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Abstract

Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogen-

omes) are increasingly used to resolve phylogenetic controversies, but remain unavailable

for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed

throughout the Asia. As a result of great morphological variability, two subspecies have

been recognised historically; until a morphological data-based synonymization was pro-

posed. However, this hypothesis was never tested using molecular data. Therefore, objec-

tives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the

proposed synonymization using molecular data, i.e. complete mitogenomes of both subspe-

cies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all

available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the

two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are

standard for Metastriata; which includes the presence of two control regions and all three

"Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire

Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses

(29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models

of substitution. The results were congruent, apart from the deep-level topology of prostriate

ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT

model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian

and non-Australasian clades. This topology implies that all metastriate ticks have evolved

from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided

into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Der-

macentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3.

Amblyomma elaphense, basal to all Metastriata. We conclude that mitogenomes have the
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potential to resolve the long-standing debate about the evolutionary history of ticks, but het-

erogeneous evolutionary models should be used to alleviate the effects of compositional

heterogeneity on deep-level relationships.

Introduction

Ticks (Chelicerata: Ixodida) are one of the medically most important groups of arthropods; as

obligate hematophagous parasites of terrestrial vertebrates, they are vectors of several very

important diseases. Despite their medical and veterinary importance, genetic resources for

ticks remain relatively limited and our understanding of tick evolution merely fragmental [1–

5]. Among the three extant families of ticks, only two are of importance for public health: Ixo-

didae (the hard ticks) and Argasidae (the soft ticks) [6]. Due to unsuitability of morphological

traits for the task and limited genetic resources currently available, phylogeny and taxonomy

of Ixodidae remain unresolved. On the basis of morphological differences, the hard ticks are

divided into two groups: Prostriata—containing only the Ixodinae subfamily, and Metastriata

—containing a debated number of genera (around 13) classified into a debated number of sub-

families (4 or 5) [5,7–9]. Among the metastriate ticks, species belonging to the large (27 cur-

rently recognized species) Hyalomma Koch 1844 genus are distributed from tropical Africa to

Siberia [10,11]. Species of this genus infest mammals, birds and reptiles; and they are vectors

of several important viruses and rickettsial organisms [12]. Hyalomma asiaticum Schulze and

Schlottke 1930 is a tick species common almost in the entire Asia, which transmits a number

of different diseases and exhibits great morphological variability [10,13]. This has historically

caused a number of taxonomic controversies, including proposals of a varying number of sub-

species [10]. Two of these subspecies, H. a. asiaticum and kozlovi, were considered valid until a

relatively recent study proposed their synonymization on the basis of morphological characters

[10]. However, this hypothesis was never tested using molecular data.

Although the phylogeny of Ixodida has been studied using a number of molecular markers,

both mitochondrial and nuclear [9,14,15], the resolution that these single molecular markers

provide appears to be too low to unequivocally resolve the evolutionary history of this group of

animals. Mitochondrial genomes (mitogenomes) carry a large amount of data, which makes

them capable of providing much higher resolution than traditionally used morphological and

single-gene molecular markers, and therefore mitochondrial phylogenomics is increasingly

used to address controversial phylogenetic relationships [16–18]. Mitochondrial phyloge-

nomics has also been used to study the phylogeny of ticks [3,19–21], but its applicability

remains hampered by the unavailability of mitogenomes for many large taxonomic categories,

including the entire Hyalomma genus.

As it appears that a much larger amount of molecular data will have to be available in order

fully resolve the evolutionary history of hard ticks, the objective of this study was to sequence

the first Hyalomma mitogenome. Additionally, as Apanaskevich and Horak [10] did not use

any molecular data to support their synonymization of two H. asiaticum subspecies (asiaticum
and kozlovi), we have set out to corroborate their proposition using mitogenomic data. To

achieve this, we sampled specimens morphologically corresponding to the two subspecies

[6,10,22] and sequenced their mitogenomes. Following this, we conducted comparative and

phylogenomic analyses using all available hard tick mitogenomes.

