 6.37 39.20 3.4 62.4 13.2 4.8 16.2 170.2 2.2 0.4

Average (Gabes

transect)

- 2.55 46.64 11.22 18.69 10.31 7.13 85.32 3.8 60.3 20.2 6.7 9.1 195.0 3.9 0.3

DJB-01 0.6 0.66 18.38 6.07 1.17 0.58 2.72 23.50 2.8 78.2 5.0 2.5 11.6 837.9 3.0 0.3

DJB-02 1.7 0.41 12.18 3.22 0.30 0.46 0.77 14.12 2.9 86.3 2.1 3.3 5.4 87.1 3.8 0.3

DJB-03 2.5 0.44 11.94 3.21 0.42 0.49 0.67 13.96 3.1 85.5 3.0 3.5 4.8 161.0 3.7 0.3

DJB-04 3.5 0.48 12.29 2.99 0.46 0.37 0.77 14.36 3.3 85.6 3.2 2.6 5.3 119.8 4.1 0.2

DJB-05 4.4 0.46 13.89 3.39 0.39 0.42 0.95 16.11 2.9 86.2 2.4 2.6 5.9 158.2 4.1 0.2

DJB-06 5.1 0.75 11.95 3.22 1.17 0.35 0.90 15.12 5.0 79.0 7.7 2.3 6.0 46.2 3.7 0.3

DJB-07 6.0 0.65 13.02 2.86 0.91 0.40 0.72 15.69 4.2 83.0 5.8 2.5 4.6 220.2 4.6 0.2

DJB-08 7.1 0.51 13.66 3.19 0.58 0.42 0.86 16.03 3.2 85.3 3.6 2.6 5.3 136.3 4.3 0.2

DJB-09 8.2 0.71 16.15 4.02 1.15 0.67 1.18 19.86 3.6 81.3 5.8 3.4 5.9 268.8 4.0 0.2

DJB-10 9.1 0.69 14.81 4.89 1.38 0.44 1.26 18.58 3.7 79.7 7.4 2.4 6.8 417.0 3.0 0.3

DJB-11 10.4 1.17 14.96 4.88 2.21 0.39 1.26 19.99 5.8 74.8 11.1 2.0 6.3 231.7 3.1 0.3

DJB-12 11.1 0.95 15.91 6.25 1.56 0.39 1.24 20.05 4.7 79.4 7.8 2.0 6.2 222.5 2.5 0.4

DJB-13 12.4 0.89 15.22 5.52 2.15 0.35 0.94 19.54 4.5 77.9 11.0 1.8 4.8 185.4 2.8 0.4

DJB-14 13.1 0.82 14.57 5.94 1.76 0.42 0.70 18.26 4.5 79.8 9.6 2.3 3.8 155.7 2.5 0.4

DJB-15 13.8 0.86 15.86 9.31 2.04 0.44 0.92 20.11 4.3 78.8 10.1 2.2 4.6 244.3 1.7 0.6

Average (Djerba

transect)

