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Abstract

Objective

Many people are exposed to perfluoroalkyl substances (PFASs) because these substances

are widely used as industrial products. Although epidemiological studies suggest that PFASs

can disrupt thyroid hormones, the association between PFAS exposure and thyroid function

remains inconclusive. Therefore, we performed a comprehensive meta-analysis to investi-

gate the association between PFASs exposure and thyroid hormones.

Methods

We searched medical literature databases for articles on the association between

PFASs–perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and per-

fluorohexane sulfonic acid (PFHxS)–and thyroid hormone levels in adults. Twelve articles

were included in the meta-analysis, and the pooled z values were calculated with correla-

tion or regression coefficients.

Results

The blood PFOS concentration was positively correlated with free T4. The pooled z value

was 0.05 (95% confidence interval (CI): 0.03, 0.08). PFOS was negatively correlated with

total T4 and total T3 when excluding outlier studies. In a subgroup analysis stratified by

mean PFOS concentration, PFOS was observed to be positively associated with free T4

and TSH and negatively associated with total T3 in the intermediate concentration group

(8–16 ng/mL). PFOA concentration was negatively correlated with total T4 (z value,

-0.06; 95% CI: -0.09, -0.03) after omitting one outlier study. PFHxS also showed a nega-

tive correlation with total T4 (z value, -0.04; 95% CI: -0.07, -0.01). A subgroup analysis of
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pregnant women showed that there was no association between PFASs and thyroid

hormones.

Conclusions

Our meta-analysis suggests that PFASs are negatively associated with total T4, and their

effect can be different depending on the PFAS concentration.

Introduction

Perfluoroalkyl substances (PFASs; or previously described as perfluorinated compounds) have

been widely used as various industrial products such as surfactants, lubricants, photographic

emulsifiers, paints, fire-fighting foams and food packaging. Humans are exposed to PFASs

mainly through contaminated food, water, and household dust [1]. Thus, PFASs are detected

in>95% of the general population [2]. There has been concern about potential adverse effects

of PFASs on human health because animal studies have indicated that PFASs could cause

tumors and neonatal deaths [3, 4]. Moreover, human studies have reported that exposure to

perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), types of PFASs, are

associated with decreased birth weight and fertility [5, 6]. Therefore, PFOS and perfluorooc-

tane sulfonyl fluoride were added to Annex B of the Stockholm Convention on Persistent

Organic Pollutants in 2009. Consequently, PFASs have been regulated in many countries,

including the USA [7]. Regulation has resulted in a decreased serum concentration of PFASs

in recent studies conducted in the USA, Australia, and Asia [8–11]. However, PFASs are per-

sistent in the environment because of their high stability and long half-lives in humans [12, 13]

and are still widely used in some countries, including China [14]. Therefore, PFASs are still

detected in most people, and it has been reported that blood concentrations of some less

restrictive PFASs like perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid

(PFNA) have remained unchanged or have increased in Sweden and Japan [15–17]. Thus,

PFASs remain some of the important environmental pollutants that can lead to serious health

problems [5, 6].

Thyroid hormones play a critical role in the regulation of metabolism, and thyroid function

is related to cardiovascular disease, fertility, and fetal neurodevelopment [18, 19]. In animal

experiments, treatment of PFAS induced hypertrophy or hyperplasia of thyroid follicular cells

in rat [20] and lowered total and free T4 concentrations [21, 22]. It has been suggested that

some PFASs may disrupt the thyroid hormone system in humans. Because PFOS, PFOA, and

PFHxS are the most widely present PFASs, their association with thyroid dysfunction has been

most studied than other PFASs [23, 24]. However, the association is still inconclusive. Blood

PFAS concentrations are negatively correlated with thyroid hormone concentrations accord-

ing to some studies [23, 25, 26], while other studies showed positive correlations [27, 28] or no

association [29–32]. These inconsistent results may be due to the concentration-dependent

differential effects of PFASs. It is generally believed that chemicals have monotonic linear

dose-response curves; thus, a high-dose of a chemical is more toxic. This concept has been

changing particularly with respect to the adverse effects of endocrine-disrupting chemicals.

Some studies indicate that endocrine-disrupting chemicals might have nonmonotonic or U-

shape dose responses; thus, a lower-dose of chemicals could be more harmful [33, 34]. There-

fore, we conducted a meta-analysis to investigate whether blood PFAS concentrations were

correlated with thyroid hormone levels, particularly pertaining to different PFAS concentra-

tions in adults.

Perfluoroalkyl substances and thyroid function
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Materials and methods

A meta-analysis was performed in accordance with the general principles recommended in the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (S1 Appen-

dix) [35].

Search strategy

In the databases PubMed, Embase, and Web of Science, articles, published from inception

(1985 in PubMed and Web of Science and 1987 in Embase) to April 30, 2017 were searched by

two investigators (S.M. and M.J.K.) using a combination of the following terms: “perfluori-

nated”, “perfluorooctanoic”, “perfluorooctane”, “perfluorohexane”, “PFOS”, “PFOA”, and

“PFHxS” and “thyroid”. The language used in the literature was limited to English. The

detailed search strategy is presented in the S2 Appendix.

