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Abstract

Information on circulating miRNAs in frontotemporal lobar degeneration is very limited and

conflicting results have complicated an interpretation in Alzheimer’s disease thus far. In the

present study we I) collected samples from multiple clinical centers across Germany, II)

defined 3 homogenous patient groups with high sample sizes (bvFTD n = 48, AD n = 48 and

cognitively healthy controls n = 44), III) compared expression levels in both CSF and serum

samples and IV) detected a limited set of miRNAs by using a MIQE compliant protocol

based on SYBR-green miRCURY assays that have proven reliable to generate reproducible

results. We included several quality controls that identified and reduced technical variation

to increase the reliability of our data. We showed that the expression levels of circulating

miRNAs measured in CSF did not correlate with levels in serum. Using cluster analysis we

found expression pattern in serum that, in part, reflects the genomic organization and affilia-

tion to a specific miRNA family and that were specifically altered in bvFTD, AD, and control

groups. Applying factor analysis we identified a 3-factor model characterized by a miRNA

signature that explained 80% of the variance classifying healthy controls with 97%, bvFTD

with 77% and AD with 72% accuracy. MANOVA confirmed signals like miR-320a and miR-

26b-5p at BH corrected significance that contributed most to discriminate bvFTD cases with

96% sensitivity and 90% specificity and AD cases with 89% sensitivity and specificity
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compared to healthy controls, respectively. Correlation analysis revealed that miRNAs from

the 3-factor model also correlated with levels of protein biomarker amyloid-beta1-42 and

phosphorylated neurofilament heavy chain, indicating their potential role in the monitoring of

progressive neuronal degeneration. Our data show that miRNAs can be reproducibly mea-

sured in serum and CSF without pre-amplification and that serum includes higher expressed

signals that demonstrate an overall better ability to classify bvFTD, AD and healthy controls

compared to signals detected in CSF.

Introduction

The role of microRNAs (miRNAs) in neurodegenerative disorders has gained growing interest

in the field [1]. This is due to matured technologies, which now enable the reliable detection of

miRNAs in body fluids [2]. MiRNAs are small non-coding RNA that selectively bind different

messengerRNAs (mRNA) to downregulate its translation into proteins. These ~22 nucleotides

long molecules control fundamental biological processes such as neurogenesis, immune

responses and aging and are critical to cellular expression homeostasis [3]. In addition, the

transport of miRNAs in extracellular vesicles such as exosomes secreted by neurons and glia

plays a key role in intercellular communication and neuroinflammation [4]. The fact that miR-

NAs are released as circulating miRNAs into the bloodstream not only enables detection, but

deregulated signals may reflect neurodegenerative conditions that occur in AD [1, 5]. Thus,

miRNAs are easily accessible in minimally invasive body fluids such as serum and cerebrospi-

nal fluid (CSF) [6] and are also known to remain largely stable towards freeze-thawing cycles

and RNAse activity [7, 8]. Detection by RT-qPCR is accurate and inexpensive and potentially

easier to integrate into clinical routine than assays detecting proteins. A deeper investigation

of the role of miRNAs may also foster our understanding of neurodegenerative diseases and

lead to new therapeutic approaches.

In contrast to AD, frontotemporal lobar degeneration (FTLD) is a neurodegenerative disor-

der for which information on circulating miRNAs is very limited. Our knowledge on the miR-

Nome is still scarce. FTLD is characterized by a progressive degeneration of the frontal and

anterior temporal lobes causing pathological changes in behaviour and language. About 10–

30% of FTLD cases have a known genetic predisposition. Mutations in genes like C9orf72,

GRN (progranulin), MAPT (microtubule associated protein tau) or TBK-1 (encoding TANK-

binding kinase 1) can cause FTLD [9–12]. Autosomal dominant inherited cases often occur

clustered in families [13]. The large majority of sporadic FTLD cases is, however, of unknown

etiology, albeit genetic alterations are to be expected there too [14]. The behavioural variant

(bvFTD) accounts for more than half of the cases [15] and is histopathologically described by

distinct inclusion bodies either comprised of Tau (FTLD-TAU) [16] or ubiquitinated TDP-43

(FTLD-TDP) [17]. Despite considerable efforts, in-vivo biomarkers are not yet available for

FTLD.

We hypothesize that miRNAs in serum and CSF may serve as biomarkers differentiating

patients with bvFTD, AD and cognitively healthy controls. Hence, we designed a study follow-

ing guidelines such as the “minimum information for publication of quantitative real-time

PCR experiments” (MIQE) [18] by using SYBR-green based LNA assays (Exiqon A/S), which

have proven reliable to measure miRNAs in body fluids compared to other technologies. We

profiled two customized miRNA panels each including n = 96 comparable assays in 48 bvFTD,

48 AD and 44 control CSF and serum samples to identify possible biomarker pattern.
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Methods

Ethics statement

Collection and analysis of samples were approved by the local Ethics Committees of Depart-

ments of Neurology and Psychiatry participating in the German FTLD Consortium, a quality-

controlled, monitored, multicenter initiative (Ulm approval number 20/10) [19]. All partici-

pants of the registry gave their written informed consent for all investigations and their data

were fully anonymized prior to any entries in the database. The data we worked with were

fully anonymized. All investigations were carried out according to international Good Labora-

tory Practice (GLP) and Good Clinical Practice (GCP) standard.

Patient data

Our study population included n = 140 CSF and n = 131 serum samples of bvFTD (48 CSF /

48 serum), AD (48 CSF / 47 serum) and cognitively healthy control cases (HC) (44 CSF / 38

serum). For each case a pair of CSF and serum material was available except for n = 9 serum

samples. All samples were provided by the German consortium for frontotemporal lobar

degeneration (FTLDc), which were collected from 10 academic centers across Germany [19].

All bvFTD patients met standard diagnostic criteria according to Rascovsky et al. (2011) [20].

Alzheimer’s disease (AD) was diagnosed according to criteria from the National Institute of

Neurological and Communicative Diseases and Stroke (NINCDS)–Alzheimer’s Disease and

Related Disorders Association [21]. Participants were assessed with extensive diagnostic tools

including physical and neurological examination, clinical laboratory testing and analysis of

CSF, genetic screening of C9orf72, GRN, MAPT for pathogenic mutations. CSF was obtained

by lumbar puncture in a sitting position according to standard procedures [22]. 4 ml CSF was

collected into a polypropylene test tube for routine diagnosis as well as for further studies. CSF

was free of blood contaminations and tested for hemoglobin. CSF was centrifuged (1600 g, RT,

10 min) and frozen within 30 min after the puncture at -80˚C until use. Blood was drawn in

7.5 ml S-Monovette Serum Gel Z tubes (Sarstedt, Germany), incubated for 10 min at RT, cen-

trifuged (2000 g, 4˚C, 10 min) and frozen within 30–40 min after blood sampling at -80˚C

until use. The CSF and serum samples were at no time thawed/refrozen.

