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Abstract

Social networks are getting closer to our real physical world. People share the exact location

and time of their check-ins and are influenced by their friends. Modeling the spatio-temporal

behavior of users in social networks is of great importance for predicting the future behavior

of users, controlling the users’ movements, and finding the latent influence network. It is

observed that users have periodic patterns in their movements. Also, they are influenced by

the locations that their close friends recently visited. Leveraging these two observations, we

propose a probabilistic model based on a doubly stochastic point process with a periodic-

decaying kernel for the time of check-ins and a time-varying multinomial distribution for the

location of check-ins of users in the location-based social networks. We learn the model

parameters by using an efficient EM algorithm, which distributes over the users, and has a

linear time complexity. Experiments on synthetic and real data gathered from Foursquare

show that the proposed inference algorithm learns the parameters efficiently and our

method models the real data better than other alternatives.

Introduction

The advances in location-acquisition techniques and the proliferation of mobile devices have

generated an enormous amount of spatial and temporal data of users activities [1]. People can

upload a geotagged video, photo or text to social networks like Facebook and Twitter, share

their present location on Foursquare or share their travel route using GPS trajectories to Geo-

Life [2]. A considerable amount of spatio-temporal data is generated by the activity of users in

location-based social networks (LBSN). In a typical LBSN, like Foursquare, users share the

time and geolocation of their check-ins, comment about a venue, or unlock badges by explor-

ing new venues. These data motivated the researchers to study the human spatio-temporal

behavior in social networks [3, 4].

Many techniques have been proposed for processing, managing, and mining the trajectory

data in the past decade [5]. Several other studies try to leverage the spatial data in recom-

mender systems [6]. However, a few works have attempted to model the recurrent spatio-tem-

poral behavior of users in LBSNs [7, 8]. Given the history of users’ check-ins, the goal is to

predict the time and location of users’ check-ins utilizing a model. This model can also be used

to find the influence network between users which made up of their check-ins, detect the
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influential users and popular locations, predict the peak hours of a restaurant, recommend a

location, and even control the movement of users.

In this paper, we propose a probabilistic generative model for the check-ins of users in loca-

tion-based social networks, which can be used in predicting the future check-ins of the users,

and discovering the latent influence network. People usually have periodic patterns in their

movements [8–10]. For example, a typical user may check into her office in the morning and

to a nearby restaurant at noon then return home and repeat this behavior in the following

days. We model the time of check-ins of each user with a novel periodic-decaying doubly sto-

chastic point process which leverages the periodicity in the movements of users and can also

capture any drift in their patterns. To model the location of check-ins we use the fact that users

in social media are influenced by the activities of their friends [11–13]. If many of your close

friends have checked into a specific restaurant recently, then there is a high probability that

you select that restaurant, next time. We model the location of check-ins using a time-varying

multinomial distribution. In summary, we propose:

• Doubly stochastic point process for modeling the time of users’ check-ins, which captures

the periodic behavior in the movement of users.

• Time-varying multinomial distribution for modeling the location of users’ check-ins, which

incorporates the mutually-exciting effect of the friends’ history.

• Scalable inference algorithm based on the EM algorithm to find the model parameters,

which is distributed over users, and has a linear time complexity.

• Compelling dataset of Foursquare users’ check-ins, curated from 12000 active users during

three months in the year 2015.

Our work relates to previous work on temporal point processes, and location-based social

networks analysis.

Modeling information diffusion in social networks has attracted a lot of attentions in recent

years. Given the times that users have adopted to a contagion (information, behavior, or

meme), the problem is to model the time and user of the next adoption, i.e., predict the next

event. Early methods [14, 15] studied information diffusion using a pair-wise probability dis-

tribution for each link from node j to i, which is the probability that node i generates an event

in time ti due to the event of node j at time tj. These methods overlook the external effects on

the generation of events. In addition, they assume that each node adopts a contagion at most

once, i.e., events are not recurrent. These issues were later addressed in [7, 16–20], which they

use point processes for the modeling of events. In [15–17, 19], cascades are assumed to be

independent and are modeled by a special point process, called Hawkes [21]. The indepen-

dence assumption is removed in [11, 22], they tried to model the correlation between multiple

competing or cooperating cascades. In [7] a spatio-temporal model is proposed for the interac-

tions between a pair of users not an individual user as in our model. Other studies [17, 23–26],

use the additional information of the diffusion network such as topic of tweets or the commu-

nity structure to better model the influence network. Moreover, in [27, 28], a stochastic opti-

mal control framework is proposed to control the diffusion process in complex networks.

Recently, the recurrent neural networks (RNN) are utilized to learn the intensity function of a

temporal point process as a nonlinear function of the history and solve the resulting nonlinear

optimization by a stochastic gradient algorithm [29, 30]. Most of the previous works studied

the temporal diffusion of information on microblogging networks like Twitter, whereas we try

to model the time and location of users’ check-ins in the location-based networks like Four-

square. Moreover we proposed a periodic point process which is of independent importance,
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whereas in the previous studies the self-exciting point processes is used for the modeling of

events.

The prior works in location-based social networks can be categorized into three groups [6]:

location recommendation, trajectory mining and location prediction. The main approaches in

location recommendation systems are: content-based which uses data from a user’s profile and

the features of locations [31, 32]; link-based, which applies link analysis models like PageRank

to identify the experienced users and interesting locations [33, 34]; and collaborative filtering

which infers users’ preferences from their historical behavior, like the location history [35, 36].

