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Abstract

We propose a nonparametric shrinkage estimator for the median survival times from several

independent samples of right-censored data, which combines the samples and hypothesis

information to improve the efficiency. We compare efficiency of the proposed shrinkage esti-

mation procedure to unrestricted estimator and combined estimator through extensive simu-

lation studies. Our results indicate that performance of these estimators depends on the

strength of homogeneity of the medians. When homogeneity holds, the combined estimator

is the most efficient estimator. However, it becomes inconsistent when homogeneity

fails. On the other hand, the proposed shrinkage estimator remains efficient. Its efficiency

decreases as the equality of the survival medians is deviated, but is expected to be as good

as or equal to the unrestricted estimator. Our simulation studies also indicate that the pro-

posed shrinkage estimator is robust to moderate levels of censoring. We demonstrate appli-

cation of these methods to estimating median time for trauma patients to receive red blood

cells in the Prospective Observational Multi-center Major Trauma Transfusion (PROMMTT)

study.

Introduction

Multi-site and multi-center studies have become very popular in clinical and translational sci-

ences in the past two decades. Although multi-site studies allow for increased enrollment rate

and improved generalizability to the target population [1], they introduce additional statistical

challenges in the study design and analysis of data from these studies. For example, multi-site
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studies could lead to non-homogeneous sub-samples due to the differences in the study sites.

This is particularly relevant to trauma and emergency care research.

Having served as the Data Coordinating Center for the Prospective Observational Multi-

center Major Trauma Transfusion (PROMMTT) study [1], we have identified a number of

challenges in analysis of time to event data from PROMMTT. For example, in blood transfu-

sion research, time to receive the first unit of red blood cells (RBCs) is one of important surro-

gates to measure how rapidly trauma patients receive blood transfusion. However, such data

were often collected from multi-sites. Due to the fact that trauma centers may have their own

guideline and practice to manage trauma patients, different sites may not only contribute dif-

ferent number of patients but also have different distributions of time to event of interest with

different levels of censoring and variability. As a result, analysis of data from multi-site studies

requires an exploratory step prior to pooling samples from different sites.

In some medical research, particularly in multi-site randomized clinical trials (e.g., for

trauma/blood transfusion), when the main outcome of interest is time to observe a certain

outcome of interest (e.g., time to receive the first unit of RBCs), complete observations in all

patients are not usually available due to death before receiving a fixed number of units of

RBCs, which results in right-censored data. [2] introduced nonparametric estimation of the

survival curve, based on right-censored data. Nonparametric estimation of the mean survival

time has been studied by many investigators including [3, 4] and [5, 6], and [7] have extensive

discussions on nonparametric estimation of the mean and quantiles of the survival function.

[8] introduced a nonparametric procedure for testing the equality of median survival times

from k-independent samples of right censored data. [9] introduced an alternative to the BC

test, which may perform better than the BC test under certain situations. To deal with the

inflated Type I error rates when sample sizes are small, more recently, [10] extended Mood’s

median test for uncensored data to the setting of survival data.

The main aim of this research is to propose an improved nonparametric method for estima-

tion of the median survival time from right-censored data from k-independent samples when

there is uncertainty regarding the homogeneity of the k-population medians. We compare

the proposed estimator to other two commonly used estimators asymptotically, and through

extensive simulations. In addition, we demonstrate application of this method to data from the

PROMMTT study ([11, 12]).

The remainder of the article is organized as follows. In Section 2, we propose the estimation

strategies for median survival times and make comparisons among different estimators. In

Section 3, we present the results from our simulation study comparing the performance of the

proposed estimator against the other two commonly used estimators based on mean square

errors (MSE). In Section 4, we demonstrate an application of our proposed method to data

from PROMMTT ([1, 11]). Section 5 is devoted to concluding remarks with some discussion.

Materials and methods

We consider the nonparametric estimation of median survival times based on right-censored

data in the presence of uncertain prior information in a k-independent sample situation. We

assume here that Ti1; � � � ;Tini
; ði ¼ 1; � � � ; kÞ are random samples selected from k populations

with ni observations taken from the i-th population. We will refer to Tij as to the survival time

of j-th subject in the i-th population. Due to censoring at time Cij, the survival time or time-to-

event may not be observable in some subjects. Therefore, for each subject, the data are recorded

in the form (Yij, δij), j = 1, � � �, ni, i = 1, � � �, k, where Yij = min(Tij, Cij), δij = I(Tij� Cij), and I(�)
is the indicator function. We assume that random variables Tij and Cij are independent with

continuous survival distributions Fi(x) = P(Tij> x) and Gi(y) = P(Cij> y), respectively.
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0.1 Unrestricted estimator (UE)

A straightforward way to estimate the median-parameter vector can be defined as,

ŶUE ¼ Ŷ ¼ ðŷ1; � � � ; ŷkÞ
T
: ð2:1Þ

where ŷ i ¼ F̂ � 1
i ð0:5Þ and F̂ iðpÞ ¼ inf ft : F̂ iðtÞ � pg for i = 1, � � �, k.

