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Abstract

The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that plays an

important role in cellular calcium signaling contributing to synaptic development and plastic-

ity, and is a key drug target for the treatment of neurodegenerative conditions such as Alz-

heimer’s disease. Here we show that α7 nAChR mediated calcium signals in differentiating

PC12 cells activate the proteolytic enzyme calpain leading to spectrin breakdown, microtu-

bule retraction, and attenuation in neurite growth. Imaging in growth cones confirms that α7

activation decreases EB3 comet motility in a calcium dependent manner as demonstrated

by the ability of α7 nAChR, ryanodine, or IP3 receptor antagonists to block the effect of α7

nAChR on growth. α7 nAChR mediated EB3 comet motility, spectrin breakdown, and neur-

ite growth was also inhibited by the addition of the selective calpain blocker calpeptin and

attenuated by the expression of an α7 subunit unable to bind Gαq and activate calcium store

release. The findings indicate that α7 nAChRs regulate cytoskeletal dynamics through local

calcium signals for calpain protease activity.

Introduction

The growth cone is a dynamic subcellular structure that guides the movement and function of

growing and regenerating axons and drives synaptogenesis [1,2]. Signaling within the growth

cone is driven by extracellular ligands such as growth factors and neurotransmitters, which

can activate cell surface receptors. Spatio-temporal cytosolic calcium changes throughout the

growth cone encode information that is vital to axon motility and growth [2–5]. Increases in

local cytosolic calcium concentration can activate calmodulin-activated kinase (CaMKII),

which promotes actin assembly and neurite elongation [6]. In contrast, high levels of cytosolic

calcium can inhibit growth through the activation of the proteolytic enzyme calpain, which

severs spectrin causing cytoskeletal breakdown at the membrane [2]. Calpains are a 15-mem-

ber family of calcium-activated cysteine proteases localized to the cytosol and mitochondria

with the ability to regulate a large number of substrates including proteolytic digestion of cyto-

skeletal proteins such as spectrin [7]. In the brain, two primary isoforms have been identified

(calpain 1 and calpain 2) with differing calcium binding and effector properties [8]. PC12 cells
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have been shown previously to express active calpain that noticeably cleaves spectrin, making

these cells a suitable system for the study of calpain function [9,10]. Cytoskeletal dynamism

through calpain substrate cleavage is an important process during axon guidance, homeostatic

plasticity, nerve regeneration, and post-synaptic adaptation that underlies long term plasticity

in brain regions for learning and memory [10–13].

Numerous nicotinic acetylcholine receptor (nAChR) subunits are expressed in neuronal

development and contribute to cholinergic signaling important for cell proliferation, survival,

and synapse formation [14]. This class of ligand gated ion channel receptors is formed through

an assembly of five subunits into homopentameric or heteropentameric combinations that

conduct cations across the plasma membrane [15,16]. The homopentameric α7 nAChR is the

second most abundant nAChR in the mammalian nervous system and maintains a high per-

meability to extracellular calcium [17–19]. Agonist activation of the α7 nAChR can trigger cel-

lular calcium transients that vary in duration, amplitude, and distribution depending on the

subcellular localization of the nAChR and its proximity to the endoplasmic reticulum (ER)

[20–22]. α7 nAChR signaling is important for synaptogenesis and growth, functional plasticity

that underlies cognition and learning, and has been implicated in the pathology of neurodeve-

lopmental and neurodegenerative disorders [23]. The targeting of the α7 nAChR is thus

appealing in drug development for major human disorders including Schizophrenia and Alz-

heimer’s disease (AD) [24].

In brain slices and in vivo, stimulation of the α7 nAChR mediates direct structural and

functional changes at the synapse in regions such as dentate gyrus and CA1 of the hippocam-

pus [25–27]. Ligand activation of the α7 nAChR in various types of cultured cells including

hippocampal and cortical neurons confirms the role of α7 signaling in modulating neurite

growth including elongation and branching in axons [25,28,29]. In this study, we show that α7

mediated calcium signaling at the growth cone activates the cytoskeletal regulatory enzyme

calpain leading to spectrin cleavage and reduced microtubule elongation. The findings suggest

that α7 nAChR calcium regulation can contribute to development and degeneration through

calpain activation.

Materials and methods

Cell culture and transfection

Pheochromocytoma line 12 (PC12) (ATCC1 CRL1721™, Gaithersburg MD, USA) cells were

grown on collagen (Santa Cruz, Dallas TX, USA) (50 μg/ml) or poly-D-lysine (Millipore, Bil-

lerica, MA, USA) (100 μg/ml) matrix and differentiated by the addition of 2.5s mouse nerve

growth factor (NGF) (Millipore) (200 ng/ml). Cells were cultured in RPMI media supple-

mented with 10% horse serum, 5% fetal bovine serum, and 1% Penicillin Streptomycin. For

NGF differentiation, serum was diluted to 20% of original strength in RPMI for final concen-

trations of 2% horse serum, 1% fetal bovine serum, and 0.2% Penicillin Streptomycin (Thermo

Fisher, Waltham, MA, USA) [29]. Cells were transfected with α7345-348A [22], or red fluores-

cence protein tagged End-Binding Protein 3 (EB3-RFP) [20,29–31] using Lipofectamine 2000

according to the manufacturer’s instructions (ThermoFisher). Plasmid DNA was propagated

in DH5A competent cells (Thermofisher) then purified using a maxi prep kit (Xymo Research,

Irvine CA, USA). All vectors were sequenced using Eurofins Genomics (Louisville KY, USA).