In trajectory data mining, the source of data is usually generated by the GPS. These works

include; trajectory pattern mining to find the next location of an individual [8, 37–39], anom-

aly detection to detect unexpected movement patterns [40, 41], and trajectory classification to

differentiate between trajectories of different states, such as motions, transportation modes,

and human activities [42]. A comprehensive review of these methods can be found in the

recent survey [5]. We also discriminate our work from location recommendation and trajec-

tory mining methods, because our goal is to model the check-ins of users not to recommend a

location or to find the trajectory patterns of users with the position data of their routes. In loca-

tion prediction, the goal is to predict the next location, given the user’s profile data and the his-

tory of check-ins. But these methods do not consider; the relation between friends (using the

influence matrix), aging effect in the history of checkins (using decaying kernel), exogenous

effects on users’ decisions, and periodicity in users’ movement patterns.

Materials and methods

Preliminaries

To model the time of occurrences of a phenomenon, which are called events, we can use point

processes on the real line. The phenomena can be, an earthquake [43], a viral disease [44] or

the spread of information over a network [15]. The sequence of events, as defined below, is the

realization of a point process.

Definition 1 (Point Process). Let ftigi2N be a sequence of non-negative random variables such
that 8i 2 N; ti < tiþ1, then we call ftigi2N a point process on R, and F t ¼ fti j i 2 N; ti < tg as
its history or filtration.

There are different equivalent descriptions for the point processes such as; sequence of

points {ti}, sequence of intervals (duration process) δti, counting process N(t), or intensity pro-

cess λ(t) [45]. In the following, we briefly explain each definition.

The counting process N(t) associated with the point process ftigi2N, counts the number of

events occurred before time t, i.e., NðtÞ ¼
P

i2NIðti < tÞ, where indicator function Iðx 2 AÞ is

1 if x 2 A, and is 0 otherwise. The duration process δti associated with the point process ftigi2N
is defined as 8i 2 N; dti ¼ ti � ti� 1. Finally, the intensity process λ(t) is defined as the expected

number of events per units of time, which generally depends on the history:

lðtjF tÞ ¼ lim
dt!0

1

dt
E½Nðt; t þ dt� jF t�

¼ lim
dt!0

1

dt
Pr½Nðt; t þ dt� > 0 jmathboxF t�

where N(t, s] :¼ N(s) − N(t). To evaluate the likelihood of a sequence of events, f(t1, t2, . . ., tn),

we can use the chain rule of probability, f(t1, t2, � � �, tn) = ∏i f(ti|t1:i−1). Therefore, it suffice to

describe only the conditionals, which are abbreviated to f�(t). According to the definition of
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point processes, we can write the probability of occurring the (n + 1)’th event in time t as:

f �ðtÞ dt ¼ PrfNðtn; t� ¼ 0;Nðt; t þ dt� ¼ 1 j t1:ng:

If we divide both sides of the above equation by 1 − F�(t), where F�(�) is the cdf of f�(�), then in

the limit as dt! 0, we have:

f �ðtÞ dt
1 � F�ðtÞ

¼
PrfNðtn; t� ¼ 0;Nðt; t þ dt� ¼ 1 j t1:ng

PrfNðtn; t� ¼ 0 j t1:ng

¼ PrfNðt; t þ dt� ¼ 1 j t1:n;Nðtn; t� ¼ 0g

¼ PrfNðt; t þ dt� > 0 jF tg

Therefore, according to the definition of intensity, we find the relation between conditional

distribution of the time of events and the intensity function as:

l
�
ðtÞ ¼

f �ðtÞ
1 � F�ðtÞ

ð1Þ

where we use � superscript to show that a function is dependent on the history. We can also

express the relation of λ�(t) and f�(t) in the reverse direction [46]:

f �ðtÞ ¼ l
�
ðtÞ exp �

Z t

tn

l
�
ðsÞds

� �

ð2Þ

Now, the cdf can be easily evaluated:

F�ðtÞ ¼ 1 � exp �

Z t

tn

l
�
ðsÞds

� �

: ð3Þ

A point process is usually defined by specifying its conditional distribution f�(t) or equivalently

its intensity λ�(t). In the simplest case, the intervals δti are assumed to be i.i.d., therefore the

process is memoryless, and hence λ�(t) = λ(t). The Cox process [47] is a doubly stochastic

point processes, and conditioned on the intensity is a Poisson process [48]. Hawkes process

[21] is a special type of Cox process, where the intensity is expressed by the history as:

l
�
ðtÞ ¼ mþ

Z t

� 1

�ðt � tÞ dNðtÞ ¼ mþ
XjF t j

i¼1

�ðt � tiÞ ð4Þ

where ϕ(t) is the kernel of the Hawkes process that defines the effect of past events on the cur-

rent intensity, and μ is the base intensity. For example, the exponential kernel ϕ(t) = exp(−t), is

used for the modeling of self-exciting events like earthquake [43]. In general, we have a multi-

variate process with a counting process vector N(t) = [N1(t), � � �, Nn(t)]T and an associated

intensity vector λ�ðtÞ ¼ ½l�
1
ðtÞ; � � � ; l�nðtÞ�

T
defined as:

λ�ðtÞ ¼ μ þ A
Z t

� 1

Fðt � tÞ dNðtÞ ð5Þ

where F(t) is the matrix of mutual kernels, i.e., Fij(t) models the effect of events of counting

process Nj(t) on Ni(t), μ = [μ1, � � �, μn]T is the base intensity, and A = [αij] is a matrix of mutual-

excitation kernels. Often, the point process carries other information than the time of events,

which is called mark. For example, the strength of an earthquake can be considered as a mark.