Results and discussion

The two mitogenomes are almost identical, with identity of 99.6% (merely 48 variable sites

were found), and only four gaps in the alignment. Previously, sequence difference between
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two complete mitogenomes of a closely related species, Rhipicephalus sanguineus (one speci-

men from China and one from the USA), was found to be 11.23%, thereby leading the authors

to propose that these are two different species [20]. We can therefore make exactly the opposite

conclusion, that the sequencing of these two mitogenomes has corroborated the morphology-

based hypothesis [10] that Hyalomma asiaticum asiaticum (S1 Fig) and H. a. kozlovi (S2 Fig)

should be synonymized to Hyalomma asiaticum.

Genome architecture

The complete mitochondrial genome of H. a. asiaticum (Haa; GenBank accession number:

MF101817) is 14 720 bp-long, whereas that of H. a. kozlovi (Hak; MF101818) is four bp longer

—14 724. Both mitogenomes possess the standard 13 protein-coding genes, two rRNA genes

(16S and 12S), 22 tRNA genes and two control regions. The mean AT and GC skews are

-0.027 and -0.144 respectively. All these characteristics are standard for ticks (S1 File)

[3,5,9,20]. The A+T content (78.1% Haa, 78.2% Hak) is also average for this group of animals:

metastriate ticks have the A+T content between 75 and 80%, whereas soft ticks have a some-

what lower A+T content of 70–75% [3,5,9,20].

In terms of gene order and strand distribution, the ancestral arthropod architecture (Limu-
lus polyphemus in Fig 1) has remained unchanged for over 400 million years in the lineages

leading to the prostriate ticks (two Ixodes clades in Fig 1) [8,23]. In metastriate ticks, a block of

seven genes (nad1-trnL2-rrnL-trnV-rrnS-trnI-trnQ) was translocated, some tRNAs were rear-

ranged (Fig 1), and two large non-coding (control) regions are usually present [7–9,23]. How-

ever, gene order and strand distribution within this group (metastriate ticks), which includes

the two new mitogenomes as well, are perfectly conserved (Fig 1). The only exception is

Amblyomma trigutatum, where nad1 and tRNA-Glu have switched places; but as this mitogen-

ome remains unpublished, we don’t exclude a possibility of an annotation mistake (we are

quite confident that tRNA-Ser2 on the minority strand in A. fimbriatum, where tRNA-Ser1

should be on the majority strand, is an annotation artefact).

Fig 1. Mitochondrial phylogenomics and mitogenomic architecture of the Ixodidae family. Phylogenetic dendrogram was constructed using nucleotide sequences of

almost complete 29 available Ixodidae mitogenomes. Heterogeneous CAT model implemented in PhyloBayes was used to conduct the Bayesian inference analysis.

Limulus polyphemus is the outgroup. Scale bar corresponds to the estimated number of substitutions per site. Only the Bayesian probability values lower than 1.0 are

shown next to corresponding nodes. Mitogenomic architecture is shown to the right of the corresponding sequences (the legend is incorporated in the figure). GenBank

accession numbers are shown next to species names. Font colours correspond to subfamilies (according to the GenBank taxonomy), with full details available in the S1

File (supplementary data).

https://doi.org/10.1371/journal.pone.0197524.g001
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We found 13 intergenic regions (IGRs) and nine gene overlaps. IGRs ranged from 1 to 21

bp in size, with the longest located between the tRNA-Gln and tRNA-Phe genes (Table 1). The

overlaps ranged from 1 to 8 bp, with the largest found between tRNA-Tyr/cox1 (8 bp), atp6/

atp8 (7 bp), and nad4/nad4L (7 bp). Although the possibility of annotation artefacts should not

be excluded, the comparison of homologs in related species (S1 File) and almost identical

numbers and sizes of overlaps and IGRs in some related species [20], do not provide any indi-

cation of this. Apart from two large overlaps, atp6/atp8 and nad4/nad4L, all other overlaps