An empty vector was used as a control in experiments involving DNA transfection.

Drug treatment

Drugs were dissolved in HBSS, which was used as the experimental vehicle, and applied

directly to the media containing NGF. Drugs concentrations are based on published literature:
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choline (Acros Organics, Geel, Belgium) (10 mM, 3 mM, and 1 mM) [22]; α-bungarotoxin

(Thermofisher) (BGTX) (50 nM) [32]; calpeptin (Sigma Aldrich, St. Louis MO, USA)(26 μM)

[33], ryanodine (Santa Cruz) (30 μM) [21]; Xestospongin C. (Tocris Biosciences, Bristol, UK.)

(Xest C.) (1 μM) [20]; FK506 (Tocris Biosciences) (40 μM) [34]; Substance P (Tocris Biosci-

ences) (Sub P) (1 μM) [20]; PNU 282987 (Tocris Biosciences) (10 μM) [35].

EB3 comet velocity and FRAP analysis

PC12 cells were transfected with the microtubule capping protein EB3-RFP in order to mea-

sure the motility and direction of the “EB3 comet” as described previously [20,30,31]. EB3

comet imaging was performed using an inverted Zeiss LSM800 confocal microscope at 63X

magnification. EB3-RFP was analyzed using a 555 nm wavelength filter, and EB3 comet trajec-

tory was followed in the growth cone using the Image J (NIH) multiple kymograph plugin. For

Fluorescence Recovery After Photobleach (FRAP) analysis, 15-seconds of baseline recording

was followed by photobleaching (using a 561 nm laser at 90% power for 5 seconds) of the

region of interest (ROIp). EB3 comet recovery after photobleaching within the ROI was

obtained by capturing an image every 10 seconds for 90 seconds at 2 x 2 binning. EB3 comet

velocity was measured as an average of the distance traveled within the ROI over the 90s recov-

ery period. Photo-toxicity was minimized using low-intensity and neutral density light filters

as described [28]. All measurements for EB3 comet velocity are provided in S1 File. EB3 comet

assay values are based on independent experiments repeated in triplicate (n = 18 cells per

condition).

Protein preparation and western blot

Membrane proteins were obtained from cultured cells as previously described [25]. Briefly,

cells were lysed using a non-denaturing lysis buffer consisting of 1% Triton X-100, 137 mM

NaCl, 2 mM EDTA, and 20 mM Tris HCl (pH 8) supplemented with protease and phosphatase

inhibitors (Roche, Penzeberg, Germany). Protein concentration was determined using a Brad-

ford protein assay kit (Thermo Fisher). Proteins were separated on Bis-Tris gradient gels, and

transferred onto nitrocellulose (ThermoFisher). Primary antibodies used were anti: αIIspec-

trin (Santa Cruz), and GAPDH (Cell Signaling, Danvers MA, USA). HRP secondary antibod-

ies were purchased from Jackson Immunoresearch (West Grove PA, USA). A SeeBlue Ladder

(ThermoFisher) was used as a protein standard. Bands were visualized using SuperSignal West

Pico Chemiluminescent substrate (ThermoFisher) via the G:BOX Imaging System and

GeneSYS software (Syngene, Fredrick MD, USA). Band density analysis was performed in

Image J (NIH, Bethesda MD, USA). All measures were normalized to GAPDH controls. Pro-

tein measures in the study are based on averages from three independent experiments (n = 3).

Spectrin breakdown assays were performed as previously described [10]. Briefly, cells were

pre-treated with inhibitors (calpeptin (26 μM), BGTX (50 nM), or Sub P (1 μM)) for 1 hour

prior to the agonist application (choline (10 mM) or PNU 282987 (10 μM)) for 2 hours before

cell lysis and processing as described above. Control cells were treated with the vehicle only

under similar experimental conditions.

Cell viability

Cell viability was measured using a WST-1 Cell assay (Cayman Chemical Company, Ann

Arbor, MI, USA). Cells were plated in a 96 well dish and differentiated in the presence of NGF

and drug treatments as done in prior experiments. WST-1 dye was added to cells for 2 hours.

Cells were then imaged using a Varioskan Flash (Thermo Scientific) plate reader. The WST-1

signal was measured using a 405 nm laser, and experiments are representative of 6 measures
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per group. To control for background, a group of cells was treated with ethanol for 5 minutes

to kill all cells prior to the addition of the dye. The average value of these wells was then sub-

tracted from averages to correct for background fluorescence caused by the dye.