The mark m, often a subset of N or R, is associated with each event through the conditional

Recurrent spatio-temporal modeling of check-ins in location-based social networks
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mark probability function f�(m|t):

l
�
ðt;mÞ ¼ l

�
ðtÞ f �ðmjtÞ ð6Þ

The mutually-exciting property of the Hawkes process makes it a common modeling tool in a

variety of applications such as seismology, neurophysiology, epidemiology, reliability, and

social network analysis [14, 15, 22].

Problem definition

Given the history of users activity in a location based social network, G ¼ ðV; EÞ, with jVj ¼ N
users and L locations in C different categories, we propose a generative model for the check-

ins of users. In other words, for each user we can predict the location and time of her next

check-in.

We define a check-in as a 4-tuple (t, u, c, l), which shows the time t that user u check-in to

location l with category c. We observe the sequence of all check-ins in the network G, in the

time interval [0, T]. The observation D ¼ fðti; ui; ci; liÞg
K
i¼1

, is composed of user’s check-ins

where ti 2 [0, T], ui 2 V, ci 2 {1, 2, . . ., C} and li 2 {ϕ1, ϕ2, . . ., ϕL}, where ϕi is the unique id of

the i’th location. Since we use location ids instead of geo-coordinates, it is fair to assume the

observation data is noiseless, however in practice, there may be an uncertainty in the locations

of check-ins, which we are considering it as a future work. We use the following notation for

the history of check-ins of user u in location l with category c up to time t:

DuclðtÞ ¼ fðti; ui; ci; liÞ 2 D j ti < t; ui ¼ u; ci ¼ c; li ¼ �lg

Moreover, we use the dot notation to represent the union over the dotted variable, e.g., Du��ðtÞ
represents the events of user u, before time t, in any location with any category, and D�uc�ðtÞ
represents the events of all users except u, before the time t, in any location with category c.

By observing the periodic pattern in the time of users’ checkins (see the Results section) we

model the time of check-ins using a doubly stochastic point process which incorporates both

the periodic patterns and exogenous effects, in the users’ movements. The exogenous effects

are any other external effects on the users’ time of check-ins which are not necessarily periodic.

To model the location of check-ins we propose a time-dependent multinomial distribution

which incorporates the mutually-exciting effect of friends, which this effect is also empirically

observed in the real data.

Proposed method

modeling the time of check-ins. In every working day, a user may check-in to her office

in the morning then go to a restaurant at noon, and also have a weekly soccer practice pro-

gram. By observing the history of the time of check-ins of a user, if she repeats some patterns

recently (within several days), for example take a walk every afternoon, then it is more likely to

repeat this pattern shortly in the upcoming days at approximately the same time. It means,

there is a periodicity in the users’ behaviors. Moreover, there maybe also a drift or an addition

of a new activity in the user’s behavior, for example, the working hour of her office may change

or there may be a new weekly social gathering. Therefore, we need a periodic point process to

model the time of user’s check-ins, which can also adapt to the new users’ check-ins. This is in

contrast to the self-exciting nature of the Hawkes process, which is used to model the diffusion

of information over a network [14, 15, 17].

We propose a doubly stochastic point process which is periodic, and also has a diminishing

property that enables the process to change its periodic pattern and adapt to the new behaviors.

The proposed process, is composed of a Poisson process with the base intensity μ, where each
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event ti of this process triggers a Poisson process with the following intensity:

lti
ðtÞ ¼

X1

k¼1

hðt � ti � ktÞ gðkÞ ð7Þ

where h(t) is the kernel of the process, g(k) is a decreasing function to diminish the intensity

in the future periods, and the hyper-parameter τ is the period. This intensity is illustrated in

Fig 1. The self-exciting property of the Hawkes process can be observed from its exponentially

decaying kernel in Fig 1. In the Hawkes process when an event occurs, there is a high probabil-

ity to have events just after it, and this probability decreases exponentially afterward. But in the

proposed process, there is a high probability to have events in the upcoming periods and this

probability also decreases exponentially.

According to the superposition theorem [48], the intensity of the proposed process can be

written as follows:

l
�
ðtÞ ¼ mþ

XjF t j

i¼1

lti
ðtÞ ¼ mþ

XjF t j

i¼1

X1

k¼1

hðt � ti � ktÞ gðkÞ ð8Þ

To preserve the locality in time, the kernel h(t) should have a peak at t = 0 and decay to zero in

both sides when t! ±1. For example, the Gaussian kernel, h(t) = exp(−t2/2σ2) meets this

requirements. This model has three main features:

1. Periodic Nature. When an event occurs in time s, then the intensity of events around this

time in the upcoming periods, s + kτ, would increase.

2. Temporal Locality. The intensity is high around the peak of the kernel and drops rapidly in

both sides.

3. Adaptability. The peak of the kernel decreases by the increase of k, so the process can adopt

its intensity to any new periodic patterns.