We call this estimator as unrestricted estimator (UE) of Θ. This estimator is usually used

when no hypothesis information is available on Θ. For example, in a multi-site study with k
sites one can provide site-specific estimates for median survival time without combing the data

from all sites. All the estimators for the k components of the vector are independent.

For each i = 1, � � �, k,
ffiffiffiffini
p
fF̂ � 1

i ðpÞ � F � 1
i ðpÞg converges in distribution to a normal random

variable with mean 0 and variance CiðpÞ ¼ pð1 � pÞ=ffiðF � 1
i ðpÞÞ

2
g. Hence operationally,

F̂ � 1
i ðpÞ is asymptotically normal with mean F � 1

i ðpÞ and variance Ci(p)/ni.

0.2 Combined estimator (CE)

Θ can also be estimated by combining the sample and hypothesis information under the

assumption of homogeneity of the k medians given by

H0 : y1 ¼ � � � ¼ yk ¼ y0 ðunknownÞ: ð2:2Þ

We can use this additional information together with the sample information to obtain

improved estimators. Under the null hypothesis (2.2), we consider the combined/restricted

estimator (CE) of Θ defined by

ŶCE ¼ ðŷCE
n ; � � � ; ŷ

CE
n Þ

T
; ŷCE

n ¼
Xk

i¼1

ni=ŝ2
i

n1=ŝ2
1
þ � � � þ nk=ŝ2

k
ŷ i : ð2:3Þ

This estimator is expressed as a linear combination of the ŷ i ’s, i.e., ŷCE
n ¼

Pk
i¼1

L̂iŷ i, where

L̂i ¼ ðni=ŝ2
i Þ=ðn1=ŝ2

1
þ � � � þ nk=ŝ2

kÞ, where ŝ2
i can be estimated by Var ðF̂ iðŷ iÞÞ=f̂ 2

i ðŷ iÞ for

i = 1, � � �, k. However, in order to avoid the difficulty in estimating the density function, we

used the bootstrap to estimate the variance of the estimated median, following [9].

For the preliminary test on H0 in (2.2), we consider the following test statistic that is defined

by the normalized distance of Ŷ from ŶCE:

Ln ¼ nðŶ � ŶCEÞĜ � 1
n ðŶ � ŶCEÞ ; ð2:4Þ

where

Ĝn ¼

ĝn1
ĝn21

� � � ĝnk1

ĝn12
ĝn2

ĝnk2

� � � � � �

ĝn1k
ĝn2k

ĝnk

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð2:5Þ

where

ĝni
¼ ŝ2o� 1

i;n ð1 � L̂iÞ
2
þ
Xk

j6¼i

ŝ2

j o
� 1

j;n L̂
2

j ;
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ĝnij
¼ � L̂io

� 1
i;n ŝ2

i � L̂jo
� 1
j;n ŝ2

i þ
Xk

l¼1

ŝ2

l o
� 1

l;n L̂
2

l ;oi;n ¼ ni=n; i; j ¼ 1; � � � ; k:

We assume that ωi = limn!1 ωi,n is fixed for i = 1, � � �, k, and G ¼ lim n!1Ĝn exists and is

nonsingular. It is shown that under the null hypothesis for large n, Λn follows the central χ2

distribution with k − 1 degrees of freedom [9]. For given α, the critical value of Λn may be

approximated by w2
k� 1;a

, the upper 100α% point of the chi-square distribution with k − 1

degrees of freedom. More details can be found in [9].