Genetic analyses

DNA was available from 61 participants. Screening of C9orf72 for pathogenic repeat expansion

was performed by amplicon length analysis and repeat-primed PCR was conducted in 61 sam-

ples. In case of a suspected expansion, southern blot analysis was performed for confirmation

(Akimoto et al., 2014) [23]. In samples from participants with a familial history of a neurode-

generative disease, all exons and flanking intronic regions in MAPT and GRN were screened

by Sanger sequencing (details available upon request). The sequencing results were compared

to reference sequences (GenBank entry NM_005910, NM_002087) using the SEQUENCE

pilot software (JSI medical systems).

Laboratory markers

The concentration of albumin, IgG, IgA and IgM in CSF and sera was determined as described

earlier (Jesse et al., 2011) [24]. Samples were analysed in the neurochemical lab at the depart-

ment of Neurology in Ulm. Commercially available ELISA kits were used for Neurofilament

light chain (NfL) (IBL, Hamburg, Germany), phosphorylated Neurofilament heavy chain

(pNfH) (Biovendor, Heidelberg, Germany), Progranulin (Biovendor, Heidelberg, Germany),
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Tau, pTau and amyloid-beta1-42 (Fujirebio, Hannover, Germany) according to the manufac-

turer’s instructions.

RNA isolation

Total RNA, including miRNA, was purified from 250 μl cell-free CSF and 200 μl serum sam-

ples using the miRNeasy Serum/Plasma Kit (Qiagen, P/N 217184). The protocol was applied

according to the manufacturer’s recommendations with the following modifications. QIAzol

Lysis Reagent mixture containing 1.25 μg/ml MS2 bacteriophage RNA (Roche Applied Sci-

ence) and 1 μl RNA spike-in template mixture containing synthetic UniSp2, UniSp4, and

UniSp5 (Exiqon, P/N 203203) was added to all samples. The total RNA was not treated with

DNase and eluted with 22 μl RNAse-free water and stored at -80˚C until use.

RT-qPCR

Total RNA was reverse transcribed using the Universal cDNA synthesis kit II, (Exiqon, P/N

203301). Briefly, cDNA was synthesized using 8 μl of total RNA isolated from CSF or serum

including 1 μl of a spike-in mix containing synthetic UniSp6 and cel-39-3p (Exiqon, P/N

203203) using a poly-T primer with a 3’ degenerate anchor and a 5’ universal tag in a 20 μl

reaction. Reverse transcription was performed at 42˚C for 60 min and 95˚C for 5 min on a

qTower 2.2 (Jena Analytik). 10 μl cDNA was diluted 50x with RNase-free water and added to

500 μl 2x PCR Master mix according to the protocol for the miRCURY LNA Universal RT

microRNA PCR System (Exiqon A/S). 10 μl of each sample was assayed on a custom Pick-

&-Mix microRNA PCR panel containing pre-spotted LNA primers (S1 Table). Both the CSF

and the serum panel each consisted of n = 96 abundant and highly expressed miRNAs. N = 76

miRNAs were identical on both panels, but n = 20 different. All miRNAs were selected based

on a preliminary pilot study [1] and a comparable study by Mooney et al. [25], that both used

OpenArray technology and pre-amplification. A no-template control (NTC) of RNase-free

water was co-purified and profiled like the samples to measure background. Amplification was

performed on a qTower 2.2 (Jena Analytik) using the following thermal cycling protocol: 95˚C

for 10 min, 45 amplification cycles at 95˚C for 10 s and at 60˚C for 60 s (fluorescent reading),

followed by a melting curve analysis.

Pre-processing, quality control and normalisation

We adapted our RT-qPCR protocol to the MIQE guidelines in order to provide sufficient

experimental details to increase the reliability of our data (S2 Table) [18]. Raw unprocessed fluo-

rescence values were exported from the qTower 2.2 and analysed with the “qpcR” package [26].

Cq values were calculated by using the second derivative maximum after fitting a 5-parameter

sigmoidal model to the fluorescence data [27]. In addition, qPCR runs with kinetic outliers

were identified and removed [28]. Furthermore, all signals showing < 80% valid data after

applying the following QC criteria were excluded from analysis: (1) Signals with Cq� 37 and

dCq� 3 (CtNTC−CtmiR-x) were considered background, (2) all assays were inspected for distinct

melting curves and (3) serum samples with a dCq� 7 (CqmiR-23a −miR-451) were considered at

high risk of hemolysis [29].

NormFinder and GeNorm were used to identify potential reference miRNAs using GenEx

[30, 31]. CSF samples were normalised to miR-101-3p, miR-320a and miR-99a-5p. Serum sam-

ples were normalised to let-7i-5p, miR-23a-3p, miR-23b-3p and miR-30e-5p. Relative expres-

sion was calculated as follows: dCt = Ct (Ctmean RefmiR − CtmiR) and ddCt = mean dCtAD or bvFTD −
mean dCtHC. Higher values indicate higher expression. Only signals with a ddCt� |0.58|, which

corresponds to a fold change of� |1.5|, were considered as differentially regulated.
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Absolute quantification

Synthetic oligos that match mature miRNA sequences (S3 Table) were ordered from IDT (Inte-

grated DNA Technologies) to prepare an initial pool of oligos each with a concentration of 33

nM. Standard curves were generated by preparing 4-fold serial dilutions (n = 7) each at a vol-

ume of 80 μl containing 0.8 μg/μl MS2 carrier RNA (Roche) following RT-qPCR as described

earlier. Standards were measured as cDNA duplicates and PCR triplicates and assayed on a cus-

tom Pick-&-Mix microRNA PCR Panel containing n = 96 pre-spotted LNA primers (S3 Table).

Background was measured with a no template control including water. Standard curves were

obtained by fitting a regression line to the samples with known concentrations.

Statistics

Two-tailed unpaired Mann-Whitney t-tests at a significance level of 5% were used to deter-

mine statistical differences between two groups and chi square tests for dichotomous variables

to examine demographic group differences. One-way MANOVA was applied to identify statis-

tical differences between more than two groups, respectively. P< 0.05 (two sided) was consid-

ered as statistically significant. The false discovery rate was controlled by using the Benjamini–

Hochberg procedure when conducting multiple comparisons. Correlations were determined

using Pearson r for normally distributed data or the Spearman test when data were not nor-

mally distributed at a 5% significance level. To evaluate diagnostic accuracy we used receiver

operating curves and discriminant analysis. Unsupervised hierarchical clustering and differen-

tial correlations were calculated by using the DiffCorr v0.4.1 package for R [32].