4. Exogenous Effect. Other external effects can be modeled by the base intensity μ.

If we use a truncated Gaussian kernel like hðtÞ ¼ exp ð� t2=2s2Þ Ið� t=2 � t � t=2Þ, then

we can substantially reduce the complexity of the intensity function. With this kernel we can

Fig 1. Periodic point process. An event at time t = 0 triggers a poisson process. The solid curve shows the intensity of

the proposed periodic point process with a Gaussian kernel and period τ, and the dashed curve shows a Hawkes

process with an exponential decaying kernel.

https://doi.org/10.1371/journal.pone.0197683.g001
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show that:

l
�
ðtÞ ¼ mþ

XjF t j

i¼1

hðt � ti � kitÞ gðkiÞ ð9Þ

where ki ¼ b
t� ti

t
c is the period number of which the event in ti affects on the current intensity.

So, we propose the following point process for the time of check-ins of user u in any location

with category c:

luðt; cÞ ¼ muc þ
XjDuc�ðtÞj

i¼1

bu exp �
ðt � ti � kitÞ

2

2s2

� �

exp ð� kiÞ ð10Þ

The first term, μuc is the base intensity that models the external effect on user u to generates

check-ins with category c, the second term is the periodic effect of the history, βu is the kernel

parameter, and τ, σ are hyper-parameters. All parameters of the model are listed in Table 1.

The intuition of this model is that, if a user check-ins frequently, for example in the “restau-

rant” category at noon, then with high probability, she will checks in a restaurant at noon in

the next day.

modeling the location of check-ins. In this section, we propose a model for the location

of users’ check-ins, given the history of check-ins. We use the fact that, users in social networks

are influenced by the behavior of their neighbors. Let denote the weight of location l with cate-

gory c for user u as:

wucl ¼
XjD�clðtÞj

i¼1

auiu
exp ð� ðt � tiÞÞ ð11Þ

which incorporates αuiu, the influence of user ui on u, and the time of check-ins with an expo-

nentially decaying kernel. This kernel diminishes the effect of far past check-ins, so the model

can adopt to any new behaviors of the users’ check-ins. Therefore, a location which checked in

recently with many or even few but influential friends would have high weight. We also define

a weight for the popularity of a location l with category c from the perspective of all users:

mcl ¼
XjD�clðtÞj

i¼1

exp ð� ðt � tiÞÞ ð12Þ

where the location that is most checked in recently, has the highest weight.

When a user decides to check-in for example, at a restaurant, she selects a location that her-

self or her friends have checked in frequently, recently (exploitation effect), and sometimes she

check-ins to a new popular restaurant (exploration effect). Therefore, we use the following

multinomial conditional distribution to define the probability that user u check-ins to location

Table 1. Parameters of the model.

Parameter Description

βu Temporal kernel parameter of user u
μuc Base temporal intensity of user u in category c
αvu The influence of users v on u
ηuc Tendency of user u to explores new locations with category c

https://doi.org/10.1371/journal.pone.0197683.t001
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ℓ, given the time t and category c:

fuð‘jc; tÞ ¼
XL

l¼1

wucl

Zuc þ wuc�
d�lð‘Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
exploitation

þ
Zuc

Zuc þ wuc�
G0ð‘Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
exploration

ð13Þ

The Dirac delta function δϕl(ℓ) is 1 if ϕl = ℓ, otherwise it is 0, and the parameter ηuc models the

inclination of the user to explores new locations. This distribution means that, with probability

wucl/(ηuc + wuc�) the current location would be a previously checked in location ϕl by the user u
or any of her friends (since for non visited locations the weight wucl is zero), and with probabil-

ity ηuc/(ηuc + wuc�) it would be selected from all locations in the network, with a probability

that is modeled by the following distribution:

G0ð‘Þ ¼
XL

l¼1

mcl

mc�
d�lð‘Þ ð14Þ

Where according to the definition of coefficient mcl, it assigns more probability to the popular

or recently frequently visited locations. The main features of the proposed location model are:

1. Exploitation. The future check-ins of a user are influenced by the history of check-ins of the

user and her friends.

2. Exploration. There is a probability that users explore and check into new unseen locations.

3. Adaptability. Using exponential decaying kernel for the weights, the model can adopt to

new patterns in users’ behavior.

4. Influence Network. The parameters {αvu} are actually modeling the latent influence network

which are learned from the check-ins history.

summary of the generative model. The proposed generative model is summarized in

Alg. 1. Using the superposition theorem, first the time t of check-in is sampled from the pro-

posed periodic point process λ(t) = ∑u,c λu(t, c), then the user u which generated this event is

selected in proportion to its intensity λu(t). The category c of the check-in is also selected in

proportion to λu(t, c). Finally, the location l is sampled from the proposed location model.

Algorithm 1: Generative model of the check-ins.

