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Abstract

Tea plant (Camellia sinensis) has strong enrichment ability for selenium (Se). Selenite is the

main form of Se absorbed and utilized by tea plant. However, the mechanism of selenite

absorption and accumulation in tea plant is still unknown. In this study, RNA sequencing

(RNA-seq) was used to perform transcriptomic analysis on the molecular mechanism of sel-

enite absorption and accumulation in tea plant. 397.98 million high-quality reads were

obtained and assembled into 168,212 unigenes, 89,605 of which were extensively anno-

tated. There were 60,582 and 1,362 differentially expressed genes (DEGs) in roots and

leaves, respectively. RNA-seq results were further validated by quantitative RT-PCR.

Based on GO terms, the unigenes were mainly involved in cell, binding and metabolic pro-

cess. KEGG pathway enrichment analysis showed that predominant pathways included

ribosome and protein processing in endoplasmic reticulum. Further analysis revealed that

sulfur metabolism, glutathione metabolism, selenocompound metabolism and plant hor-

mone signal transduction responded to selenite in tea plant. Additionally, a large number of

genes of higher expressions associated with phosphate transporters, sulfur assimilation,

antioxidant enzymes, antioxidant substances and responses to ethylene and jasmonic acid

were identified. Stress-related plant hormones might play a signaling role in promoting sul-

fate/selenite uptake and assimilation in tea plant. Moreover, some other Se accumulation

mechanisms of tea plant were found. Our study provides a possibility for controlling Se

accumulation in tea plant through bio-technologies and will be helpful for breeding new tea

cultivars.

Introduction

Selenium (Se) is an essential micronutrient for human and animals. However, there is a very

narrow concentration margin between harmful and beneficial doses of Se [1]. Excessive Se can

cause poisoning [2], while Se deficiency may result in some endemic diseases such as Kashin-
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Beck disease and Keshan disease [3]. Plants can remove Se from natural or polluted high-Se

areas and can improve Se nutrition for human as food sources [4]. On the past years several

biofortification experiments on vegetables have been carried out and a large body of evidence

concerning the effects of Se supplementation has been collected [5–10]. Tea, one of the most

popular non-alcoholic beverages in the world and a cash crop widely cultivated not only in Se-

rich areas such as Enshi, Hubei province and Ziyang, Shanxi province but also in Se-deficient

areas, contains many medicinal ingredients like tea polyphenols, caffeine and amino acids and

can reduce fat, lose weight, lower blood sugar, improve immunity and so on [11–13]. Mean-

while, tea is superior to some plant foods in terms of Se content and can provide effective

organic Se for human body [14–17]. However, the mechanisms of Se absorption, transport

and metabolism in tea plant are still not clear, and relevant studies will be helpful for Se biofor-

tification and improvement of human nutrition.

Selenate (VI) and selenite (IV) are predominant forms of Se in plants. The forms of Se in

soil are greatly affected by redox potential and pH. A study of thermodynamic calculations

showed that selenate was the main existence form at the high redox state (pE+pH>15.0), and

selenite mainly existed in the medium redox range (7.5<pE+pH<15.0) [18]. The mechanism

of selenate uptake in plants is well understood. Se and sulfur (S) are similar chemically, and sel-

enate was absorbed by sulfate transporters [19–20]. For example, AtSultrl1;2 encoding one of

the high-affinity sulphate transporter genes was assayed via isolating Arabidopsis thaliana
mutants [21]. Several studies have also clarified that Sultr2, a low-affinity sulphate transporter

gene, was involved in translocation from roots to shoots, irrespective of Se supply or sulfate

starvation [22–23]. Unlike selenate, the mechanism of selenite absorption by plants is still

unclear. It was found that the absorption of selenite was unaffected by sulphate [24–25]. The

genes may be indispensable for both selenate and selenite absorption by roots. Early studies

suggested that selenite was assimilated by passive diffusion into roots [26]. Later, another

research found that a silicon(Si) influx transporter, OsNIP2;1 (a nodulin 26-like intrinsic mem-

brane protein subfamily of aquaporins), was related to selenite uptake [27]. However, two

phosphate transporters, OsPT2 and OsPT8, were also verified to be associated with the absorp-

tion of selenite [28–29]. Till now, there is no unified statement. A gene, CsSUL3.5, was cloned

from the roots of tea plant. The bioinformatics analysis showed that it belonged to the sulfate

transporter family and selenate treatment could induce its expression [30]. In spite of some

advances in physiology studies of selenite accumulation in tea plant [31–32], the genes related

with selenite uptake, transport and assimilation and the whole gene network are still not well

known and expect for further researches.