Exploratory Factor Analysis (EFA) permits examination of how unmeasured latent vari-

ables (factors) summarize patterns of correlations found in the measured relationships

between miRNA expression levels. The following criteria for the factorability of a correlation

were used: 1) correlation of all variables with at least 0.3 with at least one other variable, 2) the

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy for each variable must be� 7.5

and Bartlett’s test of sphericity should be significant, 3) the diagonals of the anti-image correla-

tion should be above 0.5, 4) the communalities above 0.3 and 5) only miRNAs based on factor

loadings� |0.5| were considered significant in contributing to the respective factor. A scree

plot assisted of how many factors should be extracted. The eigenvalues indicate how much of

the variance is explained by each factor. Calculation and graphics were done using XLStat

(v19.4), GraphPad (v7.03) and SPSS (v24) software and the R 3.4.2 statistical programming

language (R Development Core 2008).

Results

Characteristics of study population

As summarized in Table 1, no significant difference was observed in the distribution of age

and gender. The bvFTD group had higher MMSE scores compared to the AD group (p<0.05).

Classical protein biomarkers Tau and pTau were increased in CSF in the AD patients com-

pared to the bvFTD and control cases (p<0.0001). Conversely, amyloid-beta1-42 levels were

decreased in both the AD and bvFTD group compared to the controls (p<0.0001). We also

measured levels of the neurofilament light and the phosphorylated heavy chain but detected

large variation in CSF. NfL levels were observed significantly higher (p<0.05) in bvFTD cases

and pNFH levels were higher (p<0.05) in AD cases compared to controls. Since we were pri-

marily interested in the sporadic, non-genetic bvFTD, we examined our samples for mutations

in the genes C9orf72, GRN and MAPT. A total of 41 of the 48 bvFTD and 20 of the 48 AD cases

were tested negative for the most prominent gene C9orf72. Further, no mutations in the genes
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MAPT and GRN were identified in the tested AD (n = 11) and bvFTD (n = 11) cases. To

address possible center-effects, we compared the baseline miRNA expression data of the study

sites (S1 Fig).

Quality controls indicate low technical variation and consistent detection

of miRNA levels in CSF and serum

With a mean Cq of 33.61 ± 2.2, the expression of circulating miRNAs in CSF was > 26-fold

lower compared to serum with a mean Cq of 28.89 ± 3.66. This was also reflected by the

increased number of positive signals detected for each miRNA in our serum data. In total, 77

miRNAs displayed� 80% positive signals per miRNA in serum while this only applied to 55

miRNAs in CSF. RNA isolation was monitored by using a subset of synthetic miRNAs that

simulate high (UniSp2), medium (UniSp4) and low (UniSp5) expressed signals to measure

and compare extraction efficiency [29]. cDNA synthesis was controlled by UniSp6 and cel-

miR-39. Our results demonstrate constant extraction efficiency across all samples with accept-

able intra-assay variation as well as constant efficiency of the reverse transcription step with no

signs of inhibition (S2A Fig). However, two serum samples were removed due to suspicious

expression of spikes. We also checked the degree of hemolysis in our serum samples. The

obtained data were not affected by erythrocyte miRNA contamination. Only a minority of

serum samples indicated a possible but no high risk of hemolysis (S2B Fig). Using Normfinder

and GeNorm, we were able to identify a subset of miRNAs for CSF and serum that consider-

ably reduced technical variation compared to un-normalized data (S2C and S2D Fig). Further-

more, standard curves based on synthetic miRNA oligos were generated for a subset of assays

to assess PCR efficiency and to estimate copy numbers. For the selected set of miRNA assays,

PCR efficiencies were within an acceptable range of E = 0.95–0.98, which demonstrated low

variation and good assay performance (S3 Fig). We also measured CSF and serum samples iso-

lated at different days to test the inter-assay variance of our protocol. SYBR-green miRNA

Table 1. Demographic and descriptive parameters for study population.

Characteristic1 /

samples

HC

(CSF n = 44)

(serum n = 38)2

bvFTD

(CSF n = 48)

(serum n = 48)

AD

(CSF n = 48)

(serum n = 47)2

p-value (ANOVA / x2)

AD vs

HC

AD vs

bvFTD

bvFTD vs HC

Age (years) 64 ± 11.3 65 ± 9.2 65 ± 9.3 ns ns ns

Sex (male/female) 20/24 30/18 22/26 ns ns ns

MMSE nm 24 ± 4 21 ± 5.3 na < .05 na

Tau [pg/ml] 317.6 ± 118.8 433.4 ± 414.7 738 ± 288.9 < .0001 < .0001 ns

pTau [pg/ml] 35.1 ± 6.7 59.4 ± 37.2 96 ± 38.2 < .0001 < .0001 < .05

Aβ1–42 [pg/ml] 1031.5 ± 272.2 872.1 ± 338 513 ± 160.6 < .0001 < .0001 < .05

NfL [pg/ml] 1449.1 ± 940.2 2706.4 ± 1816.2 2157.6 ± 1026.4 ns ns < .05

pNfH [pg/ml] 307.6 ± 151.8 464.56 ± 253.85 540.33 ± 244.96 < .05 ns ns

Tested / not tested for mutation in C9orf72, MAPT, GRN (n) na 41 / 7

11 / 37

11 / 37

20 / 28

11 / 37

11 / 37

na na na

Tested negative for mutation in C9orf72/MAPT/GRN nm 41

11

11

20

11

11

na na na

1 Data represent mean ± SD analysed by 1-way ANOVA (age and CSF biomarker) and t-test (MMSE). Gender ratio was analysed by χ2.
2 Reduced number of serum samples did not lead to a significant change in demographical data. AD = Alzheimer’s disease, bvFTD = behavioural variant frontotemporal

dementia, HC = healthy controls, na = not applicable, nm = not measured.

https://doi.org/10.1371/journal.pone.0197329.t001
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assays displayed consistent expression with low inter-assay variance for serum (R2 = 0.99, F

(1,70) = 11078, p< .0001) and CSF (R2 = 0.97, F(1,74) = 2215, p< .0001) showing a trend

towards increasing day-day variation at higher expression levels as seen in the CSF data (S4

Fig).

