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Abstract

Non-contact heart rate (HR) measurement from facial videos has attracted high interests

due to its convenience and cost effectiveness. However, accurate and robust HR estimation

under various realistic scenarios remain a very challenging problem. In this paper, we

develop a novel system which can achieve a robust and accurate HR estimation under

those challenging scenarios. First, to minimize tracking-artifacts arising from large head

motions and facial expressions, we propose a joint face detection and alignment method

which can produce alignment-friendly facial bounding boxes with reliable initial facial

shapes, facilitating accurate and robust face alignment even in the presence of large pose

variations and expressions. Second, different from most existing methods [1–5] which

derive pulse signals from predetermined grid cells (i.e. local patches), our patches are vary-

ing-sized triangles generated adaptively to exclude negative effects from non-rigid facial

motions. Third, we propose an adaptive patch selection method to choose patches which

contain skin regions and are more likely to contain useful information, followed by an inde-

pendent component analysis, for an accurate HR estimate. Extensive experiments on both

public datasets and our own dataset demonstrated that, comparing with the state-of-the-art

methods [1–3], our method reduces the root mean square error (RMSE) by a large margin,

ranging from 12% to 63%, and can provide a robust and accurate estimation under various

challenging scenarios.

Introduction

The rapid advances in electronic devices equipped with various multimedia tools such as digi-

tal cameras stimulated the explosive growth of multimedia computing with diverse applica-

tions to medical service and health monitoring [6–11]. Human heart rate (HR) measurement

is one of the vital signs for clinical diagnosis of many cardiovascular diseases, cardio training

guidelines, and many other medical and health monitoring applications. Traditional HR mea-

surement which mainly relies on the optical technique [4, 12–15] or the electric technique,
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e.g. electrocardiogram (ECG), requires users to physically make specific contact with the

devices (e.g. place a fingertip in contact with an optical sensor for the optical methods or place

electrodes on the skin of chest and/or limbs for the electric methods), thus is not suitable for

continuous and long-term monitoring. Recently, emerging methods [3–5, 16–25] which utilize

video-based multimedia data to extract pulse signals have attracted lots of interests as they are

non-contact and thus facilitate the application of human HR monitoring to a much broader

range of scenarios which are infeasible or inconvenient for conventional contact based

approaches. For instance: 1) long-term and ubiquitous heart rate monitoring of premature

neonates and elderly whose skin is fragile and damageable by traditional sensors; 2) assisting

human emotion recognition [26] by correlating the HR of a subject with facial expressions and

speech using a single camera in front of the subject; 3) cardio training guidelines which guide

an exerciser to achieve the target of fat burning, cardio training, endurance training, etc. and

meanwhile to ensure a proper workout intensity by continuously monitoring the exerciser

using a sport equipment (e.g., running machine) with a built-in front camera.

The underlying idea behind a facial video-based HR estimation method is that every heart

beat pumps the blood into faces, resulting in volumetric changes in facial blood vessels and in

turn changes the reflection of the incident ambient light. Several methods have been proposed

for video-based HR estimation; however, an accurate HR measurement remains challenging

under realistic scenarios: 1) large tracking-artifacts due to uncontrolled head motions resulting

in large misalignment-caused intensity changes which are mixed with the pulse-related signal,

and 2) extremely low signal strength of the pulse-related waveform due to the tiny amount of

blood (only 2% to 5% of the total blood in a body) in the facial skin vascular bed, and a small

change (*5%) of the blood volume in sync with the cardiovascular pulse [5]. The pulse-related

signal is embedded in various other noise sources (including motion-induced color changes,

dynamic illumination changes in mobile scenarios, etc.) whose strength is several orders of

magnitude greater than those of pulse-related color changes.

Several efforts have been made to address these two challenges. To eliminate motion-

induced tracking-artifacts, the authors in [3, 4, 19] employed face detection and/or face track-

ing to localize a bounding box encompassing an entire face on every video frame. All pixels

within the bounding box are averaged for the pulse estimation to smooth out small motion

changes. However, the bounding box localized by existing face detection/tracking methods

could be sensitive to large head motions, illumination and/or background changes, and thus

fluctuates from frame to frame. To achieve high accuracy, these methods therefore require the

user to keep the head still during the process of HR estimation. Moreover, facial bounding

boxes inevitably contain non-skin pixels, such as hair, beards and background, disturbing the

true pulse related signals and yielding errors. To address these limitations, recent methods [1,

2, 5] employed state-of-the-art face alignment methods to precisely localize a set of facial land-

mark points on every video frames and estimate HR from local patches including only skin

pixels. For instance, Li et al. [2] used the Discriminative Response Map Fitting (DRMF)

method [27] to detect facial points on the first frame and then tracked the facial points in the

subsequent frames by the Kanade-Lucas-Tomasi (KLT) algorithm [28]. Kumar et al. [5]

divided an entire facial region into seven sub-regions by the deformable face fitting algorithm

[29]. Lam et al. [1] located and tracked facial points by a facial landmark fitting tracker [30].

The problem, however, is that existing face alignment methods [31–33] are bounding

box dependent and initial shape dependent. Large head motions which do occur in practical

scenarios could no longer guarantee a convergence of facial shape model and consequently

yield large misalignment errors and HR measurement errors [34]. Therefore, for HR measure-

ment in realistic scenarios, there is a need for developing a highly accurate face alignment

method which is robust with respect to various head motions.
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To recover subtle pulse signals from a mixture of various sources, Xu et al. [4], under the

assumption that the environmental lighting remains constant during measurement period,

utilized the pixel quotient differences of every two adjacent frames to simulate the pulse-

related color changes. But in practice the assumption of constant environmental illumination

is usually not valid. To address this problem, Li et al. [2] segmented the background region of

a video and computed the mean green value of the background in each frame to form a back-

ground lighting signal. The pulse signal was obtained by subtracting the background signal

from the video-recorded facial signal. Other methods formulated it as a Blind Source Separa-

tion (BSS) problem and applied Independent Component Analysis (ICA) to extract the unob-

served signal (i.e. the pulse signal) from a set of observations (i.e. intensity signals from the

facial video) that are composed of linear mixtures of the underlying sources. For instance,