- 0.70 14.32 4.60 1.18 0.44 1.06 17.69 3.9 81.4 6.4 2.5 5.8 232.8 3.4 0.3

CST-01

Gulf of Hammamet

0.0 2.42 0.60 2.80 3.01 0.45 0.03 6.51 37.2 9.2 46.2 6.9 0.5 1310.3 0.2 4.7

CST-

02

Gulf of

Gabes

0.0 2.91 4.08 6.58 4.14 0.79 0.58 12.50 23.3 32.6 33.1 6.3 4.7 300.2 0.6 1.6

CST-

03

0.0 3.31 4.73 2.23 4.52 0.78 0.21 13.55 24.4 34.9 33.4 5.8 1.6 628.9 2.1 0.5

CST-

04

0.0 2.90 3.89 1.87 5.22 0.73 0.58 13.32 21.8 29.2 39.2 5.5 4.4 57.2 2.1 0.5

CST-

05

0.0 3.28 5.34 4.40 4.23 0.58 0.11 13.54 24.2 39.5 31.3 4.3 0.8 1729.6 1.2 0.8

CST-

06

0.0 3.26 5.18 9.00 4.64 0.74 0.28 14.10 23.1 36.7 32.9 5.2 2.0 1390.9 0.6 1.7

CST-

07

0.0 3.27 4.57 2.77 4.29 0.51 0.07 12.71 25.7 35.9 33.7 4.0 0.6 3930.8 1.7 0.6

(Continued)
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(GBS-02; GBS-10; GBS-11; GBS-14 and GBS-16; DJB-01) with values higher than 10 wt.%, Porg

proportion is relatively low (Fig 8). Molar C/P ratio is relatively high (up to 3930.9) for coastal sta-

tion samples except for CST-04 with a ratio of 57.2. Molar C/P ratio for Gabes transect, Djerba

transect and waste industries samples, significantly fluctuate. Lowest C/P ratio with respectively

31.2 and 67.8 occur in samples GBS-01 and GBS-02, while highest ratio of 837.9 and 786.2 were

measured for samples DJB-01 and PG-01. However, Fe/PFe ratio is very low for the whole samples

set, except for the coastal stations CST-01, CST-02 and CST-06, it does not exceed 0.8.

Table 5. (Continued)

Phosphorus reservoir concentration [μmol P/g] Phosphorus reservoir

proportion [%]

Molar ratios

Sample number Distance from the coast

(km)

Pex PFe Fe Pauthi Pdetr Porg Ptotal Pex PFe Pauthi Pdetr Porg C/P PFe/Fe Fe/PFe

Average (Gulf of

Gabes)

- 3.16 4.63 4.48 4.51 0.69 0.31 13.29 23.8 34.8 33.9 5.2 2.4 1339.6 1.4 1.0

PG-01 0.0 36.36 15.33 3.21 5.90 0.75 0.51 58.85 61.8 26.0 10.0 1.3 0.9 786.2 4.8 0.2

Absolute (in μmol P/g) and relative content (in %) of: Exchangeable or loosely absorbed P (Pex); Fe-Bound P (PFe); Authigenic P (Pauthi); Detrital P (Pdetr) and Organic P

(Porg). Are also shown Fe concentration (μmol P/g) and molar C/P, PFe/Fe and Fe/PFe ratios.

https://doi.org/10.1371/journal.pone.0197731.t005

Fig 8. Phosphorus content and proportion in surface sediments from the Gulf of Gabes. (A) Phosphorus concentrations along the Gabes transect with the average

phosphorus reservoirs. (B) Phosphorus concentrations along the Djerba transect with the average phosphorus reservoirs. (C) Phosphorus concentrations at coastal

stations and phosphogypsum and phosphorus reservoirs of coastal stations from the Gulf of Hammamet, Gulf of Gabes and from phosphogypsum.

https://doi.org/10.1371/journal.pone.0197731.g008
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Discussion

Signs of eutrophication in the Gulf of Gabes

Eutrophication is defined by Nixon [49] as “an increase in the rate of supply of OM to an eco-

system”. Eutrophication results from a nutrient enrichment and induces an intensification of

all biological activities causing changes in the ecosystems [50]. Nitrogen and phosphorus pro-

foundly influence the marine environment and increase the algae productivity [51].

Smith [52] lists eutrophication effects and many of them have been observed along the

Gabes transect:

▪ A decrease in water column transparency is one of the most visible eutrophication effects

observed along the Gabes transect.

▪ Depletion of oxygen in the water was recorded along the Gabes transect (Table 2, Fig 2).

▪ Changes in composition of marine vascular plants. At the beginning of the 20th century,

the sea floor in Gulf of Gabes was almost entirely colonized by P. oceanica [40]. It was

estimated that 90% of this cover disappeared around 1960 [39]. No P. oceanica was docu-

mented along the Gabes transect contrary to the Djerba transect especially in its proximal

part (Fig 5). The decline of P. oceanica in the Gulf of Gabes is probably related to the

phosphate industries pollution [39, 40, 53].