Input: N, C, L, all parameters {μuc, ηuc, αuv, βu}, history of check-ins.
Output: Next check-in (ti, ui, ci, li).
for u = 1 : N do
λu(t) = ∑c λu(t, c)

end
λ(t) = ∑u λu(t)
ti � PPðlðtÞÞ

ui � Multi l1ðtiÞ
lðtiÞ

; . . . ;
lN ðtiÞ
lðtiÞ

� �

ci � Multi
lui ðti ;1Þ
lui ðtiÞ

; . . . ;
lui ðti ;CÞ
lui ðtiÞ

� �

li * fui(ℓ|ci, ti)
return (ti, ui, ci, li)

inference. We propose a Bayesian inference algorithm based on the EM algorithm to find

the model parameters. To find the maximum likelihood solution, for each check-in (ti, ui, ci,
li), we define a latent variable zi as the user that caused ui to check into location li, given the

time ti and category ci. We use 1-of-N coding to represent zi’s. For notional convenient, lets
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define:

gvuc‘ ¼
wv

uc‘

Zuc þ wuc�
Iðv > 0Þ þ

mc‘ Zuc

mc�ðZuc þ wuc�Þ
Iðv ¼ 0Þ ð15Þ

wv
ucl ¼

XjDvclðtÞj

i¼1

avu exp ð� ðt � tiÞÞ ¼ avu

XjDvclðtÞj

i¼1

exp ð� ðt � tiÞÞ ð16Þ

where gvuc‘ is the contribution or influence of user v in the check-in of user u at location l with

category c. Now, we define:

fuiðli; zijti; ciÞ ¼
YN

v¼0

ðgvuici‘iÞ
ziv ð17Þ

where ziv is the v’th element of zi, or the index of the user that caused i’th check-ins. But, v = 0

is not the index of a user, it represents the exploration effect. It can be verified that marginaliz-

ing out the zi, ∑zi fui(li, zi|ti, ci), results in the probability distribution (13). Now, to evaluate the

complete likelihood pðD;ZjyÞ of the data D and hidden variables Z ¼ fzig
K
i¼1

, given the

parameters θ = {μuc, ηuc, αuv, βu}, u = 1. . .N, v 2 N ðuÞ and c = 1. . .C, where N ðuÞ is the set of

neighbors of u, we use the following proposition.

Proposition 1 ([11]) Let Nu, u = 1, 2, � � �, N be a multivariate marked point process with the
associated intensity λu(t), and the mark probability fu(m|t). Let D ¼ fðti; ui;miÞg

K
i¼1

be a realiza-
tion of the process over [0, T]. Then the likelihood of D on model Nu with parameters θ can be
expressed as follows.

pðDjyÞ ¼ exp �

Z T

0

XN

u¼1

luðtÞ dt

 !
YjDj

i¼1

lui
ðtiÞfuiðmijtiÞ

If we consider (ci, li, zi) as the mark mi of the process, according to this proposition the com-

plete likelihood of our model is,

pðD;ZjyÞ ¼ exp �

Z T

0

XN

u¼1

luðtÞ dt

 !
YjDj

i¼1

lui
ðtiÞfuiðci; li; zijtiÞ ð18Þ

where using Bayes’ rule and Eq (17) it can be evaluated as follows.

pðD;ZjyÞ ¼ exp �

Z T

0

XN

u¼1

luðtÞ dt

 !
YjDj

i¼1

lui
ðtiÞfuiðcijtiÞfuiðli; zijti; ciÞ

¼ exp �
XN

u¼1

XC

c¼1

Z T

0

luðt; cÞ dt

 !
YjDj

i¼1

lui
ðti; ciÞfuiðli; zijti; ciÞ

¼ exp �
XN

u¼1

XC

c¼1

Z T

0

luðt; cÞ dt

 !
YjDj

i¼1

lui
ðti; ciÞ

YN

v¼0

ðgvuici liÞ
ziv

To derive the second line, we used the superposition theorem, and the fact that the probability

of a category, according to our generative model is fui(ci|ti) = λui(ti, ci)/λui(ti). Given the joint

distribution of the observed and latent variables pðD;ZjyÞ, we use EM algorithm to maximize

the likelihood function pðDjyÞ with respect to θ. In the E-step we evaluate pðZjD; yÞ. Using
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Bayes’ rule we can write the posterior distribution of the latent variables as,

pðZjD; yÞ /
YjDj

i¼1

YN

v¼0

ðgvuiciliÞ
ziv ð19Þ

which factorizes over i, so that zi’s are independent with multinomial distribution and we can

write the expected of ziv under this distribution as follows.

E½ziv� ¼
P

ziv
zivðgvuici‘iÞ

ziv

P
zi

QN
v¼0
ðgvuici‘iÞ

ziv
¼

gvuici‘iPN
v¼0

gvuici‘i
ð20Þ

In the M-step we maximize EZ½ lnpðD;ZjyÞ� the expected complete log-likelihood, which can

be decomposed to the sum of expected log-likelihoods of users EZu
½ lnpðDu;ZujyuÞ�.

EZ½ lnpðD;ZjyÞ� ¼ �
XN

u¼1

XC

c¼1

Z T

0

luðt; cÞ dtþ
XjDj

i¼1

log lui
ðti; ciÞ þ

XjDj

i¼1

XN

v¼0

E½ziv� log gvuici‘i

¼
X

u

�

Z T

0

XC

c¼1

luðt; cÞ dtþ
XjDu j

i¼1

log luðti; ciÞ þ
XjDuj

i¼1

XN

v¼0

E½ziv� log gvuci‘i

 !

¼
X

u

EZu
½ lnpðDu;ZujyuÞ�

ð21Þ

Where Zu = {zi 2 Z | ui = u} and θu = {μuc, ηuc, αuv, βu}, v 2 N ðuÞ, c = 1� � �C. Accordingly, the

M-step can be decomposed to multiple maximizations over users, which can be done in paral-

lel. Therefore, for each user u, the two steps of the EM algorithm can be summarized as fol-

lows.