With the rapid development of next-generation sequencing technologies, RNA-Seq has

quickly become a powerful approach for studying transcriptional regulation systematically. In

this study, RNA-seq technology was used to identify genes involved in selenite uptake and

metabolism in tea plant. Transcriptome analysis was performed on both tender roots and

young leaf tissues of tea plant with or without selenite treatment. Our study is not only useful

to analyze the molecular mechanism of tea plant in response to selenite but will also be helpful

for breeding new tea cultivars.

Materials and methods

Experimental materials and culturing conditions

The one-year-old cuttings (Echa 1) were provided by tea germplasm resource nursery in

Hubei province. Uniform seedlings were pre-cultured until new roots grew. In early studies,

Se concentrations in nutrient solutions varied from 0, 0.015, 0.025, 0.050, 0.100, 0.200 to 0.400

mM. With the enhancement of Se concentration in nutrient solutions, the content of Se in
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roots increased gradually. The absorption and accumulation of Se was fast in the low Se con-

centration range (0.015–0.10 mM). Se could still be taken up in high-Se environment, but at a

low rate. However, the absorption rate of Se increased again at very high Se concentrations.

This might be because cell membranes were destroyed and Se entered cells directly. However, in

spite of this, there were no toxicity symptoms on the leaves (Fig B in S1 Fig). When the concen-

tration of Se was 0.05 mM, tea plants grew best, and the content of Se in roots increased at a very

fast rate (Fig A in S1 Fig), which was similar to other studies [32, 33]. Thus, Se was supplied as

selenite at this concentration in this study, with zero selenite concentration as the control. Three

replicates were performed with 20 seedlings per pot containing 10 L nutrient solution. The nutri-

ent solution was made based on a modified Hoagland’s formula [34], that is, 1/3 dilution of a full

solution containing 5.00 mM Ca(NO3)2�4H2O, 5.00 mM KNO3, 1.00 mM NH4NO3, 1.00 mM

KH2PO4, 2.00 mM MgSO4�7H2O, 0.10 mM FeSO4�7H2O, 0.10 mM C10H14N2Na2O8�2H20, 0.01

mM KI, 0.10 mM H3BO3, 0.15 mM MnSO4, 0.03 mM ZnSO4�7H2O, 1.00 μM Na2MoO4�2H2O,

0.10 μM CuSO4�5H2O, 0.20 μM CoCl2, with or without 0.05 mM selenite. The pH value was

adjusted to 5.0 every day with 1mM HCl or 1mM NaOH. The nutrient solution was aerated con-

tinuously and renewed once a week. The experiment was conducted in a greenhouse with a 300–

350μmol m-2s-1photon flux density for 12 h/d, and at day/night temperature of 30/24˚C and rel-

ative humidity of 80%. A month later, the bud spread into five new leaves. Seedlings were har-

vested separately, and the roots were rinsed with the desorption solution. Leaf tissues comprised

two leaves and a bud, and tender roots consisted of the latest and the second lateral roots. In the

end, all samples were frozen in liquid nitrogen and stored at -80˚C.

Total Se analysis

The roots and leaves were digested for 12 h with concentrated HNO3-HClO4 (4:1,v/v) at first,

and then completely digested at 180˚C until the digestion solution became colourless. After

cooling, 6 M HCl was added to reduce Se6+ to Se4+. Subsequently, the digested samples were

diluted and transferred into a 25 mL volumetric flask with double deionized water. Se concen-

tration was determined with an atomic fluorescence apectrometry (AF-610B, Beijing Ruili

Instrument Co., Ltd., China). The standard reference materials and a blank were digested for

quality control.

Determination of hydrogen peroxide (H2O2) content and antioxidant

enzymes’ activities

In order to determine the content of hydrogen peroxide, 0.5 g roots of the control and treated

seedlings were homogenized in an ice bath with 5 mL 0.1% (w/v) trichloroacetic acid. The

homogenate was centrifuged at 12000 g for 15 min at 4˚C and 0.5 mL of the supernatant was

added to 1 mL of 1 M KI and 0.5 mL of 10 mM potassium phosphate buffer (pH 7.0). The

absorbance was measured at 390 nm [35].