involved tRNA genes, which is common, and believed to be a consequence of lesser evolution-

ary constraints on tRNA sequences [24]. Identical overlaps of two PCGs (atp6/atp8 and nad4/

nad4L, both 7 bp) have been described in another metastriate tick, A. sculptum [21], but

metastriate ticks belonging to the Rhipicephalus genus appear to exhibit only an identical (7

bp) atp6/atp8 overlap [20]. Both overlaps include very small genes (atp8 = 162 bp, nad4L = 276

bp), which appear to be under lesser evolutionary constraints, as atp8 is often absent from

mitogenomes [25], whereas the nad4/nad4L overlap is common in mitogenomes of many dif-

ferent groups of animals [17,18,26–28]. Although annotation of the nad1 gene is usually very

difficult in hard ticks, often producing unusually large gene overlaps [21,29], nad1 genes in the

studied two mitogenomes are very similar to closely related Rhipicephalus orthologs (S1 File),

with an overlap of only 4 bp with the neighbouring tRNA-Glu (Table 1).

Gene sizes were identical between the two mitogenomes, and relatively standard for the

entire Ixodidae group. Generally, gene sizes are highly conserved among the available Ixodidae

mitogenomes, with most genes exhibiting a size-window smaller than 10 bp; exceptions are

only nad2 and nad5 with approximately 30 bp size-windows (S1 File B worksheet). Regarding

the two studied mitogenomes, the only outlier is nad5 gene (1641 bp), which is smaller than in

other available orthologs, with only the Amblyomma americanum [3] ortholog exhibiting a

similar size (1642 bp). Both studied mitogenomes used identical start and termination codons.

The start codons used were ATG (6), ATA (4), and ATT (3), whereas the termination codons

were TAA (9), T--(3) and TAG (1), all of which are standard for ticks [9,20]. Intriguingly,

atp8 used ATG, which is non-standard for this group of animals; it was reported only in

Amblyomma americanum [3] and Ixodes hexagonus [7] among the available Ixodidae mitogen-

omes, whereas the rest of the species use ATT, ATC or ATA (S1 File, worksheet B). As observed

in other ticks, two AT-rich or non-coding regions were found (CR1 and CR2, Table 1). Both

are typical in terms of size (303 and 306 bp, respectively) and location (CR1—between the rrnS

and tRNA-Ile, CR2 between tRNA-Leu-1 and tRNA-Cys) [7,9,20].

Tick-Boxes are two to three degenerate 17 bp-long motifs (ttgyrtchwwwtwwgda) dis-

covered in tick mitogenomes, which are believed to be post-transcriptional regulatory ele-

ments, and might also have been involved in genome rearrangements [29]. Although the third

box is not present in all metastriate ticks [3,29], all three boxes were found in the two studied

mitogenomes (Table 1) exactly in the positions described before [29]. The six motifs were

highly conserved; only two different sequences were found, differing by only a T$A mutation:

TTGCATCATTTTTTGGA (both Tick-Boxes-1 and Haa Tick-Box-2) and TTGCATCAATTTT
TGGA (both Tick-Boxes-3 and Hak Tick-Box-2).

Phylogeny

Overview of published phylogenetic studies reveals a notable variability in the topology pro-

duced (both in Prostriata and Metastriata clades) depending on the dataset and methodology

used [3,5,8,9,19,20]. As differences are particularly pronounced between mitochondrial and

nuclear datasets, we suspected that this might be an indication of the existence of either com-

positional heterogeneity in the mitogenomes of ticks, or possibly even mitochondrial
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introgression in the evolutionary history of ticks [30]. Although recent evidence shows that the

latter is more widespread than previously thought [31–33], previously observed effects of the

Table 1. The organization of Hyalomma asiaticum asiaticum (Haa) and kozlovi (Hak) mitochondrial genomes.