▪ The decline of the coral Cladocora caspidosa in the inner part of the Gulf of Gabes during

the last 30 years [28]. Presently living C. caespitosa is found only SE of Kerkennah Islands

and NE of Djerba [54].

Another eutrophication effect observed and not mentioned by Smith [52] is the siltation of

the seafloor. It has been described for the first time in 1976, only a few years after the starting

of the production of phosphoric acid at Gabes [55]. Since the seventies, the seafloor has consid-

erably changed: at the beginning of the eighties, the water within the first three kilometres of

the waste discharge area was acidic without any algae and/or marine plants. Caulerpa prolifera
replaced P. oceanica at 3 km from the coast to offshore [19]. In 1990, Zaouali [40] noticed

severe degradation. Living algae and/or aquatic plants were totally absent at the seafloor but

remains of P. oceanica rhizome were found in surface sediments. In 2014, environmental con-

ditions deteriorated and the siltation progressed. A large part of the sediments along Gabes

transect became finer (Fig 9) and the fragments of dead rhizomes of P. oceanica disappeared

(Figs 4 and 5). In addition, the abundance of the bivalve Corbula gibba in the distal part of the

Gabes transectis indicative of siltation and points toward a polluted environment. In fact,

increased abundances of C. gibba have been reported from environments with high OM accu-

mulation, low oxygen and high turbidity [56].

Evidences of heavy contamination adjacent to the industrial waste discharge

Heavy metals contamination by phosphate industries in the Gulf of Gabes is demonstrated

since several decades (e.g. [57, 58]). Recent studies document a strong zinc contamination [26,

27, 53] here confirmed by the presence of sphalerite mineral in surface sediments (Table 3, Fig

2). Our XRD data set confirm and give supplementary evidence of heavy metal contamination.

A large amount of gypsum, having the same mineralogical composition of PG [15, 16]

(Table 3, Fig 2) is observed in the proximal part of the Gabes transect. Several studies have

shown the heavy metals content [12, 13, 17, 22] and the radioactive properties of PG [12, 16,

59]. In Gabes, PG represents an additional risk of large-scale contamination because is highly

Impact of industrial phosphate waste discharge in the Gulf of Gabes (Tunisia)

PLOS ONE | https://doi.org/10.1371/journal.pone.0197731 May 17, 2018 19 / 30

https://doi.org/10.1371/journal.pone.0197731


soluble in seawater [60] and can liberate different pollutant compounds into the environment,

which are transported by marine currents.

Low seawater pH near the waste discharge (Table 2, Figs 2 and 3) is an additional sign of

heavy pollution. Normal marine surface seawater pH is around 8.2 [61], below this value it can

have a major impact on the environment, especially on calcifying organisms [62]. Our study

shows a direct impact of the acid discharge on the sedimentary facies with formation of car-

bonate nodules (Figs 5 and 6). At high pH the dominant carbon species is CO3
2- inducing the

formation of carbonate minerals [63, 64]. The increase in pH at the proximal section of the

Gabes transect may be responsible for carbonate needles precipitation and formation of car-

bonate nodules, starting from a nucleation point consisting of bioclasts. Nodules are highly

micritic (Fig 6). The micritization process is the alteration of carbonate grains by boring algae

filling the borings/holes with micritic material [65, 66]. However, the micritization processes

can be also the result of bacteria [67]. This hypothesis seems to be confirmed by the low atomic

C/P ratio typical of microbial activity (Table 5) at the proximal part of the Gabes transect (e.g.