For the determination of the activities of antioxidant enzymes, 0.5 g roots were homoge-

nized in an ice bath with 4.0 mL of the extraction solution comprising 0.05 M phosphate buffer

(pH 7.0), 1.0% (w/v) polyvinypyrrolidone, 1 mM ethyleneglycol-bis(beta-aminoethylether)-N,

N’-tetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol and 0.2% Triton

X-100 (v/v). Insoluble materials were removed by centrifugation at 12000 g for 20 min at 4˚C.

The supernatant was kept at -20˚C for further measurement. For the assay of ascorbate peroxi-

dase (APX), 50 μL of the enzyme extract was added to 2.9 mL of the reaction buffer containing

50 mM Tris-HCl (pH 7.0), 0.1 mM ethylenediaminetetraacetic acid and 0.1 mM H2O2, and

then 50 μL of 30 mM ascorbic acid was added. The absorbance of the mixture was recorded at

290 nm after 10–60 s [36]. For the estimation of glutathione peroxidase (GPX), 50 μL of the
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enzyme extract was added to 2.9 mL of the mixture containing 50 mM Tris-HCl (pH 7.0), 0.1

mM ethylenediaminetetraacetic acid, 10 mM guaiacol and 5 mM H2O2. The absorbance of the

mixture was measured at 470 nm after 0.5–3.5 min [37]. For the determination of catalase

(CAT), 50 μL of the enzyme extract was added to 2.9 mL of the mixture comprising 50 mM

Tris-HCl (pH 7.0) and 0.1 mM ethylenediaminetetraacetic acid, and then 50 μL of 750 mM

H2O2 was added. The absorbance of the mixture was measured at 240 nm after 0.5–3.5 min

[38].

RNA isolation, library construction and sequencing for RNA-Seq

The total RNA was extracted from roots and leaf tissues separately using OminiPlant RNA Kit

(ComWin Biotech, Beijing, china). The RNA integrity was verified by RNase-free agarose gel

electrophoresis, the RNA purity was quantified by Nanodrop 2000 (Thermo, USA), the RNA

concentration was measured using a 2100 Bioanalyzer (Agilent Technologies, USA), and each

treatment was done in triplicate biologically. All twelve samples had a RNA integrity number

(RIN) >7.5, and a RNA concentration�100 ng/μL.

The total RNA was extracted and qualified, and an equal amount of RNA (3μg) was used to

construct the sequencing library with a NEBNext1 Ultra™ Directional RNA Library Prep Kit for

Illumina (NEB, USA) according to the manufacturer’s recommendations. In brief, mRNA was

enriched by Oligo (dT) beads from total RNA at first, and then fragmented into short ones

through fragmentation buffer and reversely transcripted into cDNA with random primers.

Using DNA polymerase I, dNTP, RNase H and buffer, the second-strand cDNA was synthesized.

The cDNA fragments were purified with QiaQuick PCR extraction kit, end repaired, added, and

ligated to illumina sequencing adapters. Finally, the products were selected by agarose gel elec-

trophoresis, PCR amplified, and paird-end sequenced with an Illumina HiSeqTM2000 system of

Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China).

Sequencing analysis, de novo transcripts assembly and functional

annotation

After sequencing, raw reads were filtered according to three rules: (1) removing reads contain-

ing adapters, (2) removing reads containing more than 10% of unknown uncleotides, (3)

removing low-quality reads containing more than 50% of low-quality (Q-value�10) bases.

The high-quality clean reads were mapped to ribosome RNA (rRNA) to identify residual

rRNA reads. The rRNA removed reads were de novo assembled by short reads assembling pro-

gram-Trinity (v2.1.1) [39], and statistics for length distribution of assembled unigenes were

made. The unigene expression was calculated and normalized to RPKM (reads per kb per mil-

lion reads) [40] based on RPKM (A) = (1000000�C)/(N�L/1000) (where C, N stand for the

number of reads uniquely mapped to unigene A and all unigenes respectively, and L stands for

the length of unigene A). This approach could eliminate the influences of unigene length and

sequencing discrepancies on the calculation of unigene expression. The false discovery rate

(FDR) was calculated to adjust the threshold of p value [41]. The unigenes with FDR<0.05 and

|log2FC|>1 were considered DEGs.