Gene Haa Hak IGR Codon Strand

From To Size From To Size Start Stop

tRNA-Met 1 65 65 1 65 65 +

nad2 66 1028 963 66 1028 963 ATT TAA +

tRNA-Trp 1029 1089 61 1029 1089 61 +

tRNA-Tyr 1088 1148 61 1088 1148 61 -2 -

cox1 1141 2679 1539 1141 2679 1539 -8 ATT TAA +

cox2 2683 3355 673 2683 3355 673 3 ATG T-- +

tRNA-Lys 3356 3421 66 3356 3421 66 +

tRNA-Asp 3422 3482 61 3422 3482 61 +

atp8 3484 3645 162 3484 3645 162 1 ATG TAA +

atp6 3639 4304 666 3639 4304 666 -7 ATG TAA +

cox3 4309 5086 778 4309 5086 778 4 ATG T-- +

tRNA-Gly 5087 5147 61 5087 5147 61 +

nad3 5148 5489 342 5148 5489 342 ATT TAA +

tRNA-Ala 5489 5549 61 5489 5549 61 -1 +

tRNA-Arg 5556 5619 64 5556 5619 64 6 +

tRNA-Asn 5618 5679 62 5618 5680 63 -2 +

tRNA-Ser-1 5677 5732 56 5678 5734 57 -3 +

tRNA-Glu 5738 5800 63 5740 5802 63 5 +

tick-box-1 5803 5819 17 5805 5821 17 -

nad1 5797 6736 940 5799 6738 940 -4 ATT T-- -

tRNA-Leu-2 6737 6799 63 6739 6801 63 -

rrnL 6800 7989 1190 6802 7992 1191 -

tick-box-2 6805 6823 17 6807 6823 17 -

tRNA-Val 7990 8048 59 7993 8051 59 -

rrnS 8049 8747 699 8052 8750 699 -

CR1 8748 9050 303 8751 9053 303

tRNA-Ile 9051 9113 63 9054 9116 63 +

tRNA-Gln 9117 9181 65 9120 9184 65 3 -

tick-box-3 9184 9200 17 9187 9203 17 +

tRNA-Phe 9203 9262 60 9206 9265 60 21 -

nad5 9263 10903 1641 9266 10906 1641 0 ATA TAA -

tRNA-His 10922 10982 61 10925 10985 61 18 -

nad4 10988 12304 1317 10991 12307 1317 5 ATG TAG -

nad4L 12298 12573 276 12301 12576 276 -7 ATG TAA -

tRNA-Thr 12576 12636 61 12579 12640 62 2 +

tRNA-Pro 12637 12699 63 12641 12703 63 -

nad6 12702 13136 435 12706 13140 435 2 ATA TAA +

cytb 13140 14219 1080 13144 14223 1080 3 ATG TAA +

tRNA-Ser-2 14220 14287 68 14224 14291 68 +

tRNA-Leu-1 14287 14355 69 14291 14359 69 -1 -

CR2 14356 14661 306 14360 14665 306 +

tRNA-Cys 14662 14718 57 14666 14722 57 +

IGRs, codons and strand distribution are identical between the two mitogenomes. IGR is intergenic region, where a negative value indicates an overlap.

https://doi.org/10.1371/journal.pone.0197524.t001
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third codon position exclusion from mitochondrial PCGs [5,9] suggest that compositional het-

erogeneity is the more likely cause for this inconsistency. Mitochondrial genomes of some

groups of animals, which also includes some Arthropoda, often exhibit compositional heteroge-

neity, or non-constant equilibrium nucleotide frequencies across different lineages, which is a

major driver of artificial clustering (long-branch attraction) in phylogenetic analysis [34–36].