Positive-part shrinkage estimator (PP)

The combined estimator works well only when the null hypothesis (2.2) holds. If the null

hypothesis (2.2) is rejected, we propose another estimator based on the James-Stein type

shrinkage estimator (SSE) [12] which is defined by

ŶJS ¼ Ŷ � fðk � 3ÞL
� 1

n gðŶ � ŶCEÞ; k � 4 : ð2:6Þ

The Stein-type estimator in (2.6) is not sensitive to departure from H0, and will provide uni-

form improvement in terms of efficiency for the entire parameter space of Θ. It is, however,

not a convex combination of ŶCE and Ŷ. Also, this estimator may not remain nonnegative. To

avoid this strange behavior, we truncate ŶJS at positivity boundary by adding an extra term to

(2.6), which leads to a convex combination of Ŷ and ŶCE, namely, the positive-part shrinkage

estimator (PP). When k� 4, the positive-part shrinkage estimator is defined as follows:

ŶPP ¼ Ŷ � ðk � 3ÞL
� 1

n ðŶ � ŶCEÞ � f1 � ðk � 3ÞL
� 1

n gIðLn < k � 3ÞðŶ � ŶCEÞ : ð2:7Þ

where Ŷ, ŶCE and Λn were defined in Sections 2.1 and 2.2.

0.3 Comparison of ŶUE, ŶCE and ŶPP

In this Section, we compare the performance of ŶUE, ŶCE and ŶPP by asymptotic distribution

quadratic risk function [13]. For an estimator Θ�, define the weighted quadratic loss function

of the form L(Θ�, Θ) = n(Θ� − Θ)T W(Θ� − Θ), where W is a positive-definite matrix of

weights. The expectation of the loss function R0(Θ�, Θ) = E[L(Θ�, Θ)] is called the risk func-

tion. The performance of the estimators can be evaluated by comparing the risk functions and

an estimator with a smaller risk is preferred.

Since the test statistic in (2.2) is consistent for fixed Θ when Θ =2 H0, ŶPP is asymptotically

equivalent to ŶUE for fixed alternatives, this makes it difficult to compare their performance

[14]. Alternatively, we may evaluate the asymptotic performance of each estimator under the

following contiguous sequence of alternatives:

Kn : Y ¼ Yn; Yn ¼ Y0 þ φ=
ffiffiffi
n
p

; ð2:8Þ

where φ is a fixed vector and Θ0 = (θ0, � � �, θ0). The risk function R0(Θ�, Θ) = E[L(Θ�, Θ)] can

be written as R0(Θ�, Θ) = nE[(Θ� − Θ)T W(Θ� − Θ)] = ntr(WΓ�) where Γ� is the covariance

matrix of Θ�. Then, considering the asymptotic distribution of
ffiffiffi
n
p
ðY

�
� YÞ, we can define

the asymptotic distribution quadratic risk (ADQR) as R(Θ�, Θ) = tr(WΓ) where Γ is the

asymptotic covariance matirx. To facilitate the numerical computation and general discussion,

we consider the particular case with W = Γ − 1. Then, following similar arguments in [14], and

Nonparametric estimation of median survival times
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define Δ = (JO − Ik)Θ with J ¼ 1k1
0

k and O ¼ si
2Iðk�kÞ, and Δ� = ΔT WΔ, we can demonstrate

that

RðŶUE;YÞ ¼ k ; ð2:9Þ

RðŶCE;YÞ ¼ 1þ D
�
; ð2:10Þ

RðŶJS;YÞ ¼ kþ D
�
ðk � 3Þðkþ 1ÞEfw� 4

kþ3
ðDÞg � ðk � 1Þðk � 3Þ½2Efw� 2

kþ1
ðDÞg

� ðk � 3ÞEfw� 4
kþ1
ðDÞg� ;

ð2:11Þ

and

RðŶPP;YÞ ¼ RðŶJS;YÞ � ðk � 1ÞE½f1 � ðk � 3Þw� 2
kþ1
ðDÞgIfw2

kþ1
ðDÞ � k � 3g�

þD
�
½2E½f1 � ðk � 3Þw� 2

kþ1
ðDÞgIfw2

kþ1
ðDÞ � k � 3g��

� E½f1 � ðk � 3Þw� 2
kþ3
ðDÞg

2Ifw2
kþ3
ðDÞ � k � 3g� :

ð2:12Þ

An estimator Θ� is said to asymptotically dominate an estimator Θ0 if R(Θ�, Θ)� R(Θ0, Θ),

i.e., if the ADQR of Θ� is smaller for at least some value of Θ, and the ADQR does not exceed

that of Θ0 for any value of Θ. Further, Θ� strictly dominates Θ0 if R(Θ�, Θ)< R(Θ0, Θ) for

some (Θ, W). At Δ� = 0, that is, under the null, the dominance of the estimators is usually

observed as ŶCE � ŶUE, where the notation� stands for dominance in terms of risk perfor-

mance. For all Δ� and k� 4, ŶPP � ŶUE is satisfied, that is, ŶPP asymptotically dominates ŶUE

under local alternatives. Thus, we conclude that ŶPP consistently performs better than ŶUE in

the entire parameter space induced by Δ�. The gain in risk over ŶUE is substantial when Δ� = 0

or near 0.