To annotate the unigenes, Blastx program (v2.2.29+) with an E-value threshold of 1e-5 was

used to find the unigenes against NCBI non redundant protein (Nr) database, the Swiss-prot

protein database, the kyoto encyclopedia of genes and genomes (KEGG) database, and the

clusters of orthologous groups (COG) database. According to the best alignment results, pro-

tein functional annotations could be obtained. Based on the results of Nr annotation, Gene

Ontology (GO) annotation of the unigenes was analyzed by blast2go software [42], and func-

tional classification of the unigenes was performed using WEGO program [43].
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Protein coding region prediction and transcription factor analysis

The unigenes coding sequence (CDS) was predicted by Blastx and ESTscan. At first, the uni-

genes were aligned by Blastx (E-value cutoff 10–5) to protein databases in an order of priority

from NR, Swiss-prot, KEGG to COG/KOG. Then, the best alignment results were chosen to

decide the sequence direction of the unigenes. If a unigene could not match with any protein

database, protein coding sequence and sequence direction would be confirmed using ESTScan

[44] program. Moreover, HMMER (v3.0) was used to predict transcription factor (TF) based

on the plant TF databases [45].

Real-time quantitative PCR assay

In order to confirm the reliability of RNA-seq results, 15 representative responsive genes were

chosen for qRT-PCR using KAPA SYBR1 FAST qPCR Master Mix (KAPA Biosystems,

Woburn, MA., USA) with an ABI 7500 Real-Time PCR system according to the manufacture’s

instructions. β-actin and dehyde-3-phosphate dehydrogenase (GAPDH) were used as refer-

ence genes. To derive the relative expression value, the delta-delta CT method [46] was

adopted. The sequences of the primers were listed in S1 Table.

Results

Se content

Se concentration analysis implied that Se contents in both roots and shoots showed increased

significantly with selenite treatment (p<0.01). Moreover, Se content in roots was much higher

than that in shoots, which was consistent with the findings in other species (Fig 1) [10, 25, 47–

48]. This is probably because selenite can be easily transformed into the organic form in roots

once absorbed by plants [49].

H2O2 content and three antioxidant enzyme activities

H2O2, a signaling molecule, plays an important role in oxidative response [50], but excessive

H2O2 can disrupt the antioxidant enzyme system. APX, CAT and many other compounds of

Fig 1. Changes of tea plants in response to selenite treatment. (A) Se contents in tea plant roots and leaves between

control and treatment groups. ## represents significant difference at 0.01 level. (B) Morphological appearance of tea

plant leaves treated with or without selenite.

https://doi.org/10.1371/journal.pone.0197506.g001
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plant cells are important to maintain an appropriate concentration of H2O2 at different devel-

opmental stages [51]. Table 1 showed the behaviors of H2O2, APX, GPX and CAT in the roots

of tea plants exposed to two treatments. Selenite treatment resulted in a reduction of H2O2

content. The activities of APX and GPX were improved, whereas the activity of CAT remained

almost unchanged with selenite treatment. It has been reported that APX and GPX could

reduce H2O2 content [52–53], which could explain the lower level of H2O2 accumulation.

Consequently, the higher activities of APX and GPX in the roots in the present study suggested

their importance of improving Se tolerance.

RNA-seq and de nove assembly

RNA-Seq of 12 libraries from young leaf tissues and tender roots with and without selenite

treatment (three replicates respectively) resulted in 411.22 million reads with more than 95%

exhibiting a quality score of Q20 (S2 Table). Using Trinity, 397.98 million high-quality clean

reads were de novo assembled into 168,212 unigenes (S3 Table) ranging from 201 to 17,995 bp,

with a mean length of 677 bp and a N50 length of 997 bp. All unigenes were longer than 200

bp and 54.43% (6,502) of unigenes were longer than 1,000 bp (S2 Fig), which indicated a high-

quality sequence, and could be used for further analysis.

Gene functional annotation and classification

A total of 89,605 unigenes were annotated in the four protein databases, among which 84,807

unigenes were annotated uniquely in NR database, 73,295 unigenes in Swiss-prot database,

64,630 unigenes in COG/KOG database, 48,049 unigenes in KEGG database, respectively. In

168,212 high-quality unigenes, 42,929 (25.52%) unigenes matched with all four databases and

84,807 (50.42%) unigenes matched with at least one database (Fig 2).

The maximum number of BLASTX top hits for the best group representatives was found

with Vitis vinifera (8.98%), followed by Theobroma cacao (3.00%), Klebsormidium flaccidum
(2.75%), Chrysochromulina sp. CCMP291 (2.69%), Nannochloropsis gaditana (2.61%), and Gal-
dieria sulphuraria (2.33%), suggesting that the genome of Camellia sinensis was more closely

related to Vitis vinifera than any other plant genomes.