Poh et al. [3, 19] averaged pixel values of the red (R), green (G) and blue (B) traces in a facial

region separately and utilized the R, G, and B signals as the observations of ICA for pulse signal

decomposition. Instead of using all RGB traces as [3, 19], the authors in [1] proposed to utilize

only the green channel for extracting the pulse signal based on the fact that the absorption

spectra of the hemoglobin and oxyhemoglobin in blood peaks at around 520–580 nm [35],

which is in a similar passband range of the green channel [5]. Several pairs of local patches

are randomly selected from the face region as observations of ICA. Each patch pair is used to

derive a HR hypothesis and the hypothesis with the greatest consensus is reported as the final

HR estimate. The performance achieved by [1] on a public dataset is superior to those of [3,

19] and several other state-of-the-art methods. However, random patch pair selection can

hardly guarantee a high-quality result, especially when the number of inliers (i.e. patches based

on which a true HR can be derived) is small. Similarly, the authors in [5] utilized only the

green channel of the signal and improved the signal-to-noise ratio (SNR) by partitioning a face

into a set of small patches based on facial landmark points and dynamically assign weights to

patches according to how likely a patch can provide an accurate HR estimation. However, the

size of a patch significantly affects the HR measurement accuracy [1, 5]. A small patch is more

robust to non-rigid facial changes (e.g. facial expressions) but more sensitive to misalignment

errors; a large patch is less resilient to non-rigid facial changes while more robust to misalign-

ment. To date, the problem of dynamically determining the size and shape of a patch and

adaptively choosing the most reliable patches for HR estimation has not been addressed.

In this paper, we aim at robust and accurate HR estimation under realistic scenarios even

when there is a large head motion (e.g. when a user is walking or talking) and when the sur-

rounding illumination changes are significant and highly dynamic (e.g. when a user is watch-

ing TV, etc.). First, we propose a joint face detection and alignment method which can

robustly provide accurate facial landmarks even when there are large head motions. Instead of

detecting face and localizing facial landmarks in separate and independent steps as most exist-

ing methods [1, 2, 5] did, our method provide a bounding box with initial facial landmarks

which can guarantee fast convergence from an initial estimated shape to the actual shape even

in the presence of large head pose variations. Second, we apply the Delaunay Triangulation

(DT) method to the localized landmarks to approximate the non-rigid face surface using a set

of triangles. Each triangle is then used as a local patch for the subsequent HR estimation. As

the shape of each triangle changes with non-rigid facial motion so as to cover the same skin

region, thus our local patches are robust to non-rigid motions. Third, we propose an adaptive

patch selection method to filter out non-skin patches (e.g. eyes, glasses, beards, etc.) and iden-

tify reliable patches which are more likely to be useful for deriving correct pulse signal. That is

to say, our method can effectively remove potential noises and in turn improve SNR. More

specifically, a color image is first converted to a skin probability map (SPM) via a Naive Bayes-

ian Model, where each pixel represents its likelihood of being a skin pixel. Then we calculate
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the average of the skin probabilities in a patch to determine whether the patch is a non-skin

patch or not by thresholding. Patches whose sizes remain stable along the temporal axis are

considered as reliable patches which are then used for ICA analysis for better recovering subtle

pulse signals and thus for robust HR estimation. In summary, our key contributions include:

• A novel joint face detection and alignment method which enables robust and accurate face

alignment even in the presence of large head motions, minimizing the tracking-artifacts for

HR estimation.

• An adaptive local patch selection method which can effectively improve SNR by filtering out

non-skin patches and discovering reliable ones for robust HR estimation.

We test our proposed method on 487 challenging videos from the MAHNOB-HCI dataset

[36]. This dataset contains facial videos with variant challenges including head pose variations,

facial expressions and dynamic illuminations, well simulating the realistic scenarios. We com-

pare our method with the state-of-the-art methods [1–3] on this dataset and the experimental

results show that our method significantly outperforms [1–3] by reducing the RMSE by 12%

to 63%. In addition, we evaluated the impact of two key components in our method on a self-

collected dataset. Experimental results demonstrate that the accurate face alignment improves

the overall performance from 9.2 RMSE to 5.2 RMSE and the adaptive patch selection further

reduces the RMSE to 2.4.

Methods

Problem definition

The facial video records the illumination of light reflected back from a face region P(x, y, t),
where x, y, and t are two dimensional coordinates of a video frame and a temporal point.

In general, the reflected light recorded by a video camera is a summation of two parts: (i)

I(x, y, t)—the light directly reflected by the skin surface which is characterized by the skin’s

bidirectional reflectance distribution function (BRDF) [5], as denoted by the orange arrow in

Fig 1, and (ii) A(x, y, t)—the light travels underneath the skin and then is reflected back after

absorbance by various pigments in tissues, including hemoglobin in blood vessels in dermis,

melanin in epidermis and β-carotene in subcutaneous fat tissue [4], as denoted by the red

arrow in Fig 1:

Pðx; y; tÞ ¼ Iðx; y; tÞ þ Aðx; y; tÞ ð1Þ

In Eq (1), I(x, y, t) mainly relies on the illumination of the surrounding environments and

A(x, y, t) relies on both the environmental lightings and the amount of light absorbed by the

skin. Generally, the melanin and β-carotene remain static in the skin during the period of

video recording, yielding a constant light absorbance. Every heart beat changes the volume of

blood in facial vessels. As a result, hemoglobin concentration varies in sync with heart beat

and in turn synchronously changes the amount of light absorption. Such absorption changes

are called the photoplethysmogram (PPG) signal. We define Ah(x, y, t) as the light reflected

after absorbance by hemoglobin and Am(x, y, t) as the light reflected after absorbance by mela-

nin and β-carotene, then A(x, y, t) can be represented as the sum of Ah(x, y, t) and Am(x, y, t) as

shown in Eq (2):

Aðx; y; tÞ ¼ Amðx; y; tÞ þ Ahðx; y; tÞ ð2Þ
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Combining Eqs (1) and (2) we have:

Pðx; y; tÞ ¼ aðx; yÞpðtÞ þ bðx; yÞwðtÞ ð3Þ

where α(x, y)p(t) = Ah(x, y, t) and β(x, y)w(t) = I(x, y, t) + Am(x, y, t).
Eq (3) indicates that the intensity of a facial video can be decomposed into two basic signals:

the PPG signal related part p(t) and environmental illumination related part w(t). p(t) and w(t)
are weighted by location-dependent factors α(x, y) and β(x, y) respectively. More specifically,

α(x, y) and β(x, y) depend on the intensity of incident light, the incident angle of the light and

the amount of pigments at different locations over a face. The key task of HR estimation from

facial videos is to extract p(t) from P(x, y, t) without prior knowledge about α(x, y), β(x, y) and

w(t).