Expression levels of circulating miRNAs in serum do not correlate with

levels in CSF

Following quality control and the removal of low expressed signals, we were able to compare

34 of the 76 identical CSF and serum miRNA assays in 131 samples. Taking into account all

subjects, an average correlation of r = 0.077 (p = ns) indicated no association of miRNA

expression levels in serum compared to expression levels in CSF. If we considered expression

levels of individual miRNAs, we observed that some of these correlated significantly between

serum and CSF, however, only with weak (r<0.3) associations. This finding applied to all three

subgroups. Taking into account the mean values of the respective subgroups, the control

(r = 0.051, p = ns), bvFTD (r = 0.077, p = ns) and AD (r = 0.057, p = ns) group displayed no

significant associations. However, expression levels of a few miRNAs showed significant corre-

lations of moderate extent in the respective subgroups. This applied to both miR-19b-3p

(r = 0.37, p = 0.023) and miR-25-3p (r = 0.45, p = 0.011) in the control group. Significant posi-

tive correlations of miRNA expression levels in serum with expression levels in CSF were also

found for miR-143-3p (r = 0.34, p = 0.023), miR-29b-3p (r = 0.33, p = 0.025) and miR-29c-3p

(r = 0.44, p = 0.002) in the bvFTD group. Interestingly, miR-24-3p showed a significant nega-

tive correlation, r = -0.33, p = 0.026. In the AD group, serum expression levels of let-7f-5p

(r = 0.32, p = 0.032), miR-100 (r = 0.36, p = 0.017) and miR-143-3p (r = 0.32, p = 0.047) corre-

lated positive with levels in CSF. In turn, we observed a significant negative correlation of

miR-197-3p (r = -0.42, p = 0.005) and miR-30a-5p (r = -0.38, p = 0.012).

Cluster analysis of serum expression levels reveals miRNA families and

genomic clusters altered in bvFTD and AD samples

As a first approach to understand the interaction of miRNAs, hierarchical clustering was

applied to the serum dataset containing 131 samples measured for the expression of 96 miR-

NAs. To reduce the noise, we excluded miRNAs with low expression values (detailed in Mate-

rial and Methods). Using average linkage bottom up clustering a total of 7 clusters in the

control, 6 clusters in the bvFTD and 7 clusters in the AD group were detected (Fig 1). These

clusters each contain 2–24 miRNAs (Fig 1). Notably, many cluster contained miRNAs with

similar sequences (miRNA families) as well as miRNAs of a polycistronic unit that share a

common promotor (referred to as genomic cluster, http://www.mirbase.org/, <10 kb). Geno-

mic clusters containing only members of a particular family (homo-clusters) as well as clusters

containing miRNAs with different seed sequences (hetero-clusters) were present. A good

example for co-expression related to similar sequences is Cluster 7 in the control group that

contains hsa-miR-27a and hsa-miR-27b or hsa-miR-148a and hsa-miR-148b in Cluster 4. In

contrast, the genomic cluster let-7e/miR-99b/125a in Cluster 3 is an example of a hetero-clus-

ter. In addition, we identified at least three Modules (dotted lines) in each condition. Modules

are clusters of highly interconnected miRNAs that are characterized by dense interactions.

Interestingly, the modules differed not only in terms of number and composition of miRNAs

between the conditions but Modules 2 and 3 were also identified as densely connected groups

in the bvFTD and AD group, which was not observed in the control group. As expected, we

identified several pair-wise differential correlations in each condition with a trend of increased

correlations in the bvFTD group. This was supported by the fact that some families such as
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Fig 1. Unsupervised hierarchal clustering of miRNA levels measured in serum of healthy control, bvFTD and AD samples. Using the DiffCorr package, the genes

were grouped according to their expression patterns in each subtypes (cognitively healthy controls, bvFTD and AD) using the cluster.molecule function. We used (1

− correlation coefficient) as a distance measure (the cutoff value was a coefficient of 0.6) based on the cutree function. We then visualized the module network using the

get.eigen.molecule and get.eigen.molecule.graph functions. MiRNAs that share similar seed sequences (miRNA families) are coloured. MiRNAs that are co-transcribed

as a polycistronic unit (http://www.mirbase.org/,< 10 kb) are listed in S5 Table. AD = Alzheimer’s disease, bvFTD = behavioural variant frontotemporal dementia,

M = Module.

https://doi.org/10.1371/journal.pone.0197329.g001
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mir-17 or let-7 or clusters such as miR-29b/29a and miR-29b/29c appeared more intermixed

in the bvFTD condition. S4 Table shows the top 20 significantly differential co-expressed miR-

NAs (FDR<0.05) in bvFTD cases compared to cognitively healthy controls.

Factor analysis reveals miRNA structure in serum, which allows the

classification of bvFTD, AD and control cases

The variety of differential correlations in the individual conditions made an interpretation dif-

ficult. This led us to consider all samples simultaneously using factor analysis to reduce the

number of manifest variables to a few hypothetical variables that could be associated with the

diagnoses of our patient samples. The goal of factor analysis is to detect a small set of factors

that elucidate as much of the variance of the output variables as possible.

The factorability of 73 miRNAs in serum was initially examined. Applying several well-rec-

ognised criteria [33–35], 29 miRNAs were tested, which led to an acceptable subject-to-item

ratio of ~ 1:5. A total of 44 variables were eliminated because they either failed to meet the

minimum criteria or did not contribute to a simple factor structure by primary factor loadings

of<|0.5|. All items in this analysis had primary loadings over .5. Some of the variables showed

cross-loadings, but most showed strong primary loadings and were therefore not excluded.

Looking at the scree plot of the serum data, eigenvalues showed that in each case 34.97%,

19.56%, 12.73% and accordingly a total of 67.26% of the variation were explained by the first

three factors (S5 Fig). The fourth factor also had an eigenvalue > 1, but explained only a small

part of the total variability with 4.72%. As a result, the three-factor solution was preferred to

the four-factor model as depicted in Fig 2. Fig 2A shows how the initial miRNAs are correlated

with the three factors. We could observe that Factor 1 (green) positively correlated with hsa-

let-7g-5p, -miR-101-3p, -106a-5p, -106b-5p, -18b-5p, -20a-5p, -26b-5p, -29b-3p, -301a-3p,

-30b-5p and -27a-3p and negatively correlated with hsa-miR-1246, -146a-5p, -30d-5p, -miR-

320a and -320b. In contrast. Factor 2 (red) positively correlated with hsa-let-7d-5p, -let-7f-5p

and -miR-98-5p and negatively correlated with hsa-miR-15b-3p, -16-5p, -32-5p, -451a, -532-

5p and -19b-3p whereas Factor 3 (brown) negatively correlated with hsa-let-7c-5p, -let-7e-5p,

-miR-22-3p and miR-29c-3p. The factor loading matrix for this final solution is presented in

S6 Table. Interestingly, the use of the coordinates of the observations of the two-factor model

already resulted in a significant discrimination of cognitively healthy controls from the bvFTD

and AD group (Fig 2B). More interestingly, the structure also visually indicated a trend

towards a grouping of AD and bvFTD cases, however, with a certain number of false positive

signals, respectively (Fig 2B). To improve the differentiation of the samples, the miRNAs of

the third factor, which also contributed with 12.73% to the total variance, were taken into

account in a subsequent discriminant analysis as shown in Fig 2C. After the data was split into

a training- (n = 78) and validation (n = 53) set, 84.62% and respectively 60% of the total cases

were successfully classified based on the analysis (Fig 2C). If the individual subgroups were

considered, 100% of the controls, 70% of the bvFTD and 86% of the AD cases of the training

set were correctly classified (Fig 2C). On the other hand, the validation set showed that 71% of

controls, 67% of bvFTD and 44% of AD cases were correctly assigned (Fig 2C). Considering

the entire data set (n = 131 serum samples), the controls were correctly predicted with 97%,

the bvFTD cases with 77% and the AD cases with 72% accuracy (Fig 2D).