Immunocytochemistry and fluorescence imaging

PC12 cells were fixed in a solution consisting of 1x PEM (80 mM PIPES, 5 mM EGTA, and 1

mM MgCl2, pH 6.8) and 0.3% glutaraldehyde. Cells were permeablized by the addition of

0.05% Triton X-100 (Sigma Aldrich) [36]. Sodium borohydride (2 mg/ml) was used for glutar-

aldehyde quenching. Cells were labeled with rhodamine phalloidin (Cytoskeleton, Denver CO,

USA) in order to visualize F-actin and the structural contour. Images were captured using an

inverted Zeiss LSM800 confocal microscope and with the Zen software package (Carl Zeiss

AG, Oberkochen, Germany). Morphometric measures were carried out in ImageJ (NIH,

Bethesda, MD, USA). Neurites longer than the soma (>10 μm) were reconstructed using the

Vaa3D software [37,38] (n = 20 reconstructions per condition). All reconstructed SWC files

were deposited in the public repository, Neuromorpho.org an open source database for neuro-

nal reconstructions. All raw data measurements for cell growth of both WT and α7345-348A

expressing PC12 cells are provided in S2 File. Growth cones were identified based on the crite-

ria described in [39].

Statistical analysis

Data are shown as mean ± SEM and are representative of at least three independent experi-

ments in each assay. Statistical analysis was performed using a one-way analysis of variance

(ANOVA) to determine significance between mean values. All groups showed a normal distri-

bution, and passed Levene’s test of homogeneity before ANOVA’s were run. Tukey HSD post-

hoc tests were used for individual group comparisons where appropriate. A minimum statisti-

cal value p<0.05 was considered significant.

Results

Ligand activation of α7 nAChRs leads to neurite retraction and growth

cone collapse

α7 nAChRs are expressed during development and contribute to cholinergic mechanisms of

growth and plasticity in the central nervous system [40,41]. In various cell types, including cul-

tures of primary neurons and differentiating PC12 cells, pharmacological activation of the α7

nAChR has been shown to alter neurite elongation and branching [25,28,29]. We have previ-

ously shown that α7 nAChRs are abundant within the growth cone and that activation of the

α7 nAChR in hippocampal neurons with selective agonists such as PNU282987 or choline can

attenuate growth [20,29]. We tested the effect of α7 nAChR activation on neurite elongation in

differentiating PC12 cells using brightfield time-lapse imaging. PNU282987 treatment (10

αM) was associated with neurite retraction that can be measured from the tip of the growth

cone. As shown in Fig 1A and 1B, at 10 min application of PNU282987 the primary neurite

had undergone a noticeable retraction. A kymograph rendering of the retracting neurite con-

firms that drug application is associated with a retrograde movement from the tip of the

growth cone (Fig 1B). In addition, live imaging experiments (Fig 1C), indicate that after a

10 min application of PNU282987 the growth cone compartment is noticeably smaller sugges-

tive of growth cone collapse due to drug treatment This effect was blocked by pre-treatment

with the specific α7 nAChR antagonist α-bungarotoxin (BGTX), restoring movement of the

growth cone back to control levels (Fig 1C). These experiments suggest that pharmacological
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activation of the α7 nAChR promotes rapid neurite retraction through retrograde steering of

the growth cone and that this process may contribute to the ability of the α7 nAChR to pro-

mote long-term changes in axon growth.

α7 nAChR activation inhibits microtubule entry into the growth cone

α7 nAChRs are targeted to the growth cone in PC12 cells, hippocampal neurons, and are

detected within growth cone fractions of the embryonic rodent brain [22,25]. In the growth

cone, α7 nAChRs localize to the central zone region that houses a microtubule protein net-

work [20]. We have shown that activation of the α7 nAChR in the growth cone mediates cal-

cium influx into the cell through the opening of the α7 nAChR channel and the mobilization

of intracellular calcium release from local ER through both calcium induced calcium release

(CICR) and inositol induced calcium store release (IICR) [20]. To determine if α7 nAChR acti-

vation regulates microtubule growth, cells were transfected with an RFP tagged EB3 microtu-

bule capping protein (EB3-RFP or EB3 comets) in order to measure the movement of the

microtubule “plus” end in individual filopodia of the growth cone [30]. As shown in Fig 1D

and 1E, α7 nAChR activation with PNU282987 (10 μM) slows EB3 comet movement into the

growth cone. These findings are consistent with earlier studies showing that α7 nAChR activa-

tion mediates neurite retraction from the growth cone and possibly through receptor driven

calcium.