[30, 68]). The dolomitic nodule (Fig 6) could be an additional evidence of microbial activity at

the proximal section of Gabes transect. Dolomite formation can occur under different condi-

tions including within microbial mats [69] as bacteria can participate to primary dolomite for-

mation. Modern examples are in shallow and/or intertidals such as Lagoa Vermelha (Brazil)

[70] or in coastal sabkhas, e.g., of Abu Dhabi [71]. However, the interpretation of the genesis

of the nodules is not straightforward: the atomic C/P ratio may not necessarily reflect micro-

bial activity because of the strong influence of industrial waste discharge along the proximal

section of Gabes transect. In addition, the sugar-like crystalline structure of the dolomite nod-

ule (Fig 6) may also imply a primary chemical precipitation or a secondary replacement [70].

Laminated structures resulting from microbial mats are generally present in modern dolomite

[70, 71]. The dolomitic nodule (Fig 6) may be a fragment discharged by the phosphate indus-

tries via the canal discharging the industrial waste. Dolomites from Lower Cretaceous outcrops

are found in Tunisia [72] around the Gafsa basin close to the mining site [73, 74].

Organic matter: Origin and pollution indicator

As food for benthic organism, the contribution and the source of the marine OM may be a key

factor for biodiversity (e.g. [75]). Organic matter can also indicate an eutrophication process

in marine environment due to anthropogenic activities [49]. Variations of OM input into the

environment may change many chemical, physical and biological processes and have a direct

impact on the fauna [76].

High OM along the Gabes transect may be a sign of eutrophication. However, since sedi-

mentary OM is strongly influenced by particle size [77] the preservation of OM at Gabes may

be linked to fine sediments (Fig 9). The mineralogical composition of sediments plays also a

role in OM preservation. High specific surface of clay minerals allow a better adsorption of

OM [78]. We detected kaolinite along the Gabes transect (Table 3) and Ben Amor et al. [79]

documented high clay mineral contents in the inner part of the Gulf. Higher matrix effect

would confirm a higher proportion of clay mineral in Gabes than in the other stations. Clay

minerals in the sediments are generally responsible for matrix effect [42, 44], however, other

minerals like gypsum can induce a matrix effect even in small quantity (e.g., 10 wt.%) [80].

The presence of PG along the Gabes transect (Table 3, Fig 2) has probably induced matrix

effects due to the similar mineralogy properties as gypsum [15, 16].

A large part of OM documented in the proximal part of the Gabes transect belongs to the

industrial waste discharge. Indeed, dark industrial sludge rich in OM (Table 4) was observed

around the waste discharge area (waste discharge canal, seafloor of GBS-02 and GBS-03

Impact of industrial phosphate waste discharge in the Gulf of Gabes (Tunisia)

PLOS ONE | https://doi.org/10.1371/journal.pone.0197731 May 17, 2018 20 / 30

https://doi.org/10.1371/journal.pone.0197731


stations). This OM is directly related to phosphorite ore used for the phosphate treatment.

Belayouni and Trichet [6] showed that the phosphorites from the Gafsa basin are relatively rich

in OM [7]. During the pre-treatment, the phosphorite ore is enriched in phosphorus by several

crushing and sieving steps [81]. During phosphoric acid production, all impurities (e.g., OM,

heavy metals, non-dissolved minerals) are concentrated into industrial sludge and discharged

into the waste canal and carried by the current to reach the seafloor at station GBS-02.

Hydrogen Index vs. Oxygen Index is generally used to determine the kerogen type and the

origin of sedimentary OM, however, high OI represent a serious limitation in identifying OM

origin. High OI values (Table 4) can be related to a very low TOC, which induce an adsorption

of CO2 [82]. In addition, high carbonate contents in sediments (Table 3) increase significantly

the OI due to the carbonate dissociation during the heating process of the Rock-Eval analysis

[45]. Therefore, S2 vs. TOC and HI vs. T˚max diagrams are used to interpret and to determine

the OM origin in the Gulf of Gabes. Both graphs (Fig 7) indicate type II kerogen (mixed

marine and terrestrial origin) and reflect the complexity of the different OM source along

coastal environment.