In the unigene set of tea plants, 64,630 (38.42%) unigenes were categorized into 25 KOG

clusters (Fig 3), and the five largest ones were: (1) general function prediction only, (2) post-

translational modification, protein turnover, and chaperones, (3) signal transduction mecha-

nisms, (4) translation, ribosomal structure and biogenesis, (5) RNA processing and

modification.

Protein coding sequence prediction and transcription factors analysis

Using the BLASTx protein database, a total of 88,624 unigenes CDSs were tested, among

which 6,054 (6.83%) unigenes were longer than 500 bp, and 795 unigenes were longer than

1,000 bp. Another 15,104 unigenes CDSs could not match with the above-mentioned database.

Table 1. Effect of selenite treatment on the content of H2O2 and three antioxidant enzyme activities in the roots of tea plants.

Selenite concentration (mM) H2O2 (μg/gFW) APX(μmol ASA/min/g FW) GPX(μmol guaiacol/min/ FW) CAT(μmol H2O2/min/g FW)

0 44.953±5.89 1.998±0.25 9.626±2.53 10.333±0.00

0.05 18.420±3.52## 2.826±0.31# 12.573±3.66## 11.167±0.00

# represents significant difference at 0.05 level, and

## represents significant difference at 0.01 level

https://doi.org/10.1371/journal.pone.0197506.t001
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In total, 2,244 TF genes were identified as Se vs the control, which were classified into 57 fami-

lies. In terms of the number of genes, top 10 were C2H2, bZIP, bHLH, C3H, MYB_related,

ERF, MYB, NAC, GRAS, WRKY.

Differentially expressed genes in response to Se

After selenite treatment, 21,588/38,994 genes were up/down-regulated in roots, 231/1,131

DEGs were up/down-regulated in leaves (P<0.05, false discovery rate [FDR]<0.05, |log2FC|>

1) (S3 Fig). Among the significantly expressed genes in roots, only 423 genes were also induced

in leaves, of which 174/249 genes were up-and down-regulated. The difference of DEGs

Fig 3. KOG functional classification of tea plants transcriptome. In total, 64,630 unigenes were classified into 25

KOG clusters. y-axis represents the number of unigenes, and the capital letters on x-axis represent KOG categories as

listed at right of histogram.

https://doi.org/10.1371/journal.pone.0197506.g003

Fig 2. Venn diagram showing BLAST results of tea plants transcriptome against four databases. The assembled

unigenes were used in BLAST searches against four pubic databases. The number of unigenes with significant hits

against four database is shown at each intersection of Venn diagram.

https://doi.org/10.1371/journal.pone.0197506.g002

The RNA sequencing and tea plants

PLOS ONE | https://doi.org/10.1371/journal.pone.0197506 June 1, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0197506.g003
https://doi.org/10.1371/journal.pone.0197506.g002
https://doi.org/10.1371/journal.pone.0197506


indicated that the genes in response to selenite were different in roots and leaves. More genes

were found in roots than in leaves, which reflected the stimuli imposed by selenite as it was

transported in root cells. After all, the roots were where selenite was first perceived by plants.

GO enrichment analysis of differentially expressed genes

Based on GO terms, a total of 53,131 unigenes could be classified into 3 gene ontology (GO)

categories, i.e., biological process, molecular function and cellular component. There were

more unigenes classified into cellular component than the other two categories. GO enrich-

ment analysis of DEGs found that the most enriched ones were metabolic process, catalytic

activity, and cell in both roots and leaves (Fig 4 and S4 Fig)

KEGG pathway enrichment analysis of DEGs

KEGG pathway enrichment analysis was performed on the up- and down-regulated genes. In

leaves, the up- and down-regulated genes were enriched on 39 and 67 pathways, respectively.

The pathways where the up-regulated genes were mostly enriched were carbon metabolism (3

unigenes), nitrogen metabolism (2 unigenes) and phenylpropanoid biosynthesis (2 unigenes)