Therefore, homogeneous models of substitution, where all sites evolve under the same substitu-

tion process and constantly through time, may not be suitable for mitochondrial phylogenomics

studies in ticks. Among the strategies designed to minimise these biases, site-heterogeneous

mixture model (CAT), which allows flexible probabilities of the nucleotide replacement equilib-

rium frequencies, is considered to be the most effective [36]. Therefore, we have decided to test

both the standard homogeneous model and a non-standard heterogeneous model on our data-

set. The results they produced were mostly congruent, apart from the deep-level topology of

prostriate ticks (Ixodes): the homogeneous model (S3 Fig) produced a monophyletic Ixodes sub-

divided into two sister-clades (Australasian and non-Australasian), whereas the heterogeneous

CAT model produced a paraphyletic Ixodes (and thereby Prostriata) with very high nodal sup-

port (Fig 1). Although the monophyly of Ixodes has been questioned before [5,8,19,37–40], a

majority of morphological and nuclear, and all mitochondrial (including the amino acid

sequences) datasets, produced monophyletic Ixodes [3,5,8,9,19,20,39,41]. The fact that ours is

the first study relying on mitochondrial data to produce paraphyletic Ixodes is in perfect agree-

ment with the observation that impact of compositional heterogeneity is much more pro-

nounced in deep-level phylogenies [36]. Paraphyletic Ixodes genus was produced in several

studies using concatenated nuclear 18 and 28S gene datasets [5,8,19,37], but in these analyses

non-Australian Ixodes group was basal to Australian Ixodes. The topology retrieved in our

study, where Australian Ixodes clade was basal to the non-Australian Ixodes clade. Therefore,

our results produced using the CAT heterogeneous model imply that all metastriate ticks have

evolved from the ancestor of the non-Australian branch of prostriate ticks after it became sepa-

rate from the Australian branch of Prostriata. These findings are very interesting from the

aspect of a previously proposed hypothesis that ticks have originated in the Australasian region

of Gondwanaland [38,40,42] (see [2] for detailed discussion). However, this intriguing hypothe-

sis would have to be tested very carefully (regarding the methodology) using a much larger

amount of both nuclear and mitochondrial molecular data.

The rest of the topology did not produce novel findings, but it might help resolve a number

of phylogenetic controversies. Metastriata was divided into two major clades: 1. Amblyommi-

nae, Rhipicephalinae (Rhipicephalus and Dermacentor genera), and Hyalomminae; and 2. Hae-

maphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti. It should be noted that

the taxonomy we used here is the one currently used for the GenBank entries. Our topology

indicates that clade 1 should be subdivided into Amblyomminae (Amblyomma) and Rhipice-

phalinae (Rhipicephalus, Hyalomma, and Dermacentor genera). This is in agreement with

some [3,5,9,19,41], and disagreement with other [8,20], previous studies, based on both

nuclear and mitochondrial data. Unlike most previous studies [3,5,8,9,19], our topology does

not support the existence of a particularly deep split between Haemaphysalinae and Bothrio-

crotoninae. However, our results do support the previously noted [5,19] deep division of the

Haemaphysalis genus, and provides further support [5,19,20] for A. elaphense being basal to

the rest of the Metastriata (albeit with a relatively low nodal support). However, the positions

of these two species are extremely variable [5,9], their morphology still places them within

their respective genera, mitochondrial introgression may have occurred in their evolutionary

history, and we show here that analyses based on mitochondrial data may be affected by com-

positional heterogeneity; so these findings would have to be thoroughly supported by nuclear

data before taxonomic changes can be proposed with confidence.
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Intriguingly, most of the studies using 18S or concatenated nuclear 18S/28S datasets pro-

duced a paraphyletic Rhipicephalus (with Hyalomma at the bottom of the clade) [5,8,9,19]; and

18S dataset produced a sister clade relationship between Haemaphysalinae and Rhipicephali-

nae [8]. As our analyses did not produce any of these artefacts, this might be an evidence of a

higher phylogenetic resolution conferred by the large mitogenomic dataset. However, a larger

number of Rhipicephalus and Hyalomma mitogenomes would have to be available to make

that conclusion with certainty.