Fig 9. Grain size distribution. (A) Gabes transect. (B) Djerba transect. (C) Coastal stations.

https://doi.org/10.1371/journal.pone.0197731.g009
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Terrestrial sedimentary OM contribution can be possibly due to the proximity of the Gabes

oasis and/or be related to the numerous wadis present along the Gulf of Gabes. However, P.

oceanica which is abundant in Djerba (Figs 4 and 5) share common characteristics with land

plants, e.g., it possesses cuticles and contains a high amount of cellulose [82, 83] and therefore,

it may give the same kerogen signature as terrestrial OM (Fig 7). Marine OM origin is mainly

due to zoo- and phytoplankton, which may also contribute to the turbidity of seawater. The

large amount of OM contained in the industry waste near the industrial complex of Gabes can

bias the interpretation of OM origin. Several studies [6, 7, 84] indicate a marine origin of the

OM from the Gafsa phosphorites.

The estimation of the different marine vs. terrestrial contributions in OM is not possible

with Rock-Eval. Additional information is derived from stable carbon isotope composition

of OM. These analyses indicate three clusters with different OM origin: Cist1, Cist2 and Cist3

(Fig 7).

Cluster Cist1 is characterized by depleted δ13C values close to -25‰ and it groups samples

from the area of industrial discharge (sediments and industrial waste) (Fig 7). The coupling

δ13COM and molar C/N ratio clearly shows the influence and the contribution of the waste dis-

charge in the Gulf of Gabes, especially around the industrial waste discharge area (Table 4, Fig

7). In particular, the isotopic signature of OM from the industrial waste (around -25‰) corre-

sponds to the isotopic composition of OM from the phosphorite from the Gafsa basin

(-26.5‰ to -24‰) [11]. Depleted δ13COM in the past is common, for example, marine OM

from Cretaceous rocks has typical values of -28‰ to -27‰, while modern marine sediments

have values around -22‰ [85]. Other studies also indicate a worldwide depletion of δ13C from

the Palaeocene to the Eocene [86, 87].

Depleted OM δ13C can be also caused by diagenesis. Freudenthal et al. [88] refer to two pro-

cesses at the origin of changes in its isotopic composition. These include the preferential degra-

dation of organic compound, which may cause a negative shift of δ13C and the fractionation of

stable carbon isotopes by organisms (e.g., bacteria), which degrades OM in the sediment. The

very high molar C/N ratio for the industrial waste (Table 4) suggests loss in nitrogen during

diagenesis (e.g., [89, 90]). Total nitrogen is not obviously related to the OM but can be cap-

tured by the crystal lattice of minerals present in the sedimentary rock [91]. The mineralized

nitrogen is dissolved during the phosphorite treatment and not retained in the industrial

waste, inducing a high C/N ratio. However, mineralized nitrogen seems low in phosporite

from Gafsa because Belayouni et al. [7] noticed a high molar C/N ratio (from 25.1 to 90.5) in

the humic compound.

Cluster Cist2 is characterized by intermediate δ13COM values between -23‰ and -18.5‰

(Fig 7). This δ13C signature corresponds to marine phytoplankton OM [92, 93]. Generally,

molar C/N ratio for plankton is between 7 and 9 [94, 95], thus it is lower than the C/N ratio

measured in this cluster. Therefore, a probable OM contribution from the waste discharge in

the distal area of Gabes transect and coastal stations cannot be excluded. The marine phyto-

plankton δ13C signature may reflect a phosphorus contamination in the Gulf of Gabes. Phos-

phorus contained in PG is release directly into seawater. As a nutrient, phosphorus is a

limiting factor to the primary producers [96–98] and increases phytoplankton production.

Indeed, 176 phytoplankton blooms were recorded between 1995 and 2005 and represent high

frequency events [99].