Simulation studies

We conducted extensive simulation studies to examine the performance of the proposed esti-

mators in situations with different degrees of departure from the assumption of homogeneity

and censoring rates.

In order to evaluate the effect of the departure from the null hypothesis, we generated

samples with median Θ� = (θ0 − 3�, θ0 − �, θ0 + �, θ0 + 3�) by varying �� 0 from uniform distri-

butions on (θi − ai/ci, θi + ai/ci), where ai, ci> 0. Let d� ¼ 1ffiffiffi
20
p jjy� � y0jj, where ||�|| is the Euclid-

ean norm. Various values of � 2 [0, 1] have been considered to achieve different d�. The k
samples of censoring variables {Y1i, � � �, Ynii} were generated from uniform distributions on

(θi − ai/ci, θi + ai/ci + η), where η is a fixed value to achieve a desired level of censoring (e.g.,

p = 0.3). We set Θ0 = (6, 6, 6, 6), a = (2, 2, 2, 2), and c = (1, 2, 1, 2). The simulation procedure

was repeated 1000 times for k = 4 independent samples with size of 100 for each group.

The simulation results of REs and the comparative plots are presented in Table 1 and Fig 1.

The performance of Θ� was measured by the relative efficiency (RE), i.e., comparing its MSE

with that of ΘUE, defined as REðŶUE; Ŷ�Þ ¼ MSEðŶUEÞ=MSEðŶ�Þ, where Ŷ� is one of the

estimators (ŶCE or ŶPP) considered in this study. The amount by which a RE is larger than 1

indicates the degree of superiority of the estimator Ŷ� over ŶUE. As highlighted in [9], to

avoid difficulty in estimating the densitity function, we used boostrapping to estimate the vari-

ance of the estimated median. We also compare the performance of Ŷ� by asymptotic distribu-

tion quadratic risk described in Section 2.4.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0197295 May 17, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0197295


Table 1 shows that when d� = 0 or near zero, ŶCE outperforms all other estimators. How-

ever, as d� moves away from 0, the risk of ŶCE become unbounded, making it very inefficient.

Overall, ŶPP maintain its superiority over other estimators for a wide range of d�. This clearly

suggests that ŶPP is preferred as there always remains uncertainty about level of heterogeneity

between survival medians. In situations where the assumed model is grossly wrong, ŶPP is

expected to be as good or equal to ŶUE. The asymptotic behavior of ADQR over d� is illustrated

in Fig 1 under different significance alpha levels. It shows that ŶPP may has smaller risks and

thus be more efficient upon ŶUE under the null or near. The ADQR of ŶCE approaches infinity

as d� grows. Overall, ŶPP has a better performance in the entire parameter space.

Next, we study scenarios with different distributions and censoring rates. In each scenario,

50 or 100 samples were generated from k = 4 subpopulations. The distributions considered in

Tables 2 and 3 are (i) a uniform distribution with median Θ0 = (6,6,6.5,6), (ii) a log-normal dis-

tribution with Θ0 = (403.43, 665.14, 403.43, 665.14), and (iii) an exponential distribution with

Θ0 = (6.69, 6.58, 7.0, 6.43). The distributions considered in Tables 4 and 5 are mixed distribu-

tions with (iv) two subpopulations had a uniform distribution and the other two had a log-nor-

mal distribution with median Θ0 = (6, 6, 4.48, 7.39), (v) two uniform and two exponential

distributions with median Θ0 = (6, 6, 6.15, 6.15), and (vi) two log-normal and two exponential

Table 1. Simulated relative efficiency (RE) for combined (CE) and positive part shrinkage (PP) estimators relative to unrestricted estimator (UE) for different values

of �.

Distribution Type Relative efficiency (RE)

� = 0 � = 0.05 � = 0.1 � = 0.3 � = 0.5 � = 1.0

Uniform CE 5.7087 1.7339 0.4185 0.0476 0.0181 0.0045

PP 1.5629 1.3105 1.0358 1.0049 1.0073 1.0000

https://doi.org/10.1371/journal.pone.0197295.t001

Fig 1. The asymptotic distributional quadratic risk (ADQR) performance of the estimators.

https://doi.org/10.1371/journal.pone.0197295.g001
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distributions with median Θ0 = (6, 6, 6.89, 6.89). For each scenario, simulations were repeated

1000 times under 0%, 30%, and 50% censoring schemes and the results are summarized in

Tables 2 to 5. We also considered the scenarios where different sites had different censoring

rates (0% to 70%) in Table 6, using three mixed distributions and a sample size of 50.