Framework of the proposed method

Our method consists of four key components to ensure an accurate solution of extracting p(t)
from Eq (3). Fig 2 illustrates the framework of our method.

First, a joint face detection and alignment method is applied to every video frame to localize

facial landmarks which is robust to large head poses and facial expressions (Sec. Joint Face

Detection and Alignment for Minimizing Tracking-Artifacts). Second, on every video frame

we connect facial landmarks via the DT algorithm [37] to form a set of triangles. Each triangle

is used as a local patch, corresponding to a unique skin region. After that, we adaptively select

a subset of local patches which include only skin pixels and are more likely to achieve an accu-

rate HR (Sec. Local Patch Generation and Adaptive Selection). Finally, the final HR estimation

is derived from all adaptive selected local patches via a majority voting strategy (Sec. Robust

HR Estimation).

Joint face detection and alignment for minimizing tracking-artifacts

Accurately aligning faces in the presence of large head motions remains a very challenging

problem, because of face alignment’s reliance on an initial facial shape starting from which a

true shape is derived to fit a face. Most existing face alignment methods [31, 32, 38] utilize the

mean shape as an initial shape and determine the size and location of the initial shape accord-

ing to the bounding box. The mean shape is calculated by averaging all shapes from training

samples and the bounding box is provided by a face detector. However, when there is a large

Fig 1. The reflection and absorption of environmental light by human skin.

https://doi.org/10.1371/journal.pone.0197275.g001
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head pose variation presented in a video frame, the size and shape of the initial shape deter-

mined by the bounding box and the mean shape could be quite different from the actual shape

(as shown in the top of Fig 3(a)). Large discrepancy between the initial shape and the actual

shape could not be completely rectified by subsequent iterations, yielding large alignment

errors and motion artifacts in HR estimation.

To minimize misalignment errors due to large head motions, we develop a joint face

detection and alignment method by combining an alignment-friendly multipose face detec-

tor and a reliable initialization of face alignment into a unified cascade framework. Different

from conventional face detection method [39] which considers facial regions as positive

training samples and non-facial images as negative samples, a positive sample defined in

our method is a combination of a facial region and a shape roughly indicating the face pose

and a negative sample is otherwise (as shown in Fig 4). Accordingly, the output of our face

detector is a combination of a bounding box and a roughly aligned facial shape which acts

as a reliable initial shape to ensure a fast and accurate convergence of subsequent face align-

ment (as shown in Fig 3(c)).

In the training phase, each sample is represented by placing a shape S on an image region

x and then extracting shape-indexed features [40] based on landmarks of S from x, where

S = (l1, � � �, lk, � � �, lK) 2 R2K, K is the number of facial points and lk 2 R2 is the 2D coordinates

of the k-th facial point. Shape-indexed features ϕ(x, S) is calculated by first randomly choosing

pairs of pixels in x. Then for each pixel in a pixel pair, it is indexed by its location relative to

the local coordinates of its closest facial point lk. A shape-indexed pixel pair can be represented

in many ways, and in this work we represent a pair using the intensity difference between two

pixels for simplicity and efficiency. For positive samples, as its shape S is roughly aligned with

its actual shape, the corresponding shape-indexed features can well represent facial features.

On the other hand, for negative samples, due to large discrepancy between S and the actual

shape or no face is included in x, little representative information for the face can be extracted.

Based on these training samples {(x, S)} and shape-indexed features {ϕ(x, S)}, we construct our

Fig 2. Framework of the proposed method.

https://doi.org/10.1371/journal.pone.0197275.g002
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face detector using a cascaded random forest as:

f N ¼
XN

i¼1

Cið�ðx; SÞÞ: ð4Þ

where each Ci is a weak classifier implemented using a decision tree [41] and Ci(ϕ(x, S))

returns a classification score. The decision tree consists of several layers and tree nodes in each

layer have two corresponding child nodes. Each tree node selects one shape-indexed feature

(i.e. a pixel pair) from a subset of all features in a training sample which can best classify all

training samples, and each decision tree weakly splits positives and negatives by a bias thresh-

old. A face detector learns a set of bias thresholds {θi|i = 1, 2, . . ., N} for all decision trees {Ci} to

acquire the best separation.

In the testing phase, a sliding window is applied to each video frame. Each sliding window x
goes though weak classifiers sequentially and is rejected immediately whenever fi< θi for any

i = 1, 2, . . ., N. The combination of (x, S) which achieves greatest fN as Eq (5) is considered as

the facial bounding box and its corresponding initial facial shape:

argmax
S2fSjjj¼1;2;...;ng

XN

i¼1

Cið�ðx; SÞÞ: ð5Þ

Fig 3. Performance comparison based on different methods for computing the bounding box and the initial shape. (a) When using a bounding box provided by

Viola-Jones detector [39] and the mean shape for initialization, the alignment error is large (i.e. 7.8% (averaged point-to-point distance)/(interpupillary distance)) (b)

Using the alignment-friendly bounding box provided by our joint method and using the mean shape as the initial shape reduces the alignment error from 7.8% to

2.7%. (c) Further replacing the initialization method based on the mean shape with our joint method can further reduce the error to 1.9%.

https://doi.org/10.1371/journal.pone.0197275.g003
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Afterwards, a face alignment method based on the local binary features (LBF-fast) [38]

takes the results (x, S) from the face detector and performs the alignment as shown in Fig 5.

Our detection phase is very fast as most negative image regions are rejected after evaluating

only a few weak classifiers and meanwhile can provide an initial shape which can ensure a fast

and accurate alignment together with the bounding box.

Implementation details. To reduce the time cost for extracting features from a single

region x, we enumerate a finite number of S (i.e. left looking, right looking and frontal shape

in our experiment) so as to tolerate a variety of poses when extracting shape-indexed features

and meanwhile maintain a reasonable time complexity. The representative shapes for three

poses {Si|i = 1, 2, 3} are generated by clustering face shapes in trainset based on the Hausdorff

distance [42] and obtaining mean shapes from every class as representative shapes {Si}. We

extracted 16,866 positive and negative features from 2,811 images and their mirror versions

from the HELEN and LFPW datasets provided by [43].