(Fig 5A), and the pathways where the down-regulated genes were mostly enriched were ribo-

some (55 unigenes), oxidative phosphorylation (20 unigenes) and phenylpropanoid biosynthe-

sis (11 unigenes) (Fig 5B). In roots, the up- and down-regulated genes were enriched on 126

and 127 metabolic pathways, respectively. The pathways for significant enrichment of the up-

regulated genes were ribosome (1664 unigenes), oxidative phosphorylation (366 unigenes)

and phagosome (327 unigenes) (Fig 5C), while the pathways for significant enrichment of the

down-regulated genes were ribosome (2121 unigenes), protein processing in endoplasmic

reticulum (664 unigenes) and endocytosis (463 unigenes) (Fig 5D). DEGs in both roots and

leaves were mainly enriched in ribosome (52 unigenes) and oxidative phosphorylation (14 uni-

genes). It is noteworthy that 46, 164, 40, 169, 63, 112 of the up-regulated genes in roots were

respectively enriched in sulfur metabolism, cysteine and methionine metabolism, selenocom-

pound metabolism, glutathione metabolism, plant hormone signal transduction, plant-patho-

gen interaction, indicating that these pathways were activated by selenite (S4 Table).

Fig 4. Function classifications of GO terms of tea plant roots transcripts. The x-axis indicates the number of genes

in a subcategory, and the y-axis indicates the different subcategories.

https://doi.org/10.1371/journal.pone.0197506.g004
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RT-PCR analysis

To confirm RNA-seq data, 15 genes related with uptake and metabolism, defense and tran-

scription factors in the roots were selected for qRT-PCR analysis. The expression tendency of

these genes agreed well with RNA-seq results, which suggested that RNA-seq results were

pretty reliable (Fig 6).

Discussion

Tea plant can enrich Se from the external environment, and the bioavailable form in the

leaves is the water-soluble Se. In our study, the content of two leaves and a bud was about

4.67 μg/g (dry weight), based on that water was 73% in the fresh leaves. The dietary refer-

ence intake of Se is 50 μg/d for adult humans in China, according to Chinese Nutrition Soci-

ety. Normally, a healthy adult may drink 6~10g tea per day, and the leaching rate is up to

46.35% [54]. So one can obtain 12.99–21.65 μg Se, which verify that tea is an important

source of Se.

The next-generation sequencing technologies are reliable tools to illuminate new genes and

their involvement in biochemical pathways in non-model plants. Using RNA-seq, Se-induced

genes have been identified in other species [55–56], but little has been known about genes

involved in Se uptake, accumulation and tolerance in tea plant until recently. In this study,

RNA-seq was employed to investigate Se genes based on expression changes in response to sel-

enite, a predominant form of Se in the tea garden soil, and more than 1000 DEGs were identi-

fied in roots and leaves of tea plants. These DEGs, including some genes which had been

reported previously, provided candidate genes for further investigating selenite uptake, trans-

port and assimilation in tea plant and other plants. Furthermore, among the assembled

Fig 5. KEGG enrichment analysis of DEGs in tea plants. (A) Up-regulated genes in the leaves, (B) down-regulated

genes in the leaves, (C) Up-regulated genes in the roots, (D)down-regulated genes in the roots. The x-axis indicates the

enrichment factor, and the y-axis shows the KEGG pathway. The color of dot represents the Q-value, and the size of

the dot represents the number of genes.

https://doi.org/10.1371/journal.pone.0197506.g005
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unigenes, 78,806 were not annotated, which provided basic information on the discovery of

new transcripts.

Unigenes related to absorption, transport and metabolism during selenite

treatment

Early studies implied that Se mainly as selenate and selenite is transported in plants via S and

phosphate (P) transports, respectively. In our study, a comparison of the expression levels of

genes encoding ion transporters was made between two treatments with and without selenite.

Interestingly, genes encoding phosphate transporters were far more than those encoding sul-

fate transporters and expressed at significantly higher levels, though the absorption and trans-

location of selenite were not affected by sulphate [26]. There were 9 genes involved with sulfate

transporters (Fig 7B). Besides, 18 phosphate transporter genes were memorably up-expressed

in the roots, including mitochondrial phosphate carrier genes, inorganic phosphate trans-

porter genes and phosphate transporter genes (Table 2). Among them, there were 3 up-regu-

lated genes (Unigene0009567, Unigene0115349, Unigene0143441) encoding phosphate

transporter PHO1-like protein, which were associated with ion transport between roots and

shoots [57]. These results indicated P transporters and S transporters were responsible for the

uptake and transport of selenite in tea plants, and P transporters played a more important role.