Looking at the CSF data, n = 15 miRNAs were suitable for factor analysis. This resulted in

an acceptable subject-to-item ratio of ~ 1:9. The scree plot indicated that the first three factors

had eigenvalues >1, which explained 26.33%, 24.25% and 9.29% of the variance, respectively

(S5 Fig). Since we did not observe a trend towards a valuable separation of our samples using

the CSF miRNA factor model, we further concentrated on our serum data.
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Expression analysis identifies significantly de-regulated miRNAs between

bvFTD, AD and control samples

Next, we tested whether the miRNAs of the 3-factor model as well as other miRNAs in our

CSF and serum data displayed significantly different expression levels and to what extent these

signals contributed to the classification of our samples by calculating corresponding AUC val-

ues. Using MANOVA, we identified a number of miRNAs, all of which were differentially

expressed over a ddCt of |0.58| (S7 Table). Except for miR-30d-5p and miR-101-3p, all signals

of Factor 1 were significantly de-regulated. In contrast, only miR-22-3p of Factor 3 was found

as differentially expressed but none of the signals from Factor 2.

In our CSF data, we identified a total of 10 miRNAs with significantly different expression

levels (Fig 3A). The best classifier was miR-125a-5p that discriminated bvFTD cases with 72%

sensitivity and 81% specificity as well as AD cases with 74% sensitivity and 82% specificity

from our controls (Fig 3B). In contrast, we also observed miRNAs with significantly different

expression levels between AD and bvFTD patients (Fig 3A), which showed more moderate

classification performance. With an AUC of 0.73 (95% CI, 0.623–0.832), miR-30a-5p yielded

Fig 2. Factor and discriminant analysis of miRNA signals detected in serum. We have used factor and discriminant analysis to identify the variables that can

best characterize and classify the bvFTD, AD and healthy control samples in our serum cohort. The following results are shown: (A) factor model of n = 29 serum

miRNAs that load on the Factors 1–3 with factor loadings� |0.5|, (B) observation plot showing coordinates of the observations resulting from the two-factor

model (Factors 1–2), and result of the discriminant analysis using a re-factoring 2-factor model based on the n = 29 miRNAs from the original 3-factor model (Fig

2A) using (C) a training (n = 78) and validation (n = 53) set and (D) all cases (n = 131).

https://doi.org/10.1371/journal.pone.0197329.g002
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Fig 3. Differentially expressed miRNAs in bvFTD, AD and cognitively healthy control cases detected in CSF and serum. Expression levels of n = 96

circulating miRNAs were measured in CSF (n = 140) and serum (n = 131) samples from bvFTD (n = 48/48) and AD patients (n = 48/47) as well as healthy

controls (n = 44/38) and compared using MANOVA and ROC curves. Displayed are signals with significantly different expression levels after multiple

comparisons detected in (A) CSF: group comparisons of AD, bvFTD and healthy controls with (B-C) corresponding ROC curves and (D) serum: group

comparisons of AD, bvFTD and healthy controls (up- and downregulated miRNAs) with (E-F) corresponding ROC curves, (G) serum: group comparisons of

AD, bvFTD and healthy controls (only upregulated miRNAs) with (H-I) corresponding ROC curves and (J) serum: group comparisons of AD, bvFTD and

healthy controls (only downregulated miRNAs) with (K-L) corresponding ROC curves. Expression ratio: ddCt = mean dCtAD or bvFTD − mean dCtHC. Dotted lines

indicate ddCt cut-off of |0.58|. Error bars indicate mean ± SEM. BH = Benjamini-Hochberg.

https://doi.org/10.1371/journal.pone.0197329.g003
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the best classification by separating bvFTD from AD cases with 78% sensitivity and 68% speci-

ficity (Fig 3C).

In our serum data, a total of n = 31 miRNAs were identified with significantly different

expression levels between our subgroups. Two basic expression patterns could be observed.

One was characterized by signals that were differentially regulated in the bvFTD or AD group

compared to the controls (Fig 3D). Here, bvFTD cases separated best from controls with 77%

sensitivity and 72% specificity by miR-27a with an AUC of 0.86 (95% CI, 0.775–0.935) (Fig 3E).

In contrast, miR-20a-5p demonstrated an AUC of 0.85 (95% CI, 0.768–0.938) and the highest

specificity of 92%, whereas miR-29b-3p displayed an AUC of 0.83 (95% CI, 0.738–0.931) by sep-

arating AD cases from controls with 93% sensitivity (Fig 3F). In the second expression pattern,

miRNAs were either significantly up- or downregulated both in bvFTD and AD patients com-

pared to controls (Fig 3G and 3J). For example, miR-301a-3p demonstrated an AUC of 0.96

(95% CI, 0.918–0.996) and classified bvFTD cases with high sensitivity (96%) and specificity

(84%), whereas miR-26b-5p showed and AUC of 0.97 (95% CI, 0.940–0.999) and classified AD

cases with 89% sensitivity and specificity with respect to our control group (Fig 3H and 3I).

Accordingly, miR-320a was the best classifier against controls observed as collectively down reg-

ulated in bvFTD and AD. ROC analysis resulted in an AUC of 0.96 (95% CI, 0.909–1.003),

which classified bvFTD cases with 96% sensitivity and 90% specificity and an AUC of 0.90 (95%

CI, 0.835–0.969) to predict AD cases with 83% sensitivity and 90% specificity (Fig 3K and 3I).

We also examined the respective groups on a gender-specific basis. As expected, most sig-

nals showed the same differentially expressed levels in both men and women. Interestingly, in

our serum data, we identified signals with increased classification performance to classify

bvFTD from AD in the male but not in the female cohort compared to the original analysis

that considered both males and females. Signals miR-103a-3p (AUC = 0.80), miR-106a-5p

(AUC = 0.80) and miR-1246 (AUC = 0.85) demonstrated increased sensitivities (70–77%) and

specificities (75–85%) to classify bvFTD from AD cases. This trend was also overserved in our

CSF data but less significant in terms of classification performance.