Cluster Cist3: Enriched δ13COM values (>-18.5‰) are typical for C4 land plant [95, 100]

and Rock-Eval data suggest an OM terrestrial source (Fig 7). However, the low C/N ratio in

sediments does not correspond to terrestrial OM and higher plant (>12 for [94] and between

20 and 500 for [95]). The abundance of P. oceanica meadows along the Djerba transect (Figs 4

and 5) and along coastal station is a possible OM source. Stable carbon isotope composition of
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P. oceanica ranges from -19.7‰ to -10.8‰ [101–104], which corresponds to the values mea-

sured for this cluster (Table 4, Fig 7). However, molar C/N ratio of P. oceanica (27.4 in [102])

is considerably higher than the ratios of this cluster. Garcias-Bonet et al. [105] detected the

presence of nitrogen-fixing symbiotic bacteria in P. oceanica roots, which could decrease the

molar C/N ratio.

Stable carbon isotope composition of sedimentary OM matter reflects three impacted areas

by phosphate industries with different pollution levels delimited by the three clusters Cist1,

Cist2 and Cist3.

Phosphorus in the Gulf of Gabes: A pollutant and its implication in the

phosphorus cycle

The distribution of total phosphorus concentrations shows a similar area of pollution level

delimited by δ13C clusters (Fig 3). However, increases in Ptotal concentrations from the coast to

the open sea along the Djerba transect (Table 5, Fig 8) indicate a much larger-scale phosphorus

contamination. Previous studies indicated heavy metals contamination from Gabes to the

southwestern coast of its Gulf [26] and in the Boughrara lagoon [106]. Marine currents are

responsible for the heavy metal dispersion [26, 106, 107] as well as for the phosphorus disper-

sion from Gabes to the offshore of Eastern Djerba coast.

The large amount of PG discharged into the seawater has negative impact on the phospho-

rus cycle. Indeed part of the phosphorus released by PG precipitates into autigenic phosphorus

(Pauthi) along the Gabes transect. High concentration and proportion of Pex in PG represent

the residual phosphorus from the phosphorite treatment by sulphuric acid. Phosphorite is

mostly composed by authigenic apatite (pellets and coprolites) and biogenic apatite (sharks

and rays fossil teeth) [9, 11], represented by Pauth, and it is dissolved during the industrial treat-

ment. Even PFe from phosphorite is dissolved because PFe is easily reducible [29] and ferric

oxides are soluble in sulphuric acid (e.g. [108]). Detrital apatite (Pdetr) seems relatively resistant

to the industrial treatment because high concentration of Pdetr is noticed around the industrial

waste discharge (Table 5, Fig 8). An accumulation of detrital apatite released by PG occurs by

gravitational segregation due to the higher specific gravity of apatite compared with other min-

erals (e.g. quartz, calcite, aragonite, gypsum) [109]. Residual phosphorus in solution from the

industrial treatment is adsorbed by PG and released in seawater because of high PG solubility

in seawater (around 4.1 g/l) [17] and high magnesium and chloride concentration in seawater.

These two abundant elements allow bringing Pex in solution by formation of MgPO4
- or by

mass action displacement [29]. Even if high sedimentary Pauthi concentration along the Gabes

transect (Fig 8) could be linked to an accumulation effect from PG discharge, an in-situ authi-

genic phosphorus precipitation at the sediment-seawater interface cannot be excluded [110].

Authigenic apatite precipitation requires fluorine, calcium, magnesium, and sulphate from

seawater and high phosphorus concentration in pore waters. Phosphorus is normally released

in pore waters by microbial degradation of OM from the sediment. Pore waters saturated in

Fe2+, PO4
3- and F- provide the conditions suitable for authigenic apatite precipitation [34].

However, Tunisian PG contains phosphorus (1.69 wt.%), fluorine (0.55 wt.%) and iron (0.03

wt.%) [15] that can be released into the seawater through their solubility and allow further

authigenic apatite precipitation.