Comparing to the conventional face detection method, our joint method could provide a

more alignment-friendly bounding box. By comparing Fig 3(a) and 3(b) our method can

reduce the alignment error from 7.8% to 2.7%. Comparing to using mean shape as initializa-

tion, utilizing the initial shape generated by our joint method could further reduce the align-

ment error from 2.7% to 1.9% (as shown in Fig 3(b) and 3(c)). The formal definition of

alignment error is presented in Sec. Comparison of face alignment on 300W.

Fig 4. Definition of positive and negative features. Combinations indicated by green lines are used for extracting positive shape-indexed features, and combinations

indicated by red lines are used for extracting negative features.

https://doi.org/10.1371/journal.pone.0197275.g004
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Local patch generation and adaptive selection

Given the accurately localized facial points, we can generate a local patch by connecting more

than three non-repeatable points. To ensure the generated local patches are non-rigid motion

resistant and containing meaningful pulse signals, the generated patches need to conform with

the following two rules:

• The size of a local patch should be proper, neither too big so as to avoid partial occlusion and

be robust to non-rigid motions, nor too small in order to be robust to some misalignment

errors.

• Local patches should not overlap each other to avoid redundancy.

We apply the Delaunay Triangulation (DT) method [37] which can well satisfy the above

rules to generate local patches. The DT algorithm connects three facial points which are close

in distance and meanwhile can maximize the minimum angle of all the angles of the triangle.

This requirement can ensure that each generated triangle (i.e. local patch) has a proper size. In

addition, the DT algorithm requires that no facial point is inside the circumcircle of any trian-

gle local patch, ensuring that the generated patches are non-overlapped. Exemplar patches

generated by DT can be visualized in step 2 of Fig 2.

Two types of local patches could disturb a correct HR estimation: 1) patches containing a

majority of non-skin pixels, such as pixels belonging to beards, eyes, glasses, etc., and 2)

patches whose sizes constantly change due to head motions. For instance, the size of patches

containing eyelids periodically change when eyes are blinking and a patch containing the

cheek region close to the nose could be partially occluded by the nose when the head is mov-

ing, yielding patch-size variations over time. Those head motion-/facial expression-induced

missing pixels result in non-trivial noises when extracting raw signals from patches, and in

turn cause inaccuracy for HR estimation, the explanation of which will be further formulated

in Sec. Robust HR Estimation.

To eliminate non-skin patches we construct a skin probability map (SPM) based on a RGB

video frame. We first collect 78 training images and each of them contains both human skin

and background (i.e. non-skin regions). We convert each image from RGB color space to

Fig 5. Illustration of testing phase of our joint face detection and alignment.

https://doi.org/10.1371/journal.pone.0197275.g005
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YCbCr color space, in which pixels belong to human skins cluster densely even for different

races while non-skin pixels spread randomly. We built a two dimensional histogram of Cb-Cr
chromaticity of skin colors, hskin(Cb, Cr). Each entry in a bin (Cb, Cr) of the histogram is the

number of skin pixels whose color value equals to (Cb, Cr). Similarly, we built another histo-

gram for the entire set of pixels, htotal(Cb, Cr). By using the Bayes rule, the probability of being

a skin for a given (Cb, Cr) color vector is expressed as:

pskinðCb;CrÞ ¼
pðCb;CrjskinÞ � pðskinÞ

pðCb;CrÞ
ð6Þ

p(Cb, Cr|skin) and p(Cb, Cr) are calculated as hskin(Cb, Cr)/Nskin and htotal(Cb, Cr)/Ntotal

respectively, where Nskin is the number of all skin pixels and Ntotal is the number of all pixels

including skin and non-skin. And p(skin) is approximated by the fraction of observed skin-

like pixels as p(skin) ffi Nskin/Ntotal. We generate a SPM according to Eq (6) for each video

frame. An average of the skin probabilities of each patch is then calculated based on SPM, and

those patches with an average skin probability smaller than a predefined threshold (i.e. 0.7 in

our experiment) is filtered out as non-skin patches.

Secondly, we select patches whose sizes are relatively stable across all frames in a video.

Given a local patch whose pixel counts in a series of K video frames are denoted as N = (N1,

N2, . . ., Ni, . . ., NK), where Ni is the number of its pixels in i-th video frame. Ni −Ni−1 reflects

the pixel count change between two frames, thus we define the pixel change series as C:

C ¼ ðN2 � N1;N3 � N2; . . . ;NK � NK� 1Þ 2 ZK� 1 ð7Þ

To normalize every pixel change series into the same scale space, we weight each element in

C by K=ð
Pi¼K

i¼1
NiÞ

1=2
, resulting in:

C ¼
K

�Pi¼K
i¼1

Ni

�1=2
N2 � N1;N3 � N2; . . . ;NK � NK� 1ð Þ

ð8Þ

Several exemplar patches and their corresponding N, C, boxplots for C and power spectral

density (PSD) are shown in Fig 6. The interquartile range (IQR), which is calculated as Q3 −
Q1, where Q1 and Q3 are the first and third quartiles, in boxplots indicates the stability of the

patch size along the temporal axis. As observed from Fig 6, the smaller IQR is, the more obvi-

ous the peak and the less noise the PSD has. For example, the size of the first patch in Fig 6 var-

ies greatly due to the self-occlusion by the nose when there is a large head pose variance. As a

result, its corresponding PSD contains multiple peaks and is with many noises, which there-

fore should not to be used as an observation of ICA for extracting the PPG signal. Therefore,

in our algorithm, we calculate IQR of each patch, and only select patches with the top 50%

smallest IQR for estimation of the final HR.

Robust HR estimation

The final HR estimation is derived from all these selected skin-covered size-stable local patches

via a majority voting strategy. Specifically, for each selected local patch, we average all pixels’

green-channel intensity within this patch on every frame to form of its corresponding raw sig-

nal observation. Thus, all patches yield a set of observations fPiðtÞji ¼ 1; 2; . . . ; ng, where n
denotes the total number of adaptively selected local patches. Afterwards, we randomly select

a pair of raw signal observations ðPiðtÞ; PjðtÞ; i 6¼ jÞ from fPiðtÞg as [1] did and solve the
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following equations,

PiðtÞ ¼ a ipðtÞ þ biwðtÞ

PjðtÞ ¼ a jpðtÞ þ b jwðtÞ
ð9Þ

where a ¼ ½
P

x

P
y aðx; yÞ�=N, (x, y) is the index of a pixel within the local patch whose area is

N, so is, b ¼ ½
P

x

P
y bðx; yÞ�=N. Both a and b are time-independent constant.