MiRNAs from factor model in serum correlate with levels of amyloid-beta1-

42 and neurofilaments light chain detected in CSF

As described previously, we were unable to observe a global relationship between miRNA

expression levels in serum and CSF. Instead, only a weak trend towards associations of single

signals was observed. However, we were also interested in whether the expression levels of

miRNAs correlated with those of classical protein biomarkers in the CSF. As a result, we found

a large number of significant correlations of our serum miRNAs with these biomarkers. The

most interesting finding was that individual miRNAs that correlated with Factor 1 predomi-

nantly correlated with amyloid-beta1-42 (Fig 4A) whereas miRNAs that correlated with Factor

2 primarily correlated with pNfH (Fig 4B). For example, miR-320a (r = 0.54, p = 0.028)

showed a significantly positive correlation, whereas miR-18b-5p (r = -0.42, p = 0.042) dis-

played a significantly negative correlation with CSF amyloid-beta1-42 levels. Both signals also

positively correlated with Factor 1 (Fig 2A). Another example are let-7d (r = -0.52, p<0.001),

let-7f (r = -0.48, p<0.001) and miR-98-5p (r = -0.44, p = 0.005), all of which show significantly

negative correlations with CSF pNFH levels (Fig 4B). These signals were also found to posi-

tively correlate with Factor 2 as identified by factor analysis (Fig 2A).

Discussion

In the present study we I) collected samples from multiple clinical centers across Germany, II)

defined 3 homogenous patient groups with increased sample sizes (bvFTD n = 48, AD n = 48
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and cognitively healthy controls n = 44), III) compared expression levels in both CSF and

serum samples and IV) focused on a limited set of miRNAs. Many studies use RT-qPCR to

search for circulating miRNA biomarkers but do not consider the MIQE guidelines, do not

control for hemolysis in serum or plasma samples, or use an inappropriate normalization

method. We included appropriate quality control procedures that identified and reduced

known (pre-) analytical sources of variation (S1–S4 Figs) and adapted our protocol to the

MIQE guidelines (S2 Table) to increase the experimental transparency and reliability of our

data.

One major finding was that we did not observe a strong association of miRNA expression

levels throughout the cohort or subgroups between our CSF and serum samples. This is consis-

tent with results from a comparable study by Wang et al. and Freischmidt et al., who also

observed a poor association of miRNA levels in CSF and serum [36, 37]. Wang et al., however,

showed an increased correlation of CSF miRNA levels with miRNAs from the Choroid Plexus

[37]. In our case single miRNAs such as miR-29b and miR-29c indicated a small trend for a

correlation (R2 = 10–20%) between CSF and serum. However, these miRNAs are known to

control fibrinogen production, which is a basic pathway both in the brain and the periphery

[38]. In summary, the results point to autonomous networks that may independently respond

to neurodegenerative processes and show little similarity in cognitively healthy controls. How-

ever, one has to keep in mind that low CSF levels point to low input into CSF and that levels

might dilute out during circulation and after blood-brain-barrier transport. This might be

another reason why potential changes in CSF cannot necessarily be seen in serum.

The main goal was to identify miRNA signatures to classify our bvFTD, AD and cognitively

healthy control cases using multivariate statistics. To increase reliability, we focused on the

serum data, which contained higher quality signals compared to the CSF data. One approach

towards this aim was to use co-expression analysis. The first step included unsupervised cluster

analysis to analyse possible interactions within each subgroup. An interesting observation was

that the cluster analysis, which based on cell-free serum expression levels, grouped many sig-

nals according to their affiliation with a polycistronic unit (e.g. miR-106a/-b cluster) or a par-

ticular miRNA family (e.g. mir-17, let-7, mir-15 or mir-320 family). These (co-)expression

patterns are known to occur within tissue cells [39, 40], different blood cell types [41] or whole

blood [42]. The result therefore suggested that the profile of circulating miRNAs in serum

appears to be more similar to the cell than expected but also point to a more unspecific release

into the circulation. Interestingly, Leidinger and colleagues identified similar miRNA clusters

and families as specifically enriched in blood cell populations positive for different CD mark-

ers, which supports this idea [41]. However, the extent to which members of a miRNA family

(independent transcription units) displayed similar expression patterns in serum was unex-

pected because the mechanisms responsible for interchromosomally-coordinated co-expres-

sion are not yet fully understood and are the subject of current research [43]. In the second

step we calculated differential correlations to better compare the individual profiles between

our subgroups. However, the increased number of differential correlations made the interpre-

tation difficult and prompted us to use factor analysis, which considered samples of all sub-

groups. The initially 73 serum miRNAs were reduced by ~40% to 29 signals, which in turn

resulted in a three-factor miRNA model.

Fig 4. Correlations of miRNA expression levels in serum with CSF protein biomarkers. Depicted are normalized

expression levels dCt = Ct (Ctmean RefmiR − CtmiR) of (A) miRNAs from the original 3-factor model that correlated with

Factor 1 vs CSF levels of amylod-beta1-42 in the control group and (B) miRNAs from the original 3-factor model that

correlated with Factor 2 vs CSF levels of pNfH in the bvFTD group. pNfH = phosphorylated neurofilament heavy

chain.

https://doi.org/10.1371/journal.pone.0197329.g004
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Factor 1 correlated with miR-106b-5p and miR-20a-5p, which in turn belong to the mir-

106b~25 and mir-17 cluster. Both were found as significantly upregulated in bvFTD and AD,

which is in line with results from Cheng et al, who investigated and validated miRNA levels

isolated from serum exosomes using RNA seq [44]. In addition, both signals demonstrated a

good to excellent diagnostic accuracy to distinguish AD cases from controls. Interestingly,

these miRNAs were also shown to regulate APP in vitro and in neuronal cell lines [45]. In addi-

tion, we identified a differential correlation pattern for the mir-30b/30d cluster. We observed

that miR-30b-5p was positively and miR-30d-5p negatively correlated with Factor 1 and we

further confirmed significantly upregulated expression levels in bvFTD and AD compared to

our controls. Notably, miR-30b-5p was found to correlate with amyloid plaque density by a

study of Burgos et al. [5]. In addition, we found miR-30d-5p (R2 = 22%) to positively correlate

with CSF amyloid-beta1-42 levels in our cognitively healthy controls. This also applied to miR-

320a (R2 = 30%), which is predicted to downregulate APP [46], whereas its family member

miR-320b was found as a possible regulator of human-specific neural development [47]. We

could also confirm both signals as significantly down-regulated in bvFTD and AD compared

to our cognitively healthy controls. Overall, miR-320a and miR-320b showed a good to excel-

lent diagnostic accuracy to correctly separate bvFTD and AD cases from controls, with miR-

30b-5p ranking only AD cases correctly.