In general, the results in Tables 2 and 6 show that survival distribution and censoring rate

affect the deviation from the true value for different estimators. The RE of ŶCE ranges from

Table 2. Mean of 1000 estimated medians and REs for 0%, 30% and 50% censoring rates for uniform, log-normal and exponential distributions when sample size is

50.

Distribution Type Censoring Rate = 0

θ1 θ2 θ3 θ4 MSE RE

Uniform Θ0 = (6, 6, 6.5, 6)

UE 5.968 5.958 6.460 5.956 0.312 1.000

CE 6.086 6.086 6.086 6.086 0.295 1.058

PP 5.992 5.984 6.384 5.980 0.261 1.194

Log-normal Θ0 = (403.4, 665.1, 403.4, 665.1)

UE 403.7 661.5 398.0 665.0 39290 1.000

CE 459.4 459.4 459.4 459.4 103719 0.379

PP 411.4 636.8 405.9 640.3 37472 1.049

Exponential Θ0 = (6.69, 6.58, 6.99, 6.43)

UE 6.680 6.566 6.984 6.432 0.049 1.000

CE 6.639 6.639 6.639 6.639 0.206 0.238

PP 6.678 6.570 6.964 6.444 0.048 1.027

Censoring Rate = 0.3

Uniform Θ0 = (6, 6, 6.5, 6)

UE 6.012 6.002 6.511 6.007 0.414 1.000

CE 6.118 6.118 6.118 6.118 0.325 1.273

PP 6.036 6.032 6.419 6.031 0.327 1.265

Log-normal Θ0 = (403.4, 665.1, 403.4, 665.1)

UE 417.0 680.3 413.7 688.6 55513 1.000

CE 471.6 471.6 471.6 471.6 102099 0.544

PP 427.0 647.7 423.6 654.0 49474 1.122

Exponential Θ0 = (6.69, 6.58, 6.99, 6.43)

UE 6.701 6.590 7.003 6.449 0.063 1.000

CE 6.651 6.651 6.651 6.651 0.213 0.298

PP 6.699 6.595 6.977 6.464 0.060 1.050

Censoring Rate = 0.5

Uniform Θ0 = (6, 6, 6.5, 6)

UE 6.024 6.019 6.525 6.018 0.496 1.000

CE 6.122 6.122 6.122 6.122 0.346 1.432

PP 6.050 6.048 6.425 6.042 0.381 1.300

Log-normal Θ0 = (403.4, 665.1, 403.4, 665.1)

UE 425.1 691.1 420.4 704.4 96626 1.000

CE 473.0 473.0 473.0 473.0 107244 0.901

PP 438.0 643.7 433.6 655.0 77915 1.240

Exponential Θ0 = (6.69, 6.58, 6.99, 6.43)

UE 6.708 6.593 7.015 6.457 0.091 1.000

CE 6.649 6.649 6.649 6.649 0.227 0.400

PP 6.703 6.600 6.972 6.478 0.083 1.091

https://doi.org/10.1371/journal.pone.0197295.t002
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20% to over 300%, which might be considered as an approximate measure of departure from

the homogeneity of survival medians. Overall, shrinkage estimator ŶPP outperforms ŶCE with

respect to UE in all aforementioned scenarios, yielding 100% to 160% REs. Efficiency gain is

more noticeable with higher censoring rate.

Table 3. Mean of 1000 estimated medians and REs for 0%, 30% and 50% censoring rates for uniform, log-normal and exponential distributions when sample size is

100.

Distribution Type Censoring Rate = 0

θ1 θ2 θ3 θ4 MSE RE

Uniform Θ0 = (6, 6, 6.5, 6)

UE 5.972 5.961 6.450 5.978 0.305 1.000

CE 6.091 6.091 6.091 6.091 0.305 1.002

PP 5.997 5.993 6.370 6.001 0.262 1.163

Log-normal Θ0 = (403.4, 665.1, 403.4, 665.1)

UE 399.2 662.0 401.3 656.1 39706 1.000

CE 458.6 458.6 458.6 458.6 102924 0.386

PP 407.5 636.1 408.7 631.6 38364 1.035

Exponential Θ0 = (6.69, 6.58, 6.99, 6.43)

UE 6.677 6.566 6.993 6.423 0.049 1.000

CE 6.635 6.635 6.635 6.635 0.210 0.237

PP 6.675 6.570 6.974 6.435 0.047 1.041

Censoring Rate = 0.3

Uniform Θ0 = (6, 6, 6.5, 6)