Conclusions

As the absence of a sufficient number of sequenced mitogenomes is currently the foremost

limiting factor for their application to infer the evolutionary history of ticks, we have

sequenced the first mitogenome of two subspecies belonging to a large Hyalomma genus: H.

asiaticum asiaticum and kozlovi. As the two sequenced mitogenomes are almost identical, our

results corroborate the hypothesis of Apanaskevich and Horak [10] that the two subspecies

should be synonymized. The results of our phylogenetic analysis imply that all metastriate

ticks may have evolved from the ancestor of the non-Australian branch of prostriate ticks, but

further analyses and more data shall be needed to corroborate this scenario. Although our

results indicate that mitogenomes might have the potential to resolve the long-standing debate

about the evolutionary history of ticks, the indication that compositional heterogeneity might

affect the deep-level relationships strongly implies that future studies relying on the mitochon-

drial phylogenomics approach should combine homogeneous and heterogeneous evolutionary

models in order to identify the long-branch attraction artefacts.

Materials and methods

Samples, identification, and DNA extraction

Adult Hyalomma asiaticum asiaticum (Schulze and Schlottke, 1929) ticks (S1 Fig) were collected

from the skin of free-range grazing sheep in Qitai County, Xidi town, Xinjiang Uygur Autono-

mous Region, China. Qitai County is located in the north-eastern Xinjiang, north of the Tian-

shan Mountains, south-eastern margin of the Junggar basin (89˚13’ - 91˚22’ E, 42˚25’ - 45˚29’

N). Adult Hyalomma asiaticum kozlovi (Olenev, 1931) ticks (S2 Fig) were collected from the

skin of free-range grazing sheep in Karamay city, Xiaoguai village, Xinjiang Uygur Autonomous

Region. Karamay is located at the north-western margin of the Junggar basin (84˚44’ - 86˚01’ E,

44˚07’ - 46˚08’ N). Sampling was conducted from February to April 2015. Live ticks were col-

lected into a sample box, kept alive in the lab for 3–5 days to ensure they were starved, and then

stored in 75% ethanol at 4˚C. Specimens were morphologically identified under a dissecting

microscope as described before [6,10,22]. After washing in sterile water, DNA was isolated from

one specimen of each putative subspecies using Aidlab DNA extraction kit (Aidlab Biotechnolo-

gies, Beijing, China). As the study involved unregulated parasitic invertebrates, no permits were

required to retrieve and process the samples. We collected the ticks from privately owned sheep,

free-range grazing on public land (arid grasslands, and semi-desert). For this, we collaborated

with local veterinary departments, which took us to the farmers (sheep owners) to obtain the

verbal agreement to collect the parasites. Therefore, no written permits were issued.

Genome sequencing and assembly

Genomes were sequenced, assembled and annotated roughly following the procedure

described before [18,28,43]. Ten primer pairs were designed (with approx. 100bp overlaps) to

match the conserved regions of mitochondrial genes, and used to amplify and sequence the
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entire mitogenome (Table 2). Reaction volume of 50μL contained 5 U/μL of TaKaRa LA Taq

polymerase (TaKaRa, Japan), 10×LATaq Buffer II, 2.5μM of dNTP mixture, 0.2–1.0μM of each

primer, 60ng of DNA template, and PCR-grade H2O. Amplification was conducted under the

following conditions: initial denaturation at 98˚C for 2min, followed by 40 cycles at 98˚C for

10s, 50˚C for 15s, 68˚C for 1 min/kb. If the product was not specific enough, PCR conditions

were optimized: annealing temperature increased by two degrees and the number of cycles

decreased to 35. PCR products were sequenced on an ABI 3730 automatic sequencer using

Sanger method [44]. All obtained fragments were quality-proofed (electropherogram) and

BLASTed [45] to confirm that the amplicon is the actual target sequence. Mitogenome was

assembled stepwise manually with the help of DNAstar v7.1 [46] program, making sure that the

overlaps were identical, and that no numts [47] were incorporated into the sequence. DNAstar

was also used to locate the putative ORFs for protein-coding genes (PCGs). Then we used

BLAST and BLASTx to compare the putative ORFs with published nucleotide and amino acid

sequences of related species, and manually determine the actual initiation and termination

codon positions. Annotation of tRNAs was performed using tRNAscan [48] and ARWEN [49]

tools, and the results checked manually. The annotation was recorded in Word documents, and

parsed and extracted using MitoTool software [50]. MitoTool was also used to create GenBank

submission files and tables with statistics for mitogenomes. Annotated mitogenomes are avail-

able from the GenBank via accession numbers MF101817 (Haa) and MF101818 (Hak).