Factor 2 correlated positively with the let-7f/7d and let-7f/mir-98 clusters, whose members

belong to the let-7 family, but we could not observe significantly different expression levels.

However, let-7d and miR-98 were found as significantly down-regulated in AD compared to

controls by Burgos et al. [5]. Interestingly, miR-98-5p was also found to act as a target for AD

by regulating the production of beta-amyloid through modulating SNX6 Expression [48].

Another study showed, that inhibition of miR-98 in N2a/APP cells up-regulated the IGF-1

protein level and suppressed Aβ production [49]. Interestingly, we found all members of the

let-7f/7d (R2 = 23–27%) and let-7f/mir-98 (R2 = 19%) cluster to negatively correlate with CSF

pNfH levels in the bvFTD group. This also applied to miR-532 (R2 = 34%) and the mir-15 fam-

ily members’ miR-15b-3p (R2 = 37%) and miR-16-5p (R2 = 37%) that negatively correlated

with Factor 2. miR-15b-3p displayed significantly upregulated expression in AD and miR-16-

5p significantly downregulated expression levels in bvFTD and AD compared to controls,

however, each below a ddCt of .58. In addition, both miRNAs correlated significantly posi-

tively with CSF pNfH levels in the bvFTD group. Neurofilaments are major proteins of neu-

rons and are particularly concentrated in axons and detection in CSF provides information

about the degree of axonal injury [50] and was found a biomarker for genetic frontotemporal

dementia [51, 52]. Notably, Burgos et al. identified miR-16-5p to negatively correlate with

Braak stage [5], which supports the idea of miR-16-5p as a potential marker of neuronal injury.

Furthermore, the miR-15 family has also been shown to modulate Tau phosphorylation

through ERK1 leading to neuronal death in Neuro2a cells and primary cortical neurones [53].

However, we did not observe significant correlations with CSF Tau or pTau levels in our

groups.

Factor 3 contained no more than 2 members of a specific miRNA family. With the excep-

tion of the miR-29 family. In this case, miR-29c-3p correlated negatively with Factor 3, with

the family member miR-29b-3p positively correlating with Factor 1. In contrast, miR-29a-3p

did not correlate with any of the three factors but was found to negatively correlate with CSF

Tau (r = -0.56) and pTau (r = -69) levels (data not shown). However, we only found expression

levels of miR-29b-3p as significantly upregulated in AD compared to our controls. Interest-

ingly, Hebert et al. identified the mir-29a/b-1 as significantly decreased in AD brain as well as

its regulation of amyloid-beta levels by upregulated levels of BACE1 [54]. miRNAs correlating
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with Factor 2 and Factor 3 showed an overall lower diagnostic potential compared to those

correlated with Factor 1. Except miR-29b-3p (AUC = 0.83) for the classification of AD cases.

In summary, all signals from the three-factor model explained in total > 67% of the vari-

ance. We therefore calculated a subsequent discriminant analysis to evaluate the performance

of this model to classify our subgroups. As expected from the structure, the miRNA signature

was able to identify cognitively healthy controls with 97% accuracy. The result outperforms

other blood-based assays such as the detection of amyloid levels [55] and performs at least as

well [56–58], if not better [59–61] compared to miRNAs in blood that have been identified in

other studies. More interestingly, the same signature was able to classify bvFTD cases with

77% and AD cases with 72% accuracy and can at least in part compete with results from tradi-

tional protein based tests in CSF [62]. This is mostly due to the fact that the majority of miR-

NAs that were either up- or downregulated in AD compared to our cognitively healthy

controls displayed a similar expression pattern in bvFTD patients. We believe that these rather

unspecific signals are mainly due to the underlying neurodegeneration observed in AD and

bvFTD. There were basically no signals on our panel that showed an opposing expression

except for those that have been identified in our gender specific analysis as mentioned earlier.

However, this should be the focus of further studies as specific signals would improve diagno-

sis by helping to exclude other dementias.

Concerning our CSF data, we identified individual miRNAs that showed significantly dif-

ferent expression levels and displayed diagnostic potential. For example miR-125a-5p that dis-

criminated cognitively healthy controls from AD with good (AUC = 0.84) or miR-30a-5p that

classified bvFTD from AD cases with moderate (AUC = 0.73) accuracy. This is in line with

Cogswell, who also identified these signals as significantly upregulated in AD [63]. However,

due to quality control we lost some signals in our CSF data and factor analysis did not reveal a

miRNA signature with high discriminatory value.

In summary, our data show that our circulating miRNA profile in CSF was not comparable

to that in serum and that serum miRNAs were better detectable compared to those in CSF. In

addition, circulating miRNAs in serum show a strong tendency to form clusters, either because

of their genomic organization or because of homologies in their sequences. Co-expression

analysis displayed differently co-expressed miRNAs between our subgroups. However, the

identified associations were complex and difficult to interpret. In addition, possible associa-

tions of other miRNAs could not be demonstrated, since we did not include related signals on

our serum panel. We could also show that multivariate methods such as factor analysis can

identify miRNA signatures in serum able to classify bvFTD, AD and control cases with accept-

able diagnostic accuracy. Due to their genomic organization and transcriptional expression

pattern we therefore think that it is more likely to identify a biomarker consisting of either

members of a miRNA cluster or family compared to single miRNAs. Another interesting

observation was that particularly miRNAs associated with our factor model also correlated

with CSF amyloid-beta1-42 and phosphorylated neurofilament heavy chain levels either with

our control- or bvFTD group. This suggested that de-regulated miRNAs of a family or cluster

may possibly be able to monitor the neurodegenerative progression seen in AD or bvFTD.

However, further evidence from cell culture experiments is necessary to better describe the

functional associations of these miRNAs. Overall, when analysing miRNA clusters and fami-

lies, it must be noted that it is based on current understanding and annotation and that this

relationship will change over time whenever new miRNA species are identified. However,

unsupervised clustering is based on what was actually measured, thus reduces this bias in part

and is therefore well suited for the detection of networks. However, one shortcoming towards

the identification of miRNA signatures using cluster and factor analysis is the limited number

of signals in our study. The (factor-) structures identified by us result from a small part of the
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miRNome that circulate in serum. However, there are other related (S5 Table) and novel miR-

NAs that we did not measure but that may further increase complexity. The last miRBase

update was 2014. Novel miRNAs have been identified by NGS, but their expression levels have

not yet extensively been investigated using qPCR and are not yet available on PCR panels. An

updated selection of abundant signals could thus provide novel candidates for miRNA profil-

ing studies. A shortcoming towards our study group was that not all individual were tested for

one of the disease causing mutations. However, the probability of carrying one of the tested

mutations is generally low and the majority was tested negative so that a few possible mutation

carriers should not bias the results. Furthermore, some variation at baseline miRNA expres-

sion was observed across the different study sites. We think that (possible) centre effects should

affect all miRNAs equally (due to a harmonized and standardised protocol for sampling and

extraction) so that variation on a single miRNA basis should not occur. The variation may pos-

sibly be the result of a numerically unequal distribution of the patient groups from the differ-

ent centres. Multi-centre studies should therefore make sure that the proportion of patient

groups from the various centres is as equal as possible. Considering the discussed points in fol-

low up studies will greatly contribute to identify other relevant miRNAs to better understand

the complex expression pattern overserved in body fluids, and may further improve the classi-

fication performance to separate AD and bvFTD cases.