Fig 1. α7 nAChRs activation drives to neurite retraction and inhibits microtubule growth. Brightfield imaging of

the neurite and its growth cone in NGF differentiated PC12 cells treated with Control (DMSO) or 10 μM of the α7

nAChR specific agonist PNU282987 for 10 min. (A) Representative images of the growth cone at the beginning of the

experiment (t = 0) and at the end of the experiment (t = 10). (B) Kymographs of the dotted line in (A) showing drug

effect on neurite retraction during the experiment. (C) Average rate of neurite retraction for each group. (D) A

representative image of EB3-RFP (EB3 comet) expression in the growth cone. (E) EB3 comet velocity in the growth

cone following drug application. (��� = p<0.001; n = 10 cells per group).

https://doi.org/10.1371/journal.pone.0197247.g001
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EB3 comet motility in the growth cone is controlled by α7 nAChR calcium

signaling

We tested the ability of the α7 nAChR to regulate microtubule dynamics in the growth cone

using a fluorescence recovery after photo-bleaching (FRAP) method (Fig 2A). In these experi-

ments the EB3-RFP signal was measured within the photo-bleached ROI (ROIp) allowing us to

calculate the rate of microtubule re-entry under varying experimental conditions. Fig 2B

shows representative images from control and drug treated cells before, immediately after, and

90 seconds following the recovery from photo-bleaching. In control cells treated with the

Fig 2. The α7 nAChR directly attenuates in EB3 entry into the growth cone. (A) A schematic showing the

fluorescence recovery after photobleaching (FRAP) assay. The red box indicates the photobleached area of the growth

cone, while the red arrows represent EB3 comet re-entry into the bleached area during recovery. (B) Representative

images of EB3 comets in the growth cone under Control (HBSS) and choline (3mM) treated condition during the

experiment. Arrows point to the location of EB3 comets recovered after photo-bleaching in the ROI indicated by the

red outline. (C) Average distance traveled by EB3 comets following photo-bleaching in Control, choline treated, and

choline treated following BGTX application in cells. (��� = p<0.001; Black asterisks indicate comparison to control,

Grey asterisks indicate comparison to 3 mM choline+BGTX treatment; n = 18 cells per group).

https://doi.org/10.1371/journal.pone.0197247.g002
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vehicle, EB3 re-entry within the ROIp averaged 1.32 μm over 90-seconds (0.0145 μm/sec) (Fig

2C). Under conditions of α7 activation with choline, EB3 re-entry within the ROIp was signifi-

cantly attenuated (ANOVA: F (3,70) = 15.297, p<0.001) to 0.33 μm/90 sec (0.0036 μm/sec)

(Post Hoc:p<0.001 to control) and 0.12 μm/90 sec (Post Hoc:p<0.001 to control) as function

of 3 mM and 10 mM choline treatment, respectively (Fig 2C). An analysis of the ROIp region

in choline treated cells indicates that at 90 seconds of recovery the average size of the ROIp is

not altered from the starting point of the experiment. Pre-incubation with the specific α7

nAChR antagonist BGTX was able to block the ability of choline to influence EB3 motility in

the cell (1.43 μm over 90-seconds; 0.0159 μm/sec) (Fig 2C).

Studies have shown that free intracellular calcium in growth cones is an important regulator

of turning, retraction, and extension [42]. Calcium fluctuations within the growth cone are also

important for structural elongation, which is essential during axon pathfinding in vivo [43]. We

have shown that α7 nAChR activation increases intracellular calcium levels within the growth

cone of differentiated PC12 cells through ryanodine and IP3R associated CICR and IICR,

respectively [22]. To test the role of intracellular calcium on EB3 comet velocity, cells were pre-

incubated with the ryanodine receptor blocker ryanodine (30 μM) or the IP3R inhibitor Xest C

(1 μM) for 30 mins prior to the FRAP assay. As shown in Fig 3, pre-incubation with ryanodine

was associated with a decrease in the ability of choline to influence EB3 movement within the

ROIp. Specifically, in cells treated with ryanodine the average EB3 comet velocity was 1.30 μm/

90 sec (0.0144 μm/sec), which represents a complete recovery to the control baseline condition

(ANOVA: F (2,53) = 19.16, p<0.001; Post Hoc:p<0.001 compared to choline 3 mM) (Fig 3B).

Similarly, pre-treatment with Xest C diminished the effect of choline on EB3 re-entry into the

ROIp with average EB3 comet rates at 1.18 μm/90 sec (0.0131 μm/sec) (Post Hoc: p = 0.002

compared to choline 3 mM) (Fig 3B). These findings indicate that α7 nAChR calcium signaling

through the ER is necessary for choline regulation of microtubule growth in the growth cone.

α7 nAChR calcium signaling activates calpain in the growth cone

Calcium transients can regulate growth cone motility through cytoskeletal regulatory elements

such as the protease calpain, which severs actin networks through spectrin cleavage [44]. We

tested the involvement of calpain in α7 mediated microtubule entry into the growth cone. In

these experiments, differentiated PC12 cells were pre-incubated with the calpain inhibitor cal-

peptin (26 μM) prior to FRAP analysis of EB3-RFP re-entry. As shown in Fig 4, calpeptin was

associated with a loss in the ability of choline (3 mM) to influence EB3 re-entry into the ROIp.

In cells pre-treated with calpeptin, choline application was associated with EB3 comet rates of

1.11 μm/90 sec (0.0123 μm/sec) in comparison to EB3 comet rates of 0.33 μm/90 sec (0.0036

μm/sec) obtained through choline treatment alone (ANOVA: F (3,71) = 5.748, p = 0.001; Post

Hoc:p = 0.004 compared to choline 3 mM) (Fig 4). Pre-treatment of cells with calpeptin alone

showed a similar response to those cells treated with choline 3 mM after calpeptin pre-incuba-

tion (1.07 μm/90 sec; 0.0119 μm/sec; Post Hoc between the control and calpeptin alone treated

cells: p = 0.998) (Fig 4B).