E-Step: E½ziv� ¼
gvuci‘iPN
v¼0

gvuci‘i
ð22Þ

M-Step: y
�

u ¼ arg max
yu�0

EZu
½ lnpðDu;ZujyuÞ� ð23Þ

In the following proposition, we prove that the maximization in M-step is concave, so it has a

unique and optimal solution. Moreover, the performance of the overall inference algorithm is

not affected by the network size, as long as the average degree of the network and the average

number of events per users remains fixed. Since, they define the number of parameters and

observed data of each EM inference algorithm, and consequently define the performance of

the overall inference algorithm.

Proposition 2. The expected log-likelihood of a user, EZu
½ lnpðDu;ZujyuÞ� as a function of

fmuc; ~Zuc; ~auv; bug is concave, where auv ¼ exp ð~auvÞ and Zuc ¼ exp ð~ZucÞ.

Proof. According to Eq (21) the log-likelihood of user u is:

EZu
½ lnpðDu;ZujyuÞ� ¼ �

Z T

0

XC

c¼1

luðt; cÞ dtþ
XjDuj

i¼1

log luðti; ciÞ þ
XjDu j

i¼1

XN

v¼0

E½ziv� log gvuci‘i

The first term is a linear function of {μuc, βu}, so it is both convex and concave. The second

term is the log of a linear function which is concave, according to composition rules [49]. The
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third term is composed of log gvucili , which for v> 0,

log gvuci‘i ¼
~avu � log e~Zuci þ

XjD�ci �ðtÞj

j¼1

e~auju e� ðt� tjÞ
 !

þ const

and for v = 0,

log gvuci‘i ¼ ~Zuci
� log e~Zuci þ

XjD�ci �ðtÞj

j¼1

e~auju e� ðt� tjÞ
 !

þ const:

In both cases log gvucili is concave according to Lemma 1 of [11] which state that logarithm of

sum of linear exponentials is convex. So, the overall expression is concave. Actually, we use

~Zuc; ~auv instead of ηuc, αuv in the implementations, and solve the resulting concave

optimization.

To find the time complexity of the inference algorithm, by carefully investigating all terms

in the M-step, it can be verified that, each gradient descent iteration in maximization 23 has O
(ku hu) operations, where ku, hu are the number of neighbors and the size of history of user u,

respectively. Therefore, the approximate order of the overall inference algorithm is O(mkhN),

where k, h are the average network degree and events per user, and m is the number of EM

iterations times the number of the gradient descent iterations. In practice, since m which

depends on the desired tolerance in the EM algorithm, and k are constant (the average degree

of the most real work networks are less than 10 [44]), the overall complexity can be simply

expressed by O(hN), which is linear with respect to the number of users N, and the average

number of events per user h.

Datasets

To evaluate the proposed method we use a synthetic data, and a real data gathered from users

check-ins data in Foursquare. All dataset is available through our git repository, github.com/

azarezade/STP. Our data collection method complies with the terms of service of both Twitter

and Foursquare. Moreover, the dataset is anonymized and does not reveal the identity of actual

users.

Results and discussion

In this section, using both synthetic and real data, we evaluate the performance of the proposed

method. First, in the synthetic data experiments, we show that the proposed inference algo-

rithm can learn the model parameters with high accuracy. Then in the real data experiments,

we show that the proposed method outperform the other competing methods.

Experiments on synthetic data

Following the literature, we use the synthetic data generated from our model to evaluate the

performance of proposed learning algorithm. Moreover, we analyze the effect of model param-

eters on users behavior.

We experiment with five random Kronecker networks [50] with N = 64 nodes, namely

Core-periphery, Heterophily, Hierarchical, Homophily, and Erdos-Renyi, where the seed

matrix parameters are [0.85, 0.45; 0.45, 0.3], [0.3, 0.89; 0.89, 0.3], [0.9, 0.1; 0.1, 0.9], [0.89, 0.3;

0.3, 0.89], and [0.60, 0.60; 0.60, 0.60], respectively. We set the number of categories to C = 4

and consider eight locations in each category. The temporal and spatial model parameters are

randomly drawn from the uniform distributions μuc, ηuc * U(0, 0.05), αuv * U(0, 0.5) and βu
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* U(0, 0.1). The period and standard deviation in the temporal model set to τ = 12 and σ =

0.5, respectively. We generate 16000 check-ins from our model, using the Ogata method [51],

and consider the first 80% of them for the train and the remaining 20% for the test data. Then

we learn the model with different percentages of the training data, and evaluate the average

predicted log-likelihood on the test data (AvgPredLogLik) and the mean squared error between

the estimated and real parameters (MSE). The inference algorithm is implemented in parallel

for all users. All source codes and datasets are available in our git repository.

In Fig 2, the AvgPredLogLik and MSE of the temporal model is plotted versus the size of

train data, where the average estimation error decreases to about 7 × 10−4. These measures are

also plotted for the spatial model with different random network structures in Fig 3, given the

time of check-ins. We can see that the parameter estimation error decreases and the average

log-likelihood increases as we increase the size of train data, which shows the proposed infer-

ence algorithm can consistently learn the model parameters with a very small estimation error.