UE 6.010 6.011 6.499 6.030 0.411 1.000

CE 6.129 6.129 6.129 6.129 0.326 1.258

PP 6.042 6.045 6.406 6.051 0.335 1.226

Log-normal Θ0 = (403.4, 665.1, 403.4, 665.1)

UE 414.9 681.4 415.6 679.0 55867 1.000

CE 470.3 470.3 470.3 470.3 102184 0.547

PP 425.9 646.4 426.2 644.6 50394 1.109

Exponential Θ0 = (6.69, 6.58, 6.99, 6.43)

UE 6.701 6.584 7.011 6.439 0.063 1.000

CE 6.645 6.645 6.645 6.645 0.215 0.296

PP 6.698 6.589 6.983 6.453 0.060 1.058

Censoring Rate = 0.5

Uniform Θ0 = (6, 6, 6.5, 6)

UE 6.007 6.009 6.511 6.012 0.243 1.000

CE 6.115 6.115 6.115 6.115 0.280 0.870

PP 6.028 6.030 6.430 6.034 0.211 1.151

Log-normal Θ0 = (403.4, 665.1, 403.4, 665.1)

UE 413.9 679.1 408.8 675.4 34770 1.000

CE 469.0 469.0 469.0 469.0 97229 0.358

PP 421.1 654.4 416.7 651.1 31904 1.090

Exponential Θ0 = (6.69, 6.58, 6.99, 6.43)

UE 6.708 6.585 7.006 6.444 0.043 1.000

CE 6.655 6.655 6.655 6.655 0.206 0.209

PP 6.705 6.589 6.987 6.455 0.042 1.033

https://doi.org/10.1371/journal.pone.0197295.t003
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Application to the PROMMTT study

The PROMMTT study was a multi-site prospective observational cohort study in a severely

injured transfused trauma patients, conducted at 10 level 1 trauma centers in the United States

[1, 11]. The original objectives of PROMMTT study were to accurately describe when some

blood components were infused and to assess the association between in-hospital mortality

Table 4. Mean of 1000 estimated medians and REs for 0%, 30% and 50% censoring rates for (2 uniform+2 lognormal), (2 uniform+2 exponential), (2 lognormal +2

exponential) distributions when sample size is 50.

Distribution Type Censoring Rate = 0

θ1 θ2 θ3 θ4 MSE RE

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 5.990 5.992 4.471 7.322 2.391 1.000

CE 5.984 5.984 5.984 5.984 4.244 0.563

PP 5.989 5.991 4.707 7.106 2.206 1.084

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 5.991 5.989 6.146 6.143 0.051 1.000

CE 6.016 6.016 6.016 6.016 0.044 1.149

PP 5.997 5.996 6.113 6.111 0.041 1.231

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 5.953 5.978 6.887 6.881 2.228 1.000

CE 6.845 6.845 6.845 6.845 1.473 1.512

PP 6.140 6.160 6.879 6.875 1.645 1.354

Censoring Rate = 0.3

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 6.000 6.003 4.612 7.605 3.500 1.000

CE 5.995 5.995 5.995 5.995 4.247 0.824

PP 6.000 6.002 4.881 7.284 2.964 1.181

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 6.000 5.999 6.172 6.167 0.067 1.000

CE 6.025 6.025 6.025 6.025 0.042 1.575

PP 6.006 6.006 6.133 6.128 0.049 1.359

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.134 6.192 6.912 6.904 3.447 1.000

CE 6.864 6.864 6.864 6.864 1.544 2.232

PP 6.313 6.353 6.901 6.896 2.311 1.492

Censoring Rate = 0.5

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 6.004 6.007 4.666 7.722 5.253 1.000

CE 5.995 5.995 5.995 5.995 4.251 1.236

PP 6.003 6.005 4.981 7.282 4.115 1.277

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 6.003 6.003 6.184 6.177 0.099 1.000

CE 6.023 6.023 6.023 6.023 0.047 2.124

PP 6.009 6.011 6.133 6.125 0.068 1.448

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.221 6.289 6.924 6.910 5.024 1.000

CE 6.858 6.858 6.858 6.858 1.542 3.259

PP 6.396 6.447 6.906 6.898 3.102 1.620

https://doi.org/10.1371/journal.pone.0197295.t004
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and the timing and amount of blood products. Understanding current blood product usage

patterns and their impact on patient outcomes among a severely injured and substantially

hemorrhaging cohort is critically important.