Ligand-induced calcium signaling can also lead to growth cone collapse via the activity of

the calcium sensitive protein phosphatase calcineurin (PP2B) [45]. We have previously shown

a role for calcineurin in nicotine-mediated neurite growth in PC12 cells [25]. We thus tested

the possibility that α7 nAChR regulation of microtubule motility in the growth cone involves

calcium signaling through calcineurin. Cells were pre-treated with the calcineurin inhibitor

FK506 (40 μm) for 30 minutes prior to the FRAP assay. Interestingly, FK506 did not signifi-

cantly alter the rate of choline (3mM) mediated EB3 re-entry into the ROIp (Fig 4B). Specifi-

cally, in cells pre-treated with FK506, choline treatment was associated with an average EB3
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re-entry rate of 0.48 μm/90 sec (0.0053 μm/sec), which was found to be not statistically signifi-

cant from choline treatment alone (Post Hoc:p = 0.272 compared to choline 3 mM) (Fig 4).

The data indicates that calpain, but not calcineurin, is activated by α7 nAChR calcium signal-

ing in the growth cone.

α7 nAChR activated calpain promotes spectrin breakdown

Calcium activation of calpain has been shown to drive axon elongation and regeneration after

injury through proteolytic breakdown of the submembrane spectrin network [11,46]. Calpain

mediated degradation of αIIspectrin results in the formation of two stable breakdown products

Fig 3. Intracellular calcium store release participates in choline mediated EB3 motility in the growth cone. (A)

Representative images of choline mediated EB3 comet motility in ryanodine (30 μM) and Xest C (1 μM) pre-treated

cells during the experiment. Arrows point to the location of EB3 comets recovered after photo-bleaching in the ROI

indicated by a red outline. (B) Average distance traveled by EB3 comets following photo-bleaching in choline (3 mM)

treated cells that were pre-incubated with 30 μM ryanodine or 1 μM Xest C. Control: EB3 comet velocity in non-

treated cells. (�� = p<0.005, ��� = p<0.001; n = 18 cells per group).

https://doi.org/10.1371/journal.pone.0197247.g003
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that migrate at 150 kDa and 145 kDa on a western blot [8,47]. This breakdown of αIIspectrin

differs from caspase activity seen in apoptotic pathways, which leads to a different breakdown

profile of spectrin [10]. We tested the ability of choline to regulate spectrin breakdown in dif-

ferentiating PC12 cells under the same conditions required for neurite retraction and EB3

Fig 4. Inhibition of calpain but not calcineurin abolishes choline regulation of EB3 comet velocity. (A)

Representative images of choline (3 mM) mediated EB3 comet motility in calpeptin (26 μM) and FK506 (40 μM) pre-

treated cells during the experiment. Arrows point to the location of EB3 comets after photo-bleaching in the ROI

indicated by a red outline. (B) Average distance traveled by EB3 comets following photo-bleaching in treated cells

relative to Control: EB3 comet velocity in non-treated cells. (�� = p<0.005; n = 18 cells per group).

https://doi.org/10.1371/journal.pone.0197247.g004
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retention. As shown in Fig 5, western blot detection confirms the presence of two anti-spectrin

immunoreactive protein bands at the molecular weights of 145 kD and 150 kD, and a full spec-

trin band at 240 kD. The αIIspectrin breakdown products were differentially regulated by cho-

line treatment. Specifically, a two-hour application of 10 mM choline was associated with a

noticeable increase in the αIIspectrin breakdown products in the assay (Fig 5 and Table 1). In

cells pre-treated with calpeptin (26 μM for 1 hour), choline exposure was not associated with a

significant production of the αIIspectrin breakdown products (Fig 5 and Table 1) suggesting

that calpain activity is necessary for choline mediated spectrin breakdown. Band density analy-

sis from three independent experiments confirms significance between control, choline, and

choline+calpeptin treatment conditions (ANOVA: F (2,16) = 34.770, p<0.001; Post Hoc:

p = 0.023 compared to control) and choline+calpeptin co-application (Post Hoc:p = 0.010) to

both control and choline treatment alone (Fig 5). As shown, the full-length spectrin bands

Fig 5. Choline mediated spectrin breakdown is inhibited by calpeptin. (A) Left, a western blot showing anti-

αIIspectrin immunoreactive bands at 240 kD, 150 kD, and 145 kD. Lanes were loaded with lysates from PC12 cells

treated with 10 mM choline, 26 μM calpeptin and choline, or HBSS (Control). Right, band density analysis from three

independent experiments showing an effect of choline on the αIIspectrin breakdown. Band density was calculated by

combining the density of the 150 kD and the 145 kD spectrin breakdown bands. (B) WST-1 fluorescence showing cell

viability during drug treatments (� = p<0.05, ��� = p<0.001; n = 3 independent experiments).

https://doi.org/10.1371/journal.pone.0197247.g005

Table 1. Band density analysis of αIIspectrin breakdown based on percent change from the vehicle treated

control.