We generate a p(t) hypothesis for each patch pair by solving Eq (9) using FastICA [44].

According to the majority voting rule, each p(t) hypothesis votes a frequency bin which con-

tains the highest peak in the frequency domain ranging from 0.7Hz to 4Hz and the frequency

bin receiving the most votes is reported as the final pulse frequency estimate fHR. The final HR

estimate from the video is computed as HR = 60 × fHR.

Experimental results

We set up three experiments to evaluate our method. First, we evaluated the performance of

face alignment based on our joint method on public datasets with large head pose variations,

facial expressions and partial occlusions (Sec. Comparison of face alignment on 300W). Sec-

ond, we quantified the impact of the two key components of our method—joint detection and

alignment and adaptive patch selection using our self-collected dataset, named Pose-Variant

HR dataset (Sec. Evaluation on Pose-Variant HR dataset). At last, we assessed the performance

Fig 6. Four local patches are sampled to show their patch size time series (unit: pixels) N, change in patch size over time (unit: pixels) C, boxplots of C and PSD

of pixel intensity series. The pixel intensity series is PðtÞ.

https://doi.org/10.1371/journal.pone.0197275.g006
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of our method on a large and comprehensive dataset MAHNOB-HCI. Specifically, we com-

pared the accuracy of our method for estimating the average HR for a given video clip with

several state-of-the-art methods [1–3] (Sec. Comparison of HR Measurement on MAH-

NOB-HCI). In the following, we briefly describe the datasets and evaluation metrics used in

each experiment followed by the corresponding results.

Comparison of face alignment on 300W

Dataset and evaluation metrics. We evaluated the alignment accuracy achieved by our

joint method using a challenging dataset 300W [43]. This dataset includes 3,837 facial images

with large scale differences, head pose variations, facial expressions and partial occlusions. We

used the same configuration as those in [34, 38, 45] for training. More specifically, we utilized

3,148 training images which consists of 337 images from AFW, 2,000 images from the HELEN

training set and 811 images from the LFPW training set. The mirror version of the 3,148

images is also used for training. We evaluated the face alignment accuracy using 689 images,

which consists of 330 images from the HELEN test set, 224 images from the LFPW test set and

135 images from iBug. We used the 68 landmark model for face alignment.

The face alignment accuracy is calculated as the normalized alignment error, which is the

average Euclidean distance between groundtruth landmarks and the predicted landmarks

divided by the inter-ocular distance (measured as the Euclidean distance between the outer

corners of the eyes). The average normalized error is used to quantify performance of our joint

method. In addition, the Cumulative Error Distribution (CED) curve will be produced, where

each value at the x-axis is a normalized error and y-value of each point indicates the proportion

of test images for which the normalized error is less than the x-value.

Results. For comparison of face alignment accuracy, we implemented several state-of-the-

art methods including CCNF [46], CFAN [33], DRMF [27], GNDPM [47], IFA [31], LBF [38],

SDM [32], TCDCN [48], PCPR [49], CFSS [45], and Zhu et al. [50]. For missed faces during

detection, we used prescribed face bounding boxes provided by [43] and the mean shape as

the initial shape for a fair comparison. It can be observed from the CED curves in Fig 7 and the

normalized error comparison results in Table 1 that our joint method outperforms most previ-

ous methods and have very similar performance with TCDCN. However, the TCDCN utilized

deep neural networks and required a large amount of training data with auxiliary labels includ-

ing gender, expression, appearance, etc., which limits its application to practical scenarios.

Especially, benefiting from the alignment-friendly facial bounding box and the roughly aligned

initial solution, our joint method achieves significant improvement over the original LBF-fast,

reducing the normalized error from 7.37% to 5.55% as shown in Table 1.

The improvement of face detection and face alignment by our joint method allows us to

extract PPG signals based on more accurate local patches, thus resulting in a more robust per-

formance of HR estimation especially for faces with large pose variations.

Parameter settings

In this section, we conduct two experiments to statistically analyze the impact of the two

thresholds for the skin probability and the IQR respectively and search for proper threshold

values for our method. In the first experiment, we excluded the non-skin patch removal step

and used patches whose IQR is within the top n smallest IQR among all generated local patches

for PSD extraction. We set n to different values, from 10% to 100%, with a step of 10%. For

each n we calculated the averaged SNR of PSDs derived from all patch pairs. Note that when n
is set to 100%, none patches will be filtered out based on IQR. In the second experiment, we

excluded the adaptive patch selection step based on IQR filtering and used patches whose
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averaged skin probability is below a predefined threshold m for PSD extraction. We set m to

different values, from 0.0 to 0.9, with a step of 0.1. For each m we calculated the averaged SNR.

Note that when m is set to 0.0, none patches will be filtered out based on skin probability.

The SNR of each PSD is calculated as in [22]. That is, SNR is calculated as the energy

around the ground-truth frequency (i.e. Egt) plus the first harmonic of the pulse signal (i.e.

E1st−h) divided by the remaining energy contained in the spectrum (i.e. Eremaining):

SNR ¼
E1st� h þ Egt
Eremaining

ð10Þ

The two experiments were conducted on a validation dataset that is extracted from the

MANNOB-HCI (Details about this public dataset are presented in Sec. Comparison of HR

Fig 7. Comparison with state-of-the-art face alignment methods on the 300W dataset.

https://doi.org/10.1371/journal.pone.0197275.g007

Table 1. Results on 300W with 68-point annotation.

Method Normalized error %

Zhu et al. 10.20

DRMF 9.22

RCPR 8.35

SDM 7.50

LBF 6.32

CFSS 5.76

LBF-fast 7.37

TCDCN 5.54

Ours 5.55

https://doi.org/10.1371/journal.pone.0197275.t001

Accurate face alignment and adaptive patch selection for heart rate estimation from videos

PLOS ONE | https://doi.org/10.1371/journal.pone.0197275 May 11, 2018 13 / 25

https://doi.org/10.1371/journal.pone.0197275.g007
https://doi.org/10.1371/journal.pone.0197275.t001
https://doi.org/10.1371/journal.pone.0197275


Measurement on MAHNOB-HCI). To avoid the overlap between the validation dataset and

the test dataset used in our work, from each video we cropped a 30-second clip that is different

from the 30-second clip for testing. Fig 8(a) and 8(b) show the statistical results for the first

and second experiments respectively.