Supporting information

S1 Fig. Baseline expression across all miRNAs between different study sites. A main effect

for baseline expression levels (across all miRNAs) between study sites was found in our serum

(F(9, 121) = 5.21, p< 0.001) and CSF (F(9, 130) = 4.50, p< 0.001) data. Serum expression

levels from the study site in Ulm (M = 29.17, SD = 1.06) were lower compared to München-tu

(M = 27.86, SD = 0.61), Homburg (M = 27.74, SD = 0.29), Erlangen (M = 27.9, SD = 0.46) and

Hamburg (M = 28.3, SD = 0.93). In contrast, CSF expression levels from the study site in Göt-

tingen (M = 32.42, SD = 1.23) were higher compared to Ulm (M = 33.59, SD = 0.65), München-

tu (M = 33.56, SD = 0.49) and Erlangen (M = 33.95, SD = 0.54). However, each difference was

below the critical threshold of ddCt< |0.58| except for Göttingen vs. Erlangen (ddCt = 0.62).

(TIF)

S2 Fig. Pre-analytical variation of circulating miRNA in CSF and serum samples. a)

Box plot (whiskers: 2.5–97.5 percentile) of synthetic miRNAs display low technical variation

with acceptable intra-assay variation of UniSp2: CqCSF 17.59 ± 0.37 and Cqserum 17.49 ± 0.49;

UniSp4: CqCSF 24.92 ± 0.52 and Cqserum 24.42 ± 0.59 and with a trend of increasing variation

towards the isolation of lower expressed transcripts like UniSp5: CqCSF 30.65 ± 0.92 and

Cqserum 31.23 ± 0.51. UniSp6: CqCSF 18.63 ± 0.46 and Cqserum 17.59 ± 0.16 and cel-miR-39

Cqserum 24.07 ± 0.25 were used to monitor the cDNA synthesis reactions and indicated con-

stant RT efficiency with no signs of inhibition. b) The hemolysis plot indicates expression

ratios of constant miR-23a and red blood cell sensitive miR-451a to monitor serum samples

for signs of cellular contamination or hemolysis. With a mean dCqmiR-23a –miR-451 =

4.05 ± 1.07, most of the serum samples did not display signs of hemolysis (dCq� 5, yellow

line). Only a few signals showed a dCq > 5 but none of the samples appeared at high risk of

hemolysis (dCq� 7, red line). c,d) The cumulative distribution plots display different miRNA

normalisation strategies applied on the serum and CSF data. Normalization with reference

miRNAs identified by NormFinder and GeNorm resembled normalisation to the global mean

and considerably reduced technical variation compared to un-normalized data or data nor-

malized to internal standards.

(TIF)
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S3 Fig. miRNA standard curves for SYBR green miRCURY PCR assays. Plotted are mean

Cq values from n = 4 replicate standard curves vs the log2 copy numbers. Standard curves

were generated for a subset of assays by using a dilution series of a pool of known input

amounts of synthetic miRNA oligonucleotides corresponding to the target sequence of the

assay. Red error bars depict mean Cq ± CI. R2 = coefficient of determination, E = PCR

efficiency ± CI, CI = confidence interval.

(TIF)

S4 Fig. Day-to-Day reproducibility. RNA from A) CSF and B) serum isolated with miRNeasy

serum Kit on different days was measured on each corresponding 96-well panel. Interplate cal-

ibrated Cq values were plotted against each other to assess the degree of inter-assay variability

by linear regression. R2 = coefficient of determination.

(TIF)

S5 Fig. Scree plots of serum and CSF data. The scree plot shows the variance explained by

each factor in a factor analysis and is used to assess the optimum number of factors to take

into account for further analysis.

(TIF)

S1 Table. Raw Cq values of endogenous miRNAs (cut-off Cq < 37) detected in CSF and

serum samples. Listed is the FOC (number of positive miRNAs), arithmetic mean of raw Cq

values of each subgroup and the standard deviation, the miRBase accession and the miRNA

sequence. bvFTD = behavioural variant frontotemporal dementia, Cq = quantification cycle,

FOC = frequency of occurrence, HC = cognitively healthy controls, SD = standard deviation.

(XLSX)

S2 Table. MIQE checklist. Provided are necessary information recommended by the MIQE

guidelines to increase experimental transparency of quantitative real-time PCR experiments.

(XLSX)

S3 Table. Sequence information of synthetic oligos used for absolute quantification.

(XLSX)

S4 Table. Top 20 list of differentially coexpressed miRNAs from the serum dataset. Shown

are significantly pair-wise differential correlations (FDR < 0.05) of miRNA expression levels

in serum between cognitively healthy controls and bvFTD cases using the comp.2.cc.fdr func-

tion from the DiffCorr package. r = Pearson correlation coefficient, lfdr = local false discovery

rate.

(XLSX)

S5 Table. Table of miRNAs used for hierarchal cluster analysis. Depicted are 1) miRNAs, 2)

sequence information, 3) clustered miRNAs on genome (http://www.mirbase.org/, <10 kb),

4) paralogous miRNAs, 5) location on chromosome, 6) miRNA family and 7) correlation with

Factor 1–3 from factor analysis. miRNAs in red were not included on our serum panel.

(XLSX)

S6 Table. Factor loadings and communalities based on a principal factor analysis for

n = 29 miRNAs detected in n = 131 serum samples. Only miRNAs based on factor loadings

� |0.5| were considered significant in contributing to the respective factor. F = Factor.

(XLSX)
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S7 Table. Differentially expressed miRNAs detected in serum and CSF. Listed are miRNAs

that displayed significantly different expression levels in either serum or CSF samples between

cognitively healthy control, bvFTD and AD cases. Fold change is calculated as ddCt = dCtCtRef

−CtmiRNA − dCtCtRef −CtmiRNA where larger values reflect higher abundance. AD = Alzheimer’s

disease, bvFTD = behavioural variant frontotemporal dementia, HC = cognitively healthy con-

trols, p = p-value.

(XLSX)
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