Treatment 150 kD Band 145 kD Band

Choline (3 mM) 23.24+/-4.22% 24.52+/-9.52%

Choline + Calpeptin (26 μM) -68.13+/-6.34% -72.72+/-12.80%

Choline + BGTX (50 nM) -16.10+/-5.84% -13.79+/-3.4%%

Choline + Substance P (1 μM) -30.15+/-13.4% -27.36+/-7.49%

PNU282987 (10 μM) 30.54+/-3.25% 28.18+/-5.94%

https://doi.org/10.1371/journal.pone.0197247.t001
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remain relatively unchanged (Fig 5). To ensure that drug treatment does not effect cell viabil-

ity, a live cell viability assay was conducted under similar treatments conditions. As shown in

Fig 5B, drug treatment was not associated with a change in cell health in this assay.

We examined the ability of the α7 nAChR specific inhibitor BGTX and the Gαq inhibitor

Substance P (Sub P) to block calpain mediated cleavage of αIIspectrin. These compounds were

chosen in order to confirm that α7 nAChR channel activity (BGTX) and G protein coupled

calcium store release (Sub P) are essential for α7 nAChR activation of calpain [22]. The specific

α7 nAChR agonist PNU282987 was also tested in order to confirm the specificity α7 nAChRs

in mediating spectrin breakdown. As shown in Fig 6 and Table 1, treatment of cells with

BGTX or Sub P was associated with a significant decrease (ANOVA: F (4,19) = 22.440, p<

0.001) in choline mediated αIIspectrin breakdown (Post Hoc: BGTX:p = 0.001 compared to

choline treatment alone; Post Hoc: Sub P:p<0.001 compared to choline treatment alone).

Treatment with BGTX or Sub P appeared to decrease the levels of αIIspectrin breakdown to

lower than the control condition. This effect however was not found to be statistically signifi-

cant. Treatment of cells with the α7 specific agonist PNU282987 (10 μM) was associated with a

Fig 6. Pharmacological α7 nAChR activation mediates spectrin breakdown. Top, a western blot showing anti-

αIIspectrin immunoreactive bands at 240 kD, 150 kD, and 145 kD. Lanes were loaded with lysates from PC12 cells

treated with choline (10 mM) (choline), choline 10 mM) with BGTX (50 nM) or Sub P (1 μM), or PNU282987

(10 μM). Vehicle (HBSS) was used as the Control. Bottom, band density analysis from four independent experiments

showing an effect of drug treatment on αIIspectrin breakdown. (� = p<0.05�� = p<0.005, ��� = p<0.001; n = 4

independent experiments).

https://doi.org/10.1371/journal.pone.0197247.g006
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significant increase in the level of the αIIspectrin breakdown product (Post Hoc PNU282987:

p = 0.018 to control; p<0.001 compared to both choline+BGTX and choline+Sub P) (Fig 6

and Table 1). The data confirms that α7 nAChR activation contributes to rapid cytoskeletal

remodeling through calpain function.

Inhibiting calpain boosts neurite growth in differentiating cells

We have shown that sustained activation of the α7 nAChR leads to a decrease in the overall

length and branching of neurites in PC12 cells, an effect also seen in axons of cultured hippo-

campal and cortical neurons [20,25,29]. We tested the involvement of calpain in α7 mediated

neurite elongation and branching in PC12 cells. Cells were differentiated with nerve growth

factor (NGF) for 3 days in the presence of choline (1 mM), calpeptin (26 μM), or choline and

calpeptin together prior to fixation and morphological analysis. Control cells were treated with

the vehicle (HBSS) under similar conditions. As shown in Fig 7, choline treatment is associated

with a significant decrease in neurite length relative to controls (control: 31.03 μm vs. choline:

21.58 μm, respectively)(ANOVA: F (3,75) = 13.182, p<0.001; Post Hoc: p = 0.028 compared to

control). This effect of choline was inhibited by the presence calpeptin, which restored neurite

length to the levels seen in controls (36.45 μm) (Post Hoc: p = 0.313 compared to control) (Fig

7). In this experiment, treatment with calpeptin alone enhanced neurite outgrowth (41.53 μm)

(Post Hoc: p = 0.007 compared to control), consistent with evidence that endogenous calpain

activity contributes to neurite development [33]. Similar findings were observed when we

examined the branching of the primary neurite. As shown in Fig 7, at 3 days of differentiation

the application of calpeptin either alone or in conjunction with choline was associated with a

significant increase in branching (ANOVA: F (3,75) = 10.152, p<0.001). The findings are con-

sistent with experiments on the acute actions of calpain in α7 nAChR mediated cytoskeletal

changes in the growth cone, suggesting α7/calpain interactions contribute to long-term struc-

tural changes in cells.