Phylogenetic and comparative analyses

For the comparative and phylogenetic analyses we have retrieved all 27 currently (Nov. 2017)

available Ixodidae mitogenomes (S1 File) from the NCBI’s non-redundant RefSeq database

[51]. Sequence comparison (identity) between the two newly-sequenced mitogenomes was cal-

culated using EMBL-EBI tools framework (Needle) [52]. For the phylogenetic analyses,

Table 2. Primers used for amplification and sequencing of the mitochondrial genomes of Hyalomma asiaticum asiaticum and kozlovi.

Fragment No. Gene or region Primer name Sequence (5’-3’) Length (bp)

F1 COX1 LYF1 GCTGGGATATTAGGTCTTAG 1436

LYR1 GAGTGTTCGGAGGGAGGGAA

F2 COX1-COX2 LYF2 GACGTTATTCAGATTACCCTG 663

LYR2 GGATAACAAGTTTGTTATCTG

F3 COX2 LYF3 CTGATGAAACTTTTTCATCAC 356

LYR3 GAAACTATGATTTGCACCAC

F4 COX2-COX3 LYF4 GGACAATCCCATCACTTGGG 1462

LYR4 TTAGGAGACAATCTTCTATG

F5 COX3 LYF5 GATGTCTCACGAGAAGCAAG 442

LYR5 GAAAGCCATGAAAACCAGTAG

F6 COX3-16S LYF6 CAATTATTCTTGGGATTAC 2402

LYR6 GACCCTAAGAATTTGAAGATC

F7 16S LYF7 TACGCTGTTATCCCTAGAG 828

LYR7 CGTACCTTTAGCATTAGGG

F8 16S-CYTB LYF8 GAAAAGAATTTCACATCTAAAG 5995

LYR8 CCAAAAGGGTTTCTTGATCC

F9 CYTB LYF9 GCAATCCCATATATCGGTTC 370

LYR9 GAAAGTACCATTCAGGTTG

F10 CYTB- COX1 LYF10 CGATCATTTACCCTTATAGAC 2247

LYR10 CGCCAATTATGATAGGTATAAC

https://doi.org/10.1371/journal.pone.0197524.t002
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following previous studies [9,19], a basal arthropod, Limulus polyphemus (NC_003057) [53],

was used as the outgroup. Fasta files with nucleotide sequences for all 37 genes (12 PCGs, 2

rRNAs and 22 tRNAs) were extracted from GenBank files using MitoTool. Nucleotide

sequences of protein-coding genes (PCGs) were aligned in batches (using codon-alignment

mode) with MAFFT [54] integrated into BioSuite [55]. As described before [17], RNAs were

aligned by Q-INS-i algorithm, which takes secondary structure information into account,

incorporated into MAFFT-with-extensions software [56]. tRNAs Q, L1, L2, S1 and S2 were

removed from the dataset for phylogenetic analysis because their annotation was not consis-

tent in all mitogenomes. BioSuite was also used to concatenate these alignments and remove

ambiguously aligned regions from the concatenated alignments by another plug-in program,

GBlocks [57]. We used relaxed parameter settings [58] to maximize the amount of phyloge-

netic signal retained in the data: maximum/minimum number of sequences for a conserved/

flank position = 16 (all), maximum number of contiguous non-conserved positions = 8, mini-

mum length of a block = 10, allowed gap positions = “with half”. As a result, from the 15 408

positions in the original alignment, 12 690 (82%) remained. Selection of the most appropriate

evolutionary model was computed using ModelFinder [59] and the IQ-TREE web interface