In our analysis, we applied our method on 698 patients from four major medical centers to

examine difference of their median times of receiving the first unit of RBC infusion. The num-

ber of patients in the 4 sites are 303, 137, 133, and 125. The median age of patients are 34, 37,

Table 5. Mean of 1000 estimated medians and REs for 0%, 30% and 50% censoring rates for (2 uniform+2 lognormal), (2 uniform+2 exponential), (2 lognormal +2

exponential) distributions when sample size is 100.

Distribution Type Censoring Rate = 0

θ1 θ2 θ3 θ4 MSE RE

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 5.989 5.988 4.413 7.361 2.216 1.000

CE 5.982 5.982 5.982 5.982 4.242 0.522

PP 5.988 5.987 4.637 7.122 2.019 1.097

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 5.989 5.993 6.144 6.141 0.050 1.000

CE 6.017 6.017 6.017 6.017 0.045 1.112

PP 5.997 5.999 6.112 6.108 0.041 1.226

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.029 5.952 6.884 6.867 2.363 1.000

CE 6.839 6.839 6.839 6.839 1.455 1.625

PP 6.183 6.148 6.876 6.862 1.687 1.401

Censoring Rate = 0.3

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 6.001 5.999 4.549 7.552 3.104 1.000

CE 5.994 5.994 5.994 5.994 0.246 0.731

PP 5.999 5.998 4.826 7.206 2.629 1.180

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 5.999 6.004 6.172 6.168 0.064 1.000

CE 6.024 6.024 6.024 6.024 0.043 1.480

PP 6.006 6.010 6.131 6.126 0.048 1.334

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.217 6.096 6.908 6.888 3.274 1.000

CE 6.856 6.856 6.856 6.856 1.516 2.159

PP 6.367 6.288 6.896 6.880 2.096 1.562

Censoring Rate = 0.5

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 6.001 6.003 4.515 7.542 2.151 1.000

CE 5.994 5.994 5.994 5.994 4.241 0.507

PP 6.001 6.002 4.735 7.290 1.932 1.114

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 6.002 6.002 6.158 6.164 0.042 1.000

CE 6.024 6.024 6.024 6.024 0.041 1.025

PP 6.007 6.008 6.124 6.130 0.033 1.266

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.081 6.146 6.908 6.907 2.126 1.000

CE 6.869 6.869 6.869 6.869 1.544 1.377

PP 6.279 6.321 6.898 6.899 1.576 1.349

https://doi.org/10.1371/journal.pone.0197295.t005
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34, and 41 years. The percents of male patients are 73.27%, 77.37%, 76.69%, and 75.20%.

Around 61.06%, 84.67%, 54.26%, and 96.77% are Caucasian in the four sites, respectively.

Since no patients dropped out of study before the first unit of RBC infusion, the censoring rate

for each site is zero.

We apply the proposed method to this data in two steps. First, we formally evaluate homo-

geneity of medians using randomly right censored data. Second, based on the results of the test

of homogeneity our proposed method evaluates whether the unrestricted estimator (UE),

combined estimator (CE), or the Positive Part shrinkage estimator (PP) should be used to

obtain a more efficient estimator. The primary outcome is time to the first unit of RBC infu-

sion measured as the number of minutes from ED admission. This outcome may reflect

patient’s status and may differ across different medical institutions because management of

severely hemorrhaging patients may differ. As we found in the data, the UE median times to

the first unit of RBC infusion are 18, 55, 65, and 24 for four sites, indicating potential heteroge-

neity of survival times across 4 sites. Fig 2 shows the estimated survival curves of time to the

first unit of RBCs for each site, along with p-values from (2.2) and the log-rank test. It shows

that median times are significantly different, suggesting that caution should be exercised when

merging data sets from different sites. All of these motivate us to apply the proposed Positive

Part shrinkage estimator (PP) method.

Table 6. Mean of 1000 estimated medians and REs when censoring rates are different among 4 sites (small censoring rates: 30%, 20%, 10%, 0%; large censoring

rates: 70%, 50%, 30%, 10%), for (2 uniform+2 lognormal), (2 uniform+2 exponential), (2 lognormal +2 exponential) distributions when sample size is 50.