As can be seen in Fig 8(a), when the threshold for IQR is over 70%, the SNR of PSD drops

dramatically and SNR achieves a sufficiently high and stable value when the threshold is

around 50%. In Fig 8(b), the SNR of the PSD increases as the threshold for skin probability

increases from 0.0 to 0.7. Further increasing the threshold to 0.9 might lead to fluctuations of

SNR values. Therefore, in our experiment we chose 0.7 as the skin probability threshold and

50% as the IQR threshold for a stable and sufficiently high SNR.

Evaluation on Pose-Variant HR dataset

Dataset and evaluation metrics. We constructed a Pose-Variant HR dataset by recording

20 facial videos of 10 human subjects for 30 seconds using a SAMSUNGG9300 smartphone.

The video is in 24-bit color at 30 fps with a resolution of 1920 × 1080. Each participant was

asked to rotate their head 10 to 20 times with a large angle which ranges around −40˚ to 40˚

mainly in the yaw axis during video capturing. The HR groundtruth was measured using a

commercial medical sphygmometer OMRON Electronic Sphygmometer HEM-1020. Since the

sphygmometer measures HR in a 5-second window, we averaged 6 consecutive reference HR-

measurements for a 30-second video to make sure that both ground truth method and our

proposed method measure HR over the same window-length (i.e. 30s). We recorded 2 videos

for each subject: the first video called kineticHR was recorded after a subject ran at a regular

pace for three minutes and the second called basalHRwas recorded when the subject was

resting. The third column of Table 2 summarizes the characteristics of our Pose-Variant HR

dataset.

For the evaluation metrics, we used the RMSE and the Bland Altman plot. The Bland Altman

plot is used to quantify the agreement between the video-based method and the contact-based

method of measurements [51]. The 95% limits of agreement, estimated by mean difference

±1.96 standard deviations of the difference, provide an interval within which 95% of the differ-

ences between the measurements by the two methods. Additionally, to better demonstrate the

Fig 8. Mean SNR when varying the threshold values for (a) IQR and (b) skin probability on the validation dataset.

https://doi.org/10.1371/journal.pone.0197275.g008
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spread of errors for each video-based method, we employed the measurement error HRerror =

HRpred −HRGT, where HRpred and HRGT are HR value predicted by video-based method and

ground-truth HR, and provided the mean of HRerror denoted as Me ¼ 1=N
PN

i¼1
HRierror, where

N is the number of videos and HRierror is the measurement error for the ith video, and the stan-

dard deviation of measurement errors denoted as SDe.
Results. In order to evaluate the impact of our method, we built a baseline method by

replacing our joint face detection and alignment method with the original LBF-fast for the first

step and removing the third step from our framework in Fig 2. Fig 9 shows the comparison of

the ground-truth HR and the HR estimated by baseline method and ours respectively. The

Pearson correlation coefficient of the baseline is 0.86 while ours is 0.97.

The improvement of the two key components in the proposed algorithm was further evalu-

ated using the Bland Altman plot, as shown in Fig 10. Fig 10 shows that almost all HR estimates

by the proposed method are located inside the blue boundary lines, satisfying the 95% limits of

agreement, while there are 4 out of 20 (i.e. 20%) estimates by the baseline located outside the

boundary lines due to the poor facial points estimation for faces with large head motions.

To further evaluate the value of adaptive patch selection for HR estimation, we conducted

an experiment in which we run all procedures except the adaptive patch selection (i.e. All Pro-

cedures w/o Adaptive Patch Selection) on the Pose-Variant dataset. Table 3 reports its RMSE,

as well as those of the Baseline and the complete proposed method (i.e. All procedures). Fur-

thermore, we performed t-test to evaluate the statistical significance of the improvements

achieved by our method. Specifically, the statistical significance is denoted by the p-value, a p-

value of smaller than 0.05 indicates that there is a significant difference between two sets of

results achieved by different methods. As shown in Table 3, our proposed method significantly

outperforms the “Baseline” method (p = 0.0295). When comparing “All Procedures w/o Adap-

tive Patch Selection” with “All procedures”, the results show that the adaptive patch selection

reduces RMSE by 53.8% for the entire dataset (p = 0.0426), which indicates that eliminating

non-skin patches and selecting patches with a stable size are indeed effective for robust HR

estimation. By comparing the performance of “Baseline” with “All Procedures w/o Adaptive

Patch Selection” we observe that the RMSE reduction achieved by the joint face detection and

alignment method is 39.1% (p = 0.0412).

Comparison of HR measurement on MAHNOB-HCI

Dataset and evaluation metrics. Although on the self-collected Pose-Variant HR dataset

our method shows a good performance of HR estimation and a robustness to a large head pose

variance, we still want to demonstrate our method by answering two questions: 1) whether our

Table 2. Characteristics of the two datasets used for experiments. Both datasets well emulate the realistic scenarios and are challenging for HR estimation.

Challenges MAHNOB-HCI % Pose-Variant HR %

SmallPoseVariation (kyawk< 10˚) 84 100

LargePoseVariation (kyawk � 40˚) 46 50

SmallExpressions 100 100

ExaggeratedExpressions 50 0

WithGlass 31 50

WithBeard 11 0

DarkSkin 27 0

PartialOcclusion 31 0

IlluminationChanges 100 0

https://doi.org/10.1371/journal.pone.0197275.t002
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method is consistently robust on a more comprehensive dataset which contains various chal-

lenges other than large head pose variance for the HR estimation (e.g. different skin tones, illu-

mination changes and facial expressions), well simulating realistic scenarios, and 2) whether

our method is consistently robust on a larger dataset which contains more than hundreds of

Fig 9. Comparison of the ground truth HR and the estimated HR by the baseline and our proposed method respectively on the Pose-variant HR dataset.

https://doi.org/10.1371/journal.pone.0197275.g009

Fig 10. The Bland-Altman plot for HR estimates by our proposed method (right) and the baseline (left) on the Pose-Variant HR dataset.

https://doi.org/10.1371/journal.pone.0197275.g010
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video clips. To answer these two questions, we evaluated our method on a public dataset

MAHNOB-HCI [36]. This dataset contains 600 facial videos captured in 24-bit color at 61

frames per second with a resolution of 780 × 580 from 30 human subjects. ECG signals were

recorded at 256 Hz using three sensors attached to each participant’s body, which allows pre-

cise identification of heart beats and consequently to compute the ground truth HR. For a fair

comparison, we used the same video configuration as [1], i.e. choosing the first 27 human sub-

jects, which provides totally 487 facial videos, a 30-second clip from each video, from frames

306 to 2,135, is used for our test. The groundtruth HR is calculated via a QRS-detection algo-

rithm [52] from the portion of the corresponding ECG of the second channel (EXG2, upper

left corner of the chest). The MAHNOB-HCI dataset presents various challenges for the HR

estimation including large head motions, dynamic illumination changes, various skin tones

and partial occlusions. The second column of Table 2 summarizes the characteristics of the

dataset and examples of some each challenging cases are shown in Fig 11.