Fig 2. Synthetic data temporal measures. Average predicted log-likelihood on the test data (left), and MSE of the

learned parameters (right), in the temporal model for the different percentages of the train data.

https://doi.org/10.1371/journal.pone.0197683.g002

Fig 3. Synthetic data spatial measures. Average predicted log-likelihood on the test data (left), and MSE of the

learned parameters (right), in the spatial model for the different percentages of the train data and various random

graph structures.

https://doi.org/10.1371/journal.pone.0197683.g003
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Furthermore, in the left of Fig 4, we show that for a fixed number of events per user, increasing

the EM iterations would decrease MSE to about 0.1. To investigate the network structure pre-

diction of our model, for each size of the train data, we use a threshold to convert the predicted

weighted network (i.e., the αij’s) to a (0, 1)-adjacency matrix and evaluate the percent of recov-

ered edges to form the ROC curve. Then, we find the AUC curve, which is illustrated in the

middle of Fig 4. Our method finds 64% of edges using only 150 events per user in the train

data.

To study the effect of model parameters on the users’ behavior, we design two experiments.

First, we define a measure called Sociality. For each user, the Sociality is the percent of check-

ins that their location has been previously visited by the user or her friends. According to our

spatial model, Eq (13), the exploration of users increase as we increase η or decrease α. To

empirically validate this property of our model, in the right of Fig 4 the box plot of the users’

Sociality is illustrated for different parameters. The average sociality reaches up to 80% when

the average ratio of spatial parameters, �a=�Z is equal to 100. It means that, users with high α/η
are more affected by their friends. Moreover, to see the effect of temporal model parameters

on the check-ins time of users, we plot the distribution of users’ interevent time (the time dif-

ference between two successive events in a specific category for each user). According to Eq

(10), parameters β and μ regulate the periodicity in the time of events. The higher β, would

result in more periodic events. We fix μ and set β = 0 and 1 in the left and right graphs of Fig 5,

respectively. As we see, there is a peak around 12 in the right graph, which is the period of the

simulated events but, in the left figure the frequency of events reduces exponentially and there

is no peak except the initial one.

Experiments on real data

In this section we use the real data gathered from users’ checkins in Foursquare, which is a

popular LBSN, to evaluated the proposed method against other alternative continuous time

check-in models.

We used both Twitter and Foursquare APIs to crawl the check-ins data of the users in Four-

square, because Foursquare does not provide the full check-ins data. Specifically, we crawled

the tweets of the users that have installed Swarm application, and publicly tweet their check-

ins. This app is connected to the Twitter and Foursquare account of the user. When a user

check-ins, using this app, she can tweet the URL of that location in the Foursquare website.

Fig 4. Synthetic data evaluations. Average predicted log-likelihood in logarithmic scale vs the iterations of EM (left), the network structure recovery for

different percentages of the train data (middle), and the effect of spatial parameters on the users’ Sociality (right).

https://doi.org/10.1371/journal.pone.0197683.g004
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Therefore, we have access to the location details (via Foursquare API) and the time of check-

ins (via Twitter API). Using the Twitter search API we found active users with high check-ins

rate in Foursquare. By querying the API with “I am at”, the default template of Swarm app for

check-ins, we selected the top 12000 users, and crawled their tweets in ten weeks during the

year 2015. We pruned the data by selecting 1000 active users that were in the same country

(Brazil). The average degree of the network is 6.4. The total number of check-ins is about

60000. The number of unique locations is about 10000 in 10 categories. Our data collection

method complies with the terms of service of both Twitter and Foursquare. Moreover, the

dataset is anonymized and does not reveal the identity of actual users.

We use the first eight weeks of the check-ins for train, and the remaining two weeks for test.

The hyper-parameters of the temporal model are set to τ = 24 and σ = 1, by cross validation.

We learn model parameters by the train data and use different temporal and spatial measures

for the evaluations. We compare our proposed model with MH [17], where the intensity of

user’s check-ins is modeled by a multivariate Hawkes process (the intensity depends on the

user and her friends’ history); RNN [30] which use a recurrent neural network to learn a non-

linear intensity function based on the users’ history of events; and baseline HP where the

intensity is modeled by a Hawkes process that also depends on the user’s history. The spatial

model is also compared with two baselines, MP and PL. In the MP method the most checked

in locations, disregarding the time of check-ins, are more probable to be selected as the next

check-in location. The PL model assumes periodicity in the location of check-ins, the locations

that are more checked in previous periods are more probable to be visited in the current time.

To reveal the motivation of the proposed method, we perform two empirical experiments

on the real data. In summary, Fig 6 shows that: (i) most of the events are repeated after one, or

more days (since there are peaks in the left graph at 1, 2, 3, . . .), which verifies the use of a peri-

odic point process for modeling the time of users’ check-ins; (ii) about 80% of users are

affected by their friend’s location of check-ins (the blue box) which justifies the use of the pro-

posed mutually-exciting spatial model; (iii) only 10% of users explore new locations (the red

box), which these users are modeled by the parameter η in Eq (13); (iv) as we more increase

the size of the history time window, the less Sociality increases, which validates the use of the

exponential decaying kernel in Eq (11) to reduce the effect of far past history.

To evaluate the prediction accuracy of the time of check-ins, we design two experiments.