Distribution Type Censoring Rate = (30%, 20%, 10%, 0%)

θ1 θ2 θ3 θ4 MSE RE

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 6.000 6.004 4.588 7.322 2.518 1.000

CE 5.995 5.995 5.995 5.995 4.246 0.593

PP 5.999 6.003 4.836 7.086 2.331 1.080

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 5.999 6.000 6.168 6.143 0.056 1.000

CE 6.027 6.027 6.027 6.027 0.041 1.363

PP 6.006 6.007 6.133 6.113 0.043 1.281

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.134 6.151 6.907 6.881 3.090 1.000

CE 6.859 6.859 6.859 6.859 1.521 2.032

PP 6.307 6.315 6.896 6.877 2.117 1.460

Censoring Rate = (70%, 50%, 30%, 10%)

2 uniform+2 lognormal Θ0 = (6, 6, 4.48, 7.38)

UE 6.005 6.004 4.612 7.514 2.854 1.000

CE 5.996 5.996 5.996 5.996 4.254 0.671

PP 6.005 6.003 4.875 7.219 2.531 1.127

2 uniform+2 exponential Θ0 = (6, 6, 6.15, 6.15)

UE 6.002 6.001 6.172 6.161 0.068 1.000

CE 6.035 6.035 6.035 6.035 0.042 1.611

PP 6.011 6.011 6.136 6.127 0.051 1.340

2 lognormal +2 exponential Θ0 = (6, 6, 6.89, 6.89)

UE 6.180 6.288 6.899 6.880 5.597 1.000

CE 6.847 6.847 6.847 6.847 1.531 3.656

PP 6.354 6.409 6.888 6.874 3.701 1.512

https://doi.org/10.1371/journal.pone.0197295.t006
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Table 7 summarizes estimated median times and their 95% confidence interval based

on bootstrap variance for each site based on PP method, along with the comparisons to

CE and UE methods. The PP median times are 18.08, 54, 63.71, and 23.91, compared to

the CE median times of 20.82, 20.82, 20.82, and 20.82. Obviously, the CE median times are

Fig 2. The survival curves of the four Kaplan-Meier (KM) estimates for time to receiving the first unit of RBC from site 1 (n1 = 303, solid

line), site 2 (n2 = 137, dashed), site 3 (n3 = 133, dotted), and site 4 (n4 = 125, dot-dashed), respectively.

https://doi.org/10.1371/journal.pone.0197295.g002

Table 7. Estimated median time to receive the first unit of red blood cell (RBC) infusion in PROMMTT study by

study sites.

Type of Estimator Median time to receive the first unit of RBC Infusion (in minutes)

site 1 (n1 = 303) site 2 (n2 = 137) site 3 (n3 = 133) site 4 (n4 = 125)

UE 18 (15 - 21) 55 (39 - 80) 65 (39 - 75) 24 (15 - 37)

CE 20.8 (16.7 - 27.4) 20.8 (16.7 - 27.4) 20.8 (16.7 - 27.4) 20.8 (16.7 - 27.4)

PP 18.1 (15.0 - 21.3) 54 (37.7 - 77.4) 63.7 (38.3 - 73.9) 23.9 (15.2 - 36.5)

https://doi.org/10.1371/journal.pone.0197295.t007
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unreliable since the test for homogeneity of medians to first RBC infusion is rejected (p-

value<0.0001). The PP median times are almost identical to the UE median times, with

slightly narrower confidence intervals than UE median times at site 2, 3, and 4, indicating a

slight efficiency gain.

Concluding remarks

In this paper, other than the unrestricted estimator and simply combined estimator, we have

presented a shrinkage nonparametric approach for estimating the median survival vector in a

k-sample problem. Other than asymptotical comparison on ADQR, extensive simulations

have been done to assess the performance of these estimators, considering various scenarios

allowing varying levels of censorship and different level of departure from homogeneity of the

survival medians.

The performance of the combined estimator heavily depends on the strength of homogene-

ity. When homogeneity holds ŶCE is more efficient compared to ŶUE and ŶPP. However, ŶCE

becomes inconsistent and the efficiency of the CE decreases significantly when homogeneity

fails. On the other hand, ŶPP seems to be robust to the non-homogeneity and different levels

of censoring. Though the relative efficiency against ŶUE decreases as we deviate from the qual-

ity of the survival medians, it keeps being greater or equal to 1. Like any other shrinkage esti-

mation procedures, there is a bias-variance tradeoff for ŶPP .

The proposed procedures have applications in epidemiologic and health care research.

For example, for estimating survival median based on data from a multi-site study one

always faces with the challenge of whether to pool data from all sites or not pool such data. In

this study using PROMMTT data we have demonstrated the utility of various estimators as

well as how one can make a decision as to choose the most appropriate estimation procedure.

On the other hand, if the distributions of median times are similar, greater efficiency of the

estimators by using shrinkage-type methods may be gained, depending on the distribution

of event time.
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