Fig 7. α7 nAChRs regulate neurite outgrowth through calpain. (A) Representative traces of primary neurites in

PC12 cells differentiated with NGF for 3 days in the presence of HBSS (Control), 1 mM choline, 26 μM calpeptin, or

choline and calpeptin. (B) Average neurite length and branching in drug treated cells (� = p<0.05,�� = p<0.005, ��� =

p<0.001; n = 20 cells per group).

https://doi.org/10.1371/journal.pone.0197247.g007
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Metabotropic α7 nAChR signaling is also required for calpain activity

α7 nAChR-mediated calcium signaling occurs via ionotropic calcium influx due to the open-

ing of the α7 channel and metabotropic activity through G protein coupling [22,48]. The later

is associated with IICR and has been shown to regulate neurite outgrowth in PC12 cells

[20,29]. We assessed the involvement of G protein binding in α7 nAChR mediated calpain

activity and its effect on neurite outgrowth by transfecting cells with a dominant negative α7

subunit (α7345-8A) shown to be impaired in Gαq signaling and calcium store release [22]. This

plasmid shows a transfection efficiency of 75% in PC12 cells, and has been shown to abolish

the effects of choline on endogenous α7 mediated calcium signaling [22]. In this study, trans-

fection with α7345-8A was found to slightly increase neurite length and branching in differenti-

ating PC12 cells as previously reported, although this increase was not found to be statistically

significant (Fig 8A) [29]. Cells transfected with the α7345-8A subunit and treated with the vehi-

cle solvent (HBSS) were used as the control condition. Expression of the α7345-8A subunit was

associated with a loss in the ability of choline to impact neurite growth when compared to con-

trols (Fig 8A). Interestingly, the effect of calpeptin on neurite growth was also lost in cells

expressing the α7345-8A subunit (ANOVA: F (3,79) = 0.294 p = 0.830) (Fig 8A). The effect of

choline on the branching of the primary neurite was similar in this study. As shown in Fig 8A,

Fig 8. G protein coupling to the α7 nAChR is necessary for calpain mediated cytoskeletal growth. (A) Average

neurite length and branching in cells transected with α7345-8A at 3 days of NGF differentiation. Cells were treated with

HBSS (Control), 1 mM choline, 26 μM calpeptin, or choline and calpeptin together. (B) Left, a western blot showing

anti-αIIspectrin immunoreactive bands at 240 kD, 150 kD and 145 kD. Lanes were loaded with lysates from PC12 cells

treated with 10 mM choline, 26 μM calpeptin then choline, or HBSS (Control). Right, band density analysis from 3

independent experiments showing the effect of drug treatment on αIIspectrin breakdown. (N.S. not significant; n = 20

cells per group for morphometric data; n = 3 independent experiments for western blot).

https://doi.org/10.1371/journal.pone.0197247.g008
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choline treatment was not associated with a significant decrease in neurite branching even in

cells that express the α7345-8A subunit. The application of calpeptin either alone or with choline

did not show a significant effect on branching. An ANOVA confirms that α7345-8A subunit

abolishes the effects of choline and calpain in this assay (ANOVA: F (3,79) = 2.035, p = 0.116).

To confirm involvement of metabotropic α7 nAChR signaling through G proteins in cal-

pain mediated spectrin breakdown, we transfected PC12 cells with α7345-8A and repeated the

spectrin assay. Western blot detection indicates a loss in the ability of choline to produce the

αIIspectrin breakdown product when the α7345-8A subunit is present in the cell (Fig 8B and

Table 2). In addition, pre-incubation with calpeptin also had no effect on αIIspectrin break-

down product levels when the α7345-8A subunit is present in the cell (Fig 8B and Table 2). Band

density analysis of independent experimental measures of the αIIspectrin breakdown product

statistically confirms that α7345-8A subunit expression is associated with a loss in choline-medi-

ated calpain activity in this assay (ANOVA: F (2,11) = 0.101, p = 0.905) (Fig 8B).

Discussion

Calcium activation of calpain in development and disease

A number of cellular systems including differentiated PC12 cells, sympathetic, cortical, and

hippocampal neuronal cultures are useful for the study of neurite development through

growth cone function. Findings from such work enables an understanding of key principles

that guide synaptic development and can be applied to advancing treatment for nerve regener-

ation [49–51]. Results presented in this study suggest that α7 nAChR calcium signaling can

contribute to neuro regenerative processes through calpain activity. This process appears

dependent on the ability of the α7 nAChRs to foster a strong rise in intracellular calcium levels

locally through coupling to the ER. This notion is consistent with the calcium driven growth

cone model originally proposed by Kater and Mills [2] and expanded by others [52]. In this

framework intracellular calcium signals (levels, duration, and distribution) regulate cytoskele-

tal elements and membrane dynamics leading to neurite elongation or retraction and turning

of the growth cone. Studies in rodents and in cultured cells support this and confirm that high

intracellular calcium levels in axons participate in proper synaptic pruning in development but

may drive long-term damage in adulthood. To this end, pharmacological blockade of calcium

channels during axon recovery in rodent models of axon injury promote survivability via a

decrease in calpain activity [13,53]. Thus calcium driven calpain activity may contribute to var-

ious forms of pathogenesis including AD and traumatic brain injury [54].