Table 3. RMSE (Me ± SDe) of three methods: Baseline, ours with all procedures except adaptive patch selection,

and ours with all procedures.

Method basalHR kineticHR Overall

Baseline 8.7 (0.8±8.7) 10.3 (4.6±9.9) 9.2(2.6±9.5)

All Procedures w/o Adaptive Patch Selection 5.3 (1.4±5.1) 5.2 (−0.3±5.2) 5.2 (0.6±5.2)

All procedures 2.1 (−0.2±2.3) 3.2 (0.6±3.0) 2.4(0.2±2.7)

https://doi.org/10.1371/journal.pone.0197275.t003

Fig 11. Examples of challenging cases in the MAHNOB-HCI dataset. Since participants were facing a flashing screen when the videos were being captured, the

challenge of illumination changing are present in all videos.

https://doi.org/10.1371/journal.pone.0197275.g011
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To well demonstrate the robustness to different challenges of our method, we re-organized

the MAHNOB-HCI and created 8 subsets by sampling from the MAHNOB-HCI dataset. Each

subset consists of 20 video clips. According to the most dominated challenge in each subset,

these 8 subsets are called respectively Stationary, Large Pose, Expression, With glass, With
beard, White, Light brown and Dark brown/black. For the Stationary subset, video clips are col-

lected from challenges cases of Small Pose Variation and Small Expressions in the Table 2. For

the Large Pose subset, video clips mainly contain large pose variation, where heads rotate from

−40˚ to 40˚ mainly in the yaw axis. Since it is quite difficult to quantitatively measure facial

expressions, the Expression subset is constructed from subjectively selected video clips in

which the subjects laugh (as shown in Fig 11), frown or are astonished. We believe such 8 sub-

sets can well cover almost all possibly occurred challenges in realistic scenarios.

We first compared three methods: Baseline, All Procedures w/o Adaptive Patch Selection

and All procedures on the 8 subsets using the Bland Altman plot to understand the impact of

each module in our method on addressing the 3 challenges (i.e. different motions, occlusions,

and different skin tones). Then we compared the overall performance of HR estimation based

on our method vs. three state-of-the-art methods on the entire 487 videos from the MAH-

NOB-HCI dataset using RMSE and the well-estimation rate, i.e. the percentage of testing sam-

ples whose absolute errors are less than 5 bpm [1], which are widely used evaluation metrics

for HR measurement.

Results. Fig 12 illustrates the impact of joint face detection and alignment, and adaptive

patch selection on addressing problems induced by motions: 1) tracking-artifacts resulted

from head motions (i.e. translation, scaling and yaw rotation), and 2) facial expressions. Read-

ing plots from left to right we can observe that both challenges of large pose variance and facial

expression significantly degrade the performance of Baseline. Using joint face detection and

alignment, i.e. All Procedures w/o Adaptive Patch Selection, can improve the performance.

Further integrating the adaptive patch selection into the method can provide non-exclusive

improvements. As shown in Fig 12, black dots corresponding to All procedures cluster tightly,

which indicates that more accurate facial landmarks and adaptive patch selection strategy do

greatly improve the SNR and enable our method robust to both motion-artifacts (including

translation and rotating) and expression-artifacts.

To demonstrate the robustness of our method to occlusions mainly due to glasses and

beards, we evaluated the three methods on the subsets of With glass and With beard. Compari-

son results in Fig 13 show that the proposed adaptive patch selection provides obvious

Fig 12. Evaluations results of baseline, all procedures w/o adaptive patch selection and all procedures on the subsets of Stationary, Large Pose and Expression.

The red line in each plot indicates the mean value of differences between All procedures and the reference. The pair of dashed lines in each plot is mean±1.96σ between

All procedures and the reference to denote the variance range.

https://doi.org/10.1371/journal.pone.0197275.g012
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performance improvements when comparing black dots with orange and blue dots. The per-

formance gain is mainly achieved by excluding patches with few skin pixels which could

decrease the SNR and in turn pose difficulties for HR estimation. In contrast, our proposed

SPM model in the adaptive patch selection strategy can greatly remove such patches, improv-

ing the final performance.

For different skin tones, we evaluated only the All procedures on the subsets of White, Light
brown and Dark brown/black since it is hard to find video samples from the MAHNOB-HCI

dataset that only have skin tone variance without head moving and rotating and facial expres-

sion or occlusions. Moreover, experimental experience indicated that there is a more signifi-

cant impact on HR estimation by head pose variance and occlusions than skin tone variance.

The three plots in Fig 14 show that there is a high agreement between our method and the ref-

erence for all the three kinds of different skin tones.

Fig 13. Evaluations results of baseline, all procedures w/o adaptive patch selection and all procedures on the subsets of With glass and With beard. The red line

in each plot indicates the mean value of differences between All procedures and the reference. The pair of dashed lines in each plot is mean±1.96σ between All

procedures and the reference to denote the variance range.

https://doi.org/10.1371/journal.pone.0197275.g013

Fig 14. Evaluations results of all procedures on the subsets of White, Light brown and Dark brown/black. The red line in each plot indicates the mean value of

differences between All procedures and the reference. The pair of dashed lines in each plot is mean±1.96σ between All procedures and the reference to denote the

variance range.

https://doi.org/10.1371/journal.pone.0197275.g014
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It should be noted that the robustness of our method to illumination changes, which is an

important issue in realistic scenarios, has been already demonstrated among all experiments

above, since all participants were facing a flashing screen when the videos were captured. To

summarize, for more various challenges under realistic scenarios including large pose variants,

facial expressions, partial occlusions and different skin tones, our method demonstrates a con-

sistently robust performance benefiting from more reliable pulse signals extracted by the pro-

posed joint face detection and alignment and adaptive patch selection strategy.