Once absorbed into cells, Se can take advantage of S assimilation pathway and form into

selenocystein and selenomethionine [58]. 34 different S-assimilation genes were significantly

differentially expressed, including sulfate permease genes, sulfite reductase, ATP sulfurylase,

and genes mediating cysteine and O-acetylserine sulfhydrylase/homocysteine synthesis genes

in the roots, and 1 S-assimilation gene involved in cysteine synthesis had a higher expression

in the leaves. ATP sulfurylase (ATPS) is the first and rate-limiting enzyme in the sulfate meta-

bolic pathway. In our study, ATPS1 was identified in the roots of tea plants (Fig 7B). There are

four ATPS genes (ATPS1-4) in Arabidopsis thaliana, ATPS2 is located in cytoplasm and plays a

major role in the assimilation of selenate. ATPS1, 3, 4 are found in plastid and provide APS for

subsequent reactions but don’t participate in the reduction of Se [59]. Sulfite reductase is

responsible for the reduction of selenite, and it has been identified to localize to plastids in Ara-
bidopsis [60–61]. In leaves, Se accumulation might be related with the up-regulation of the

genes encoding cysteine synthase, which was similar to the observations with other species

[23, 62]. Moreover, 12 genes encoding selenoprotein were up-regulated in selenite treatment

Fig 6. Verification of relative expression levels of DEGs by qRT-PCR. Red lines represent the RNA-seq results,

while blue bars represent the qRT-PCR results. All qRT-PCR analyses were done in three biological replicates and four

technical replicates. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0197506.g006
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Fig 7. Heat map diagram of expression patterns for DEGs related with signaling (A), sulfur and selenocompound

metabolism (B), antioxidant control genges (C). Colors show the log2(fold change value):the Redder the color,the

higher the expression,the greener the color,the lower the expression.TR0-1,TR0-2,TR0-3:roots of control samples;TR1-

1,TR1-2,TR1-3:roots of selenite treated samples.

https://doi.org/10.1371/journal.pone.0197506.g007

Table 2. The genes related with phosphate transporters in the roots of tea plants.

GeneID Tissue Description Fold change P value

Unigene0005774 roots mitochondrial phosphate transporter 2.835 0.0073

Unigene0009567 roots phosphate transporter PHO1 homolog 1 1.312 2.60E-05

Unigene0009898 roots MC family transporter: phosphate 1.014 0.0028

Unigene0012455 roots mitochondrial phosphate carrier 1, minor isoform 11.493 2.55E-12

Unigene0014471 roots mitochondrial phosphate transporter 1.267 0.0057

Unigene0028463 roots mitochondrial phosphate carrier 1 2.674 0.0152

Unigene0031729 roots Mitochondrial phosphate carrier protein 1.567 5.55E-07

Unigene0058100 roots mitochondrial phosphate transporter 11.710 4.52E-28

Unigene0066161 roots phosphate transporter 1 1.879 4.41E-19

Unigene0067345 roots mitochondrial phosphate transporter 3.815 1.20E-44

Unigene0083486 roots mitochondrial phosphate carrier protein 2 11.397 6.88E-08

Unigene0083534 roots high affinity inorganic phosphate transporter 2.664 4.35E-71

Unigene0096431 roots Mitochondrial phosphate carrier protein 2.133 1.36E-26

Unigene0099537 roots mitochondrial phosphate carrier protein 1 1.599 2.31E-07

Unigene0115349 roots Phosphate transporter PHO1 -like protein 1.764 0.0099

Unigene0143441 roots phosphate transporter PHO1-like protein 1.624 1.65E-24

Unigene0146768 roots phosphate transport protein 2.641 0.0022

Unigene0146769 roots phosphate transport protein 3.147 7.25E-05

https://doi.org/10.1371/journal.pone.0197506.t002
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(Fig 7B), which was similar to the study by Freeman JL [62]. Selenocysteine was encoded by a

UGA opal codon, which was generallya translational stop codon [63]. Selenoproteins that have

selenocysteine residues in their catalytic site have been found in many organisms such as

humans and bacteria but are rare in higher plants. Surprisingly, several selenoproteins were

found in our study, which is worth our continued attention. In addition, 2 genes (Uni-

gene0019110, Unigene0055824) encoding metallothioneins were up-regulated in the roots and

1 gene in the leaves (Unigene0019110). Previous studies have found that metallothioneins

could affect metal tolerance and active oxygen scavenging [64].