[60]. All three algorithms (Akaike, Corrected Akaike, and Bayesian information criterion) pro-

duced identical best-fit model for a single partition: GY+F+I+G4 for nucleotide sequences of

PCGs, TVM+G4 for rRNAs, and TIM2+I+G4 for tRNAs. This indicates that different parts of

the mitogenome evolve under different rates. Furthermore, IQ-TREE performs a composition

chi-square test for every sequence in the alignment, the purpose of which is to test for homoge-

neity of character composition: a sequence is denoted failed if its character composition signif-

icantly deviates from the average composition of the alignment [60]. Results of these analyses

also indicated among-species compositional heterogeneity for concatenated PCGs (19 nucleo-

tide sequences failed the composition chi2 test) and rRNAs (seven sequences failed the test).

Regarding the concatenated tRNAs sequences, apart from L. polyphemus, all other sequences

passed the chi2 test (S2 File). All these results indicate the existence of compositional heteroge-

neity, particularly among the PCG sequences, which can severely compromise the phyloge-

netic analysis [34,61]. Therefore, we have conducted the phylogenetic analysis using a

program designed specifically to account for compositional heterogeneity, Phylobayes-MPI

1.7a [34,62], available from the beta version of the Cipres server (https://cushion3.sdsc.edu/

portal2/tools.action) [63]. The CAT-GTR site mixture model implemented in PhyloBayes

allows for site-specific rates of mutation, which is considered to be a more realistic model of

amino acid evolution, especially for large multi-gene alignments [64]. Two MCMC chains

were run after the removal of invariable sites from the alignment, and the analysis stopped

when the conditions considered to indicate a good run (PhyloBayes manual) were reached:

maxdiff < 0.1 and minimum effective size > 300. Other parameters were default (burnin =

500). Alignment file used for the analysis is supplemented (S3 File). We also conducted a phy-

logenetic analysis using a standard, homogeneous, evolutionary model: Maximum Likelihood

algorithm (with 1000 bootstrap replicates) implemented in raxmlGUI [65,66], on Cipres web-

server [63]. Phylograms and gene orders were visualized and annotated by iTOL [67] using

several dataset files generated by MitoTool, as described previously [18].

Supporting information

S1 Fig. A typical Hyalomma asiaticum asiaticum specimen.

(JPG)

S2 Fig. A typical Hyalomma asiaticum kozlovi specimen.

(JPG)
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S3 Fig. Mitochondrial phylogenomics of the Ixodidae family inferred using Maximum

Likelihood analysis. Phylogenetic dendrogram was constructed using nucleotide sequences of

almost complete 29 available Ixodidae mitogenomes. Maximum Likelihood analysis was con-

ducted using a homogeneous evolutionary model implemented in RaxML. The branch of the

outgroup, Limulus polyphemus, has been shortened. Scale bar corresponds to the estimated

number of substitutions per site. Bootstrap values are shown next to the corresponding nodes.

GenBank accession numbers are shown next to species names, with full details available in the

S1 File (supplementary data).

(TIF)

S1 File. Comparative analysis of Ixodidae mitogenomes. Worksheet A lists all species

grouped by subfamilies (according to the GenBank taxonomy), with GenBank accession num-

bers, mitogenome sizes, base composition and skewness. Size, composition and skewness are

also given for PCGs, rRNAs and tRNAs separately. Worksheet B lists gene sizes for all species,

and their corresponding (putative) start and terminal codons. Species are represented by acro-

nyms of their binomial scientific names. Worksheet C lists detailed base compositions of entire

mitogenomes.

(XLSX)

S2 File. Composition chi-square test. Composition chi-square test performed by IQ-TREE

for concatenated protein-coding genes (PCGs), rRNAs and tRNAs. A sequence is denoted

failed if its character composition significantly deviates from the average composition of the

alignment.

(TXT)

S3 File. Alignment used for the phylogenetic analyses.

(TXT)
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