Ferric oxyhydroxide minerals in sediments have the property to adsorb phosphorus,

increase its concentration in the sediment and promote formation of Pauthi [34] along the

Gabes transect. Although, PFe concentration is significantly higher along the Gabesthan Djerba

transects (Fig 8), the PFe/Fe ratio is similar (Table 5) and may indicate similar ferric oxyhydr-

oxide iron mineral phases between the two transects. Molar Fe/P ratios in this study are
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extremely low (Table 5) compared to other localities, such as the Labrador Sea (between 20

and 26 in [111]) or the Iberian margin (between 6 and 25 in [112]). Van der Zee et al. [112]

suggest that low molar Fe/P ratio is the result of high phosphorus adsorption of poorly cry-

stalline ferric oxyhydroxide mineral phases having a larger surface capacity and higher ads-

orption capacity [113]. In addition, high PFe concentration in the Gulf of Gabes compared to

the Labrador Sea and the Iberian margin [111, 112] reflect a well-oxygenated environment,

which increase significantly phosphorus adsorption on ferric oxyhydroxide minerals [112,

114, 115].

Phosphorus reservoirs proportion along the coastal stations might reflect the phosphorus

reservoirs composition of the bedrock due to important coastal erosion along Tunisian coasts

[116]. The large difference in phosphorus reservoir proportion between the Gulf of Hamma-

met and the Gulf of Gabes (Table 5, Fig 8) can be related to the age of the rock substratum.

The southern part of the Gulf of Hammamet have mainly a Miocene-Pliocene substratum

while the Gulf of Gabes and the Djerba Island the substratum is composed by Quaternary

rocks [73, 74]. However, formation of modern authigenic phosphorus cannot be excluded due

to the large contribution of Pex and Pauth (Fig 8). Sheldon [117] have previously suggested for-

mation of authigenic phosphorus at the water-sediment interface in coastal environments.

Autigenic apatite precipitation on coastal environment could be related to the high concentra-

tion and high proportion of Pex in sediments (Fig 8). Al-Enezi et al. [118] showed a positive

correlation between the quartz and the phosphorus adsorption, however other factors such

as pH and salinity may also influence phosphorus adsorption in sediments [118–120]. Authi-

genic apatite precipitation can be influenced by parameters such as temperature, pH and

adsorbed Mg2+ ions [121]. Significant variations in seawater temperature and salinity occur-

ring between winter and summer in the Gulf of Gabes [53, 122, 123] could induce autigenic

precipitation.

Conclusions

This study presents the impact of phosphate treatment waste discharge into the marine envi-

ronment in Tunisia. Different impacted areas are identified mostly based on the δ13C signature

of sedimentary OM and on the Ptotal concentration as follows:

1. The area close to the phosphate industry complex is severely impacted by the industrial

waste discharge and the environmental condition can be considered as critical.

2. The Gabes off shore is also strongly impacted by the phosphate industries.

3. The first signs of phosphorous contamination by industrial waste discharge are observed in

Djerba.

The high volume of industrial waste discharge has serious consequences on the marine

environment in the inner part of the Gulf of Gabes: OM and detrital apatite accumulation,

acidic seawater with formation of carbonate nodules and severe eutrophication of marine envi-

ronment. The large PG discharge impacts also the phosphorus cycle with a high authigenic

phosphorus precipitation especially in the Gulf of Gabes.
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naturel d’Oum El Khecheb (Gafsa, Tunisie). Revue science des matériaux, Laboratoire LARHYSS.

2015; 6: 11–29.

82. Nuňez-Betelu L, Baceta JI. Basics and Application of Rock-Eval/TOC Pyrolysis: an example from the

uppermost Paleocene/lowermost Eocene In The Basque Basin, Western Pyrenees. MUNIBE (Cien-

cias Naturales—Natur Zientziak). 1994; 46: 43–62.

83. Khiari R, Mhenni MF, Belgacem MN, Mauret E. Chemical composition and pulping of date palm rachis

and Posidonia oceanica–A comparison with other wood and non-wood fibre sources. Bioresource

Technology. 2010; 101: 775–780. https://doi.org/10.1016/j.biortech.2009.08.079 PMID: 19766481

84. Ben Hassen A, Trichet J, Disnar JR, Belyaouni H. Données nouvelles sur le contenu organique des
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