To answer the question that whether our method is consistently robust on a larger dataset

which contains more than hundreds of video clips, we evaluated our method on all 487

video clips from the MAHNOB-HCI dataset and such amount of videos is *30 times larger

than the self-collected Pose-Variant HR dataset. Moreover, we compared our method with

three state-of-the-art HR estimation methods including a face detection-based HR estima-

tion method, i.e. Poh2011 [3], and two face alignment-based methods, i.e. Li2014 [2] and

Lam2015 [1]. Li2014 and Lam2015 adopted a similar idea that tracks a fixed local facial

patch around the nose and the mouth based on face alignment for HR estimation. Table 4

shows the experimental results.

It is not surprising that the face alignment-based methods (Li2014 and Lam2015) achieve

better performance than the face detection-based method (Poh2011), since non-skin pixels,

which have negative effects on PPG extraction, are excluded for some cases through selection

of specific local facial region based on landmarks produced by face alignment. For the two

face alignment-based methods, Li2014 only used a single predefined irregular shaped mask

which may fail to estimate the HR when there are many noisy sources in the mask (e.g.

beards), while Lam2015 extracted PPG signals from multiple local patches and combined

their HR estimates by a majority voting scheme for the final HR, increasing the robustness of

HR estimation.

Compared with Lam2015 [1], it is much easier for FastICA to identify a correct PPG

signal in our method based on three reasons: 1) local patches are generated based on more

accurate facial landmarks, minimizing the adverse impact of tracking-artifacts, 2) non-skin

patches including eyes, glass and beard-contained regions are excluded and it is incapable to

recovering correct signals from such patches, and 3) unreliable patches are rejected by select-

ing only size-stable patches on the timeline, providing raw signals with relatively high SNR

for robust HR estimation. More specifically, head motion/facial expression could induce

non-trivial amount of missing pixels in local patches and in turn make the two coefficients in

Eq (9) be time-varying variables, causing inaccuracy in solving Eq (9) using ICA. To summa-

rize, our method can remove as many outliers (i.e. local patches producing low-SNR raw sig-

nals) as possible and hence quadratically improve the probability of selecting a pair of inlier

patches for deriving a correct PPG signal using FastICA. Accordingly, even though consider-

ing the measurement errors and resolution of ECG signals, RMSE of 8.9 bpm achieved by

Table 4. Results of HR estimation on the MAHNOB-HCI (best performance in bold).

Method RMSE (Me±SDe) Well-estimation rate %

Poh2011 21.3 46.2

Li2014 15.0 68.1

Lam2015 8.9 75.1

Baseline 17.4 61.0

All Procedures w/o Adaptive Patch Selection 11.3 (2.5±11.5) 71.0

Ours (All Procedures) 7.4 (1.4±7.1) 79.2

https://doi.org/10.1371/journal.pone.0197275.t004
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Lam2015 was considered as a result close to saturation, our method still achieves another

12% reduction of RMSE, which demonstrates the effectiveness of our joint detection and

alignment method for handling large pose variations and adaptive patch selection for discov-

ering useful patches.

It is noteworthy that there is a recent work by Tulyakov et. al. [20] also achieved the state-

of-the-art performance on the MAHNOB-HCI dataset, but we did not compare our method

directly with theirs mainly due to two reasons. First, they adopted an old video configuration

of the MAHNOB-HCI dataset which contains 527 videos and we can no longer reproduce

such configuration since the MAHNOB-HCI dataset has been updated from time to time.

Second, there is no released source code and it is quite difficult to re-implement their work

due to the lack of implementation details and parameter configurations of their method. How-

ever, we can still provide an indirect comparison between our method and [20]. We believe

that the new video configuration used in our work is more challenging than the old one, since

Poh2011 [3] and Li2014 [2] evaluated their methods on MAHNOB-HCI of both old and new

configurations. The reported results in [1] show that the performance of Poh2011 [3] and

Li2014 [2] on the old configuration is much better than those achieved on the new configura-

tion (RMSE of 13.6 bpm and 7.62 bpm respectively on the old one and RMSE of 21.3 bpm

and 15.0 bpm respectively on the new configuration). Despite of more challenging cases in our

configuration, our method still provides performance close RMSE value to [20], whose RMSE

on the old and easier video configuration is 6.32 bpm.

Fig 15 shows the comparison results of the HR measured by our method and the ground

truth HR based on the MAHNOB-HCI dataset with new video configuration. The Pearson

correlation coefficient is 0.84, which means that overall HR estimation is well correlated with

the ground-truth. Moreover, we checked the outliers in our HR estimation and found that the

failure usually occurs when the participants’ faces are largely occluded by hands or even out of

the screen.

Conclusion and future work

In this study, we present a HR estimation method that can robustly and accurately measure

the human HR from a facial video under large head motions, facial expressions, partial face

occlusions or dynamic illuminations. First, our method employs a joint face detection and

alignment method by incorporating a well-designed multipose face detector with facial

alignment initialization in a unified cascaded framework. The joint process could ensure a

fast and accurate convergence of face alignment. Comparing to the state-of-the-art align-

ment methods, the proposed joint method achieves 25% accuracy improvement, and in turn

greatly reduces the motion artifacts for HR estimation. Second, a DT algorithm is applied to

generate triangular non-overlapping local patches by connecting localized landmarks, reduc-

ing the negative effects of non-rigid motions. Then a SPM is constructed to filter out non-

skin patches and the remaining patches whose sizes remain stable across the temporal axis

are adaptively selected for extracting PPG signals. Experimental results on a self-collected

dataset Pose-Variant HR and a larger and comprehensive dataset MAHNOB-HCI consis-

tently demonstrated our method’s superior performance to the state-of-the-art methods

under realistic scenarios.

In addition to estimating an average HR for a given video, our method can also extract

other vital signals with a few minor modifications. For example, we can average all raw signals

that vote the final estimated HR, and obtain the pulse signal by filtering the averaged signal

using a band-pass filter. The pulse signal can deliver more information besides HR, e.g. heart

rate variability (HRV). We will further explore such idea in our future work.
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