How calcium signaling through calpain impacts neuronal growth and function in the con-

text of development or aging is neither entirely clear nor simple. Our findings confirm a role

for endogenous calpain activity in neurite development during differentiation [33] as con-

firmed by our findings that addition of calpeptin alone can increase neurite length through a

decrease in spectrin breakdown relative to the baseline differentiation state. Interestingly, the

addition of calpeptin alone did not appear to impact EB3 comet velocity in the growth cone.

However, when combined with choline, calpeptin was able to inhibit the effect of choline on

microtubule entry into the growth cone suggesting that α7 nAChR regulate cytoskeletal

growth through calpain.

Table 2. Band density analysis of αIIspectrin breakdown in cells transfected with the α7345-8A subunit based on

percent change from α7345-8A transfected controls.

Treatment 150 kD Band 145 kD Band

Choline (3 mM) -18.92+/-8.31% -23.59+/-8.80%

Choline + Calpeptin (26 μM) -11.45+/-5.40% -12.25+/-14.17%

https://doi.org/10.1371/journal.pone.0197247.t002
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Studies on retinal ganglion cell degeneration suggest that calpain isoforms, which markedly

differ in their calcium sensitivity and effector targets, have opposing effects on regenerative

cell health with calpain 1 driving survival and calpain 2 promoting cell death [55]. Here, we

find that α7 nAChR activation of calpain attenuates neurite growth through cytoskeletal disas-

sembly at the growth cone. Whether this process in PC12 cells is mediated by calpain 1, calpain

2, or both is not clear since experimental probes of calpain function, including inhibitors such

as calpeptin, do not distinguish between the two isoforms. Since cells express both types of cal-

pain, it is plausible that different calpain isoforms participate in the signaling effects of the α7

nAChR during growth. This may explain differences in the effects of calpeptin on short vs.
long-term neurite and cytoskeletal growth. In future studies it will be interesting to determine

if α7 nAChR activation leads to the activity of calpain 1, 2, or both and if this is cell type and

compartment specific. For example, high calcium levels within α7 nAChR and ER containing

cellular microdmains that have been suggested in the growth cone [56] may drive the activa-

tion of the low calcium affinity type 2 calpain while broad calcium transients may drive calpain

1 in other parts of the cells. In future studies it will be interesting to discern specificity between

α7 nAChR calcium signals and calpain isoform function.

α7 nAChR signaling through calpain in axon growth

Morphogenic cholinergic signals are well documented in embryonic development and con-

tribute to structure and connectivity in the CNS [48]. A strong role for the α7 nAChR in the

regulation of axon development through calcium signaling in the growth cone has been docu-

mented in various neuronal systems [4,57]. In fact, α7 nAChRs are selectively targeted to the

growth cone compartment in neurons through binding the G protein scaffold molecule, G

protein-regulated inducer of neurite outgrowth 1 [28]. Once there, α7 nAChRs operate

through both ionotropic and metabotropic G protein signaling thereby activating various cal-

cium signaling mechanisms [22,29]. This study extends these findings by showing a role for α7

nAChR calcium signaling in cytoskeletal breakdown at the growth cone through calpain (Fig

9). Co-localization of the α7 nAChR and the ER within the central zone appears important for

calcium signaling as evidenced by previous findings that demonstrate that blockade of the

IP3R receptor, or uncoupling from Gαq signaling, decreases the ability of α7 nAChRs to medi-

ate calcium transients in the growth cone [20,22]. Based on experimental and computational

findings, calcium levels produced by α7 interactions with the ER at the growth cone are suffi-

cient for calcium activation of calpain and thus can directly drive spectrin breakdown locally

[56]. Our findings support this model and show that pharmacological blockade of calcium

release from the ER through the ryanodine receptor or the IP3R is sufficient to inhibit calpain

function in the EB3 comet assay. In addition, metabtropic G protein signaling appears impor-

tant for downstream calpain activation by the α7 nAChR as evidenced by the finding that

expression of the α7345-8A mutant or application of the Gαq blocker (Sub P) impairs the ability

of choline to breakdown spectrin.

While a large number of α7 nAChRs are presynaptic this receptor is also expressed in soma-

todendritic regions and has been shown to regulate plasticity leading to long term potentiation

[19,58,59]. Studies suggest that calpain function regulates structure and activity in postsyanptic

compartments as well. For example, activation of calpain 2 is found to increase protein sysnth-

esis in the spine via the clevage of the phosphotase and tensin homolog (PTEN). In addition,

calpain 1 has been shown to cleave RhoA leading to rapid cytoskeletal remodeling in dendritic

spines during intracellular calcium transients [60,61]. Previously, we have shown a role for α7

nAChR calcium signlaing through RhoA in actin assembly at the growth cone [29] suggesting

that similar mechanisms of calcium driven structural plasticity may exist in axons as well as
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dendrites. These findings should be confirmed in future studies in systems such as hippocam-

pal neurons in order to determine the role of α7 nAChR/caplain interaction in synaptic devel-

opment and plasticity.
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