For each test event we estimate the time of the next event by different methods. The percent of

check-ins which their times are closer than a threshold to the real time is plotted in the left

Fig 5. Interevent distribution in Hawkes vs our periodic point process. The distribution of interevent in the temporal model with β = 0 (left) and β = 1

(right). We can see that increasing β would cause a peak around 12, which is the period of the simulated events.

https://doi.org/10.1371/journal.pone.0197683.g005
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graph of Fig 7. Our method achieved up to 35% improvement for a one hour threshold, com-

pared to other methods. In the right graph, the number of users where the average distance of

their estimated events is less than a threshold is plotted. The proposed method performed up

to 20% better than the competing methods. We did not plot this graph for the thresholds less

than 6 hr, where all methods perform poorly. The poor performance of the RNN method is

probably due to underfitting, since its objective function is nonconvex (in contrast to the other

Fig 6. Interevent time and sociality in real data. The frequency of interevent times in the Food category of Foursquare dataset (left), and the Sociality

box plot of users for different history window sizes (right).

https://doi.org/10.1371/journal.pone.0197683.g006

Fig 7. Real data temporal measures. The percent of check-ins which their times are closer than a threshold to the real time (left). The number of users which their

average distance of predicted check-in times to the real times are less than a threshold (right).

https://doi.org/10.1371/journal.pone.0197683.g007
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methods, which are all convex), and the SGD method for the inference need much more train-

ing check-in data, which is rare in most of the real-world applications.

Now, given the time of check-ins, we evaluate the prediction accuracy of the location of

check-ins. For each test event, each method assigns a probability to each location, forming a

vector and selects the most probable location. Accuracy@k is the percent of events that the true

location is among the first k high probable locations, and NDCG@k is
1

N

PN
i¼1
Ið1þ rðeiÞ < kÞ= log 2ðrðeiÞÞ, where r(ei) is the (one-based) rank of the real location of

i’th check-in in the location probability vector. These measures are plotted in Fig 8. For k = 1

the accuracy increase from �7% in other methods to �11% in our method—about 43%

improvement. It should be noted that there are about 10,000 locations and the random guess

has extremely low accuracy. For larger values of k the measure is less reliable, since all method

would have the same accuracy. Our method reaches to 24% accuracy, and about 8% improve-

ment at k = 40. But in the NDCG which dose not have the mentioned undesirable effect (since

the low-rank events are more significant) we see our method consistently outperform the oth-

ers—about 30 to 50% improvement for the different values of k.

Finally, we performed the scalability analysis for different methods as depicted in Fig 9. In

the right graph we compared the inference time for different sizes of event history, in the real

dataset. Our method achieved the second best performance. For better comparison, the time

complexity of all models, expect RNN, are measured on a single core machine, although our

method and HP can be executed in parallel and consequently the CPU time would be divided

by the total number of cores. The time of RNN method is multiple orders of magnitude slower

than the others, although we executed it on a 10-core machine, since the SGD methods need

much more iterations to converge. Moreover, if we fit a line to these log-log curves, the slopes

of Our, HP, MH, RNN, and Spatial curves would be 1.1, 1.3, 1.4, 0.01 and 1.2, respectively.

This, validates the linear time complexity of our model with respect to the size of history h. In

the left graph we compared the inference time in the synthetic data with different network

sizes. Again, our method is the best performer after HP. Here, the slopes are 0.96, 0.98, 0.91,

0.99 and 1.2 for Our, HP, MH, RNN, and Spatial methods, respectively. These results validate

the linear time complexity of our model with respect to the size of network N.

Fig 8. Real data spatial measures. The accuracy (left) and NDCG (right) of location prediction, given the times of

check-ins, at different values of k.

https://doi.org/10.1371/journal.pone.0197683.g008
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Conclusion

To model the check-ins of users in location-based social networks, we proposed a doubly sto-

chastic point process for the time of check-ins, which leverages the periodicity in users’ behav-

ior, and a multinomial distribution for the location of check-ins, which leverages the mutually-

exciting effect of friends on decision of users.

The synthetic experiments show the proposed inference algorithm can learn the model

parameters with high accuracy and its performance increases consistently by the size of train

data. Moreover, we study the effect of model parameters on the users’ check-ins, from which

one can interpret the users’ behavior in LSBNs from their inferred parameters. The real experi-

ments on the curated Foursquare check-ins dataset, show the proposed method outperform

the other competing methods in the time and location prediction of users’ check-ins. Specifi-

cally, we achieved up to 35% in the time prediction and 43% in the location prediction accu-

racy. Furthermore, the empirical studies show the real data meets the assumptions of the

proposed model that is, users are periodic in the time and mutually-exciting in the location of

their checkins.

Our work also opens many interesting venues for future works. For example, we can con-

sider the home location of the users in defining the probability of the location of their check-

ins, by modifying the weight of locations in Eq (11). In addition, we can investigate the utiliza-

tion of a non-parametric spatial model instead of the multinomial distribution. Finally, we can

use the proposed model to control the check-in behavior of users by incentivization, or use it

for point-of-interest recommendations.

Fig 9. Scalability comparision. The time complexity of different temporal models and our spatial model (the other baseline spatial models also have approximately the

same time complexity, so only one of them is depicted), for different network sizes (left), and for different sizes of events history (right).

https://doi.org/10.1371/journal.pone.0197683.g009
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