Unigenes related to antioxidant enzymes and antioxidant substances

responding to selenite treatment

Another possible mechanism of Se tolerance and accumulation in tea plants might be its

capacity to reduce or prevent Se-related oxidative stress. In the roots of tea plants grown with

selenite treatment, 121 different genes were significantly expressed, encoding glutathione S-

transferase (GST), glutathione synthetase, glutathione peroxidase, glutathione reductase, glu-

taredoxin and catalase. Meanwhile, 5 antioxidant-related genes showed significant expression

in the leaves, encoding GST, catalase and defensin-like protein, which were considered to be

Se-responsive genes in Arabidopsis thaliana and other Se-rich plants [62, 65]. It was worth

mentioning that several GST genes were significantly expressed in both roots and leaves, and

the highest abundance existed in roots rather than leaves. It was well known that GST was able

to protect cells from oxidative damages because it could combine excess toxin with glutathion

and form, transfer to and separate S-glutathione conjugates in the vacule [66]. Moreover, in

roots, an up-regulated gene (Unigene0045428) encoding glutathione synthetase was deemed

to be associated with Se tolerance and accumulation in tea plants. The reason was that GSH
was related to selenite reduction and led to the absorption of selenite in roots [67]. Besides, 3

genes (Unigene0035324, Unigene0038126, Unigene0093881) encoding GPXwere up-regu-

lated, which might result in a high tolerance to selenite.

Unigenes related to plant hormones in response to selenite treatment

Plant hormones are particularly important for nutrient homeostasis [68]. In our study, a cer-

tain number of genes in relation to plant hormones were found in roots, including 2 up-regu-

lated genes (Unigene0100356, Unigene0064285) involved in ethylene biosynthesis and 2 up-

regulated genes (Unigene0057061, Unigene0106898) involved in JA biosynthesis (Fig 7A).

Previous studies have found that the levels of methyjasmonate (MeJA) and ethylene in young

leaves were higher in S.pinnata (Se hyperaccumulator) than in S.albescens (secondary Se accu-

mulator) with Se treatment [65]. In Arabidopsis, several genes related with the synthesis of jas-

monate and ethylene were up-regulated in roots with Se treatment, which were proved to be

associated with selenite resistance [68]. However, Zhou [31] reported that MeJA could effec-

tively increase the absorption of selenate, but not selenite. In general, ethylene and jasmonate

were thought to be “stress hormones”. Ethylene upregulated stress-related genes and JA upre-

gulated both stress-related and S metabolism genes [69–70]. Generally, production of “stress

hormones” is triggered by reactive oxygen species (ROS) [65, 71–72]. Under Se treatment,

ROS was detected in both Se hyper-accumulator and non-accumulator plants [62, 65, 73]. An

interesting thing was that ROS production induced by selenite was more in Col-0 (Se-resistant

accession) than in Ws-2 (Se-sensitive accession) [65], which showed that ROS promoted the

acquisition of Se resistance in non-accumulator plants. However, excessive ROS may suppress

Se resistance. The generation of ROS might be caused by cytosolic calcium [58]. In our study,

9 genes related to calcium signaling, such as calcium-binding protein and calcium tranporters
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(Fig 7A), were identified in the roots, which was similar to Se-treated A.thaliana [74]. A possi-

ble mechanism is that the concentration changes of cytosolic calcium can improve NADPH

oxidase activity, and trigger ROS generation [58]. However, selenite had an opposite effect on

cytokinin and nitric oxide metabolism, and their overproduction led to selenite insensitivity

[75]. Plant hormones, especially ethylene and jasmonate, could regulate a defensive network

by up-regulating the expression levels of transcriptional factors. The genes encoding the ethyl-

ene-responsive factor (EFR) family (Unigene0060078, Unigene0106367, Unigene0149192)

were identified in roots with selenite treatment. Moreover, two transcription factors belonging

to theMYB transcription factor family (Unigene0088856, Unigene0094961) were up-regu-

lated. Similarly, selenite treatment also induced the up-regulated expression of a heat shock

transcription factor (Unigene0010336) and a bZIP reanscription factor (Unigene0039326)

(Table 3). Furthermore, these hormones affected S uptake and assimilation [71], which might

be helpful for plants to keep Se from replacing S in proteins [76].

Conclusion

As suggested by the RNA-seq analysis, selenite was mainly taken up by the phosphate trans-

porters, most of which was stored in the roots of tea plants and then assimilated into organic

forms such as selenocysteine through the sulfate assimilation pathway. The process might

occur in both roots and leaves, mainly in roots. Selenite could induce substantial up-regulation

of genes associated with oxidative stress, which suggested that antioxidant processes played an

important role for Se tolerance and accumulation in tea plants. Moreover, hormones might

play a signaling role. Our results provide valuable information on the molecular regulation of

selenite in tea plant.
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