Eligibility criteria

To select studies to be included in this meta-analysis, the PCOS (participants, interventions,

comparators, outcomes, and study design) framework was used [36]. The participants of inter-

est were adults (aged� 18 years) from the general population. Children and infants were

excluded in this analysis. Studies that measured exposures to PFOS, PFOA, and/or PFHxS and

thyroid hormone levels such as total/free thyroxine (T4), total triiodothyronine (T3), and thy-

roid-stimulating hormone (TSH) in blood were included. Studies that presented thyroid status

as categorized groups such as hyperthyroidism or hypothyroidism, were excluded. Outcomes

of interest were the association between PFASs and thyroid hormone levels. Articles that gave

the Pearson correlation coefficient, Spearman correlation coefficient, or regression coefficient

were included. Cross-sectional, case-control, and cohort studies were included.

Study selection

Literature search yielded 449 potentially relevant articles (Fig 1). Duplicate articles were

excluded, and the latest or most relevant article was included if the studies had multiple

reports. Thus, 228 articles were screened, and the studies were selected by a two-step

method. First, titles and abstracts were screened according to the eligibility criteria. Articles

were excluded for the following reasons: 1) the study was published in abstract form, as an

expert opinion, as a letter, as a conference article, or as a review (n = 57); 2) the study used

animals or in vitro models (n = 105); 3), the study was not related to PFAS and thyroid

(n = 32). Second, the full texts of the selected, potentially relevant articles (n = 35) were elec-

tronically downloaded and reviewed independently by the two investigators (S.M. and M.J.

K.) based on the criteria listed above. Articles were excluded for the following reasons: 1)

the participants were not adults (n = 8) or part of the general population (n = 2); 2) PFAS

and/or thyroid concentrations were presented as quartiles or quintiles, not as a continuous

variable (n = 9); 3) there was no information on the Pearson correlation coefficient, Spear-

man correlation coefficient, or regression coefficient between PFASs and thyroid hormones

(n = 2); 4) multiple studies used the National Health and Nutrition Examination Survey

database (n = 2). Any disagreements were resolved by a third investigator (Y.J.P.). Finally,

12 articles were selected for the meta-analysis.

Data collection

The following data were collected: first author, publication year, country, number of subjects,

the mean or median blood concentration of PFASs, TSH, total/free T4 and/or total T3, and

Perfluoroalkyl substances and thyroid function

PLOS ONE | https://doi.org/10.1371/journal.pone.0197244 May 10, 2018 3 / 17

https://doi.org/10.1371/journal.pone.0197244


Fig 1. Representation of the search strategy based on PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0197244.g001
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Pearson correlation coefficient, Spearman correlation coefficient, or regression coefficient. In

addition, the method for measuring free T4 in each study was checked. Blood concentration of

free T4 was measured in nine studies and all of them used the analog method: chemilumines-

cent immunoassay (n = 5), radioimmunoassay (n = 3), or enzyme-linked immunosorbent

assay (n = 1).

Assessment of bias risk

Three researchers independently assessed the methodological quality of the included articles

using a modified cross-sectional assessment provided by the Agency for Healthcare Research

and Quality [37]. Here, eight items were used to assess the quality, and all articles scored in the

six to eight range (S1 Table). We concluded that the quality of these cross-sectional studies did

not affect the quality of our meta-analysis.

Data analyses and statistical methods

To investigate the association between PFASs and thyroid hormone levels, we calculated the

pooled z values using a Pearson correlation coefficient transformed by the Fisher z-transfor-

mation. Among the 12 studies, the Pearson correlation coefficient was reported only in two

studies [28, 38]. In three studies [23, 31, 39], we conducted a re-analysis of the available raw

data to determine the Pearson correlation coefficients. In other studies, the Pearson correlation

coefficient was calculated from the existing Spearman correlation coefficient or regression

coefficient with a corresponding 95% confidence interval (CI) using the following formulas

[40–42]:

(1) Estimated Pearson correlation coefficient = 2 × sin (Spearman correlation coefficient ×π/6)

(2) (Estimated Pearson correlation coefficient)2 = t2/(t2+n-2)

t = regression coefficient /the standard error of regression coefficient.

The Higgins’ I2 statistic was used to test for heterogeneity. Subgroup and sensitivity analyses

were performed to determine the cause of heterogeneity. In the sensitivity analysis, we checked

the changes in the results by excluding one specific study to examine the stability or strength

of the results. The potential for publication bias was assessed using a funnel plot analysis. All

statistical analyses were conducted using the statistical program R (R version 3.1.0, 2014, www.

r-project.org).

Results

Characteristics of eligible studies

Four hundred and forty-nine studies were screened and assessed for eligibility, and 12 studies

were finally selected for this meta-analysis (Fig 1). The study characteristics are summarized in

Table 1. All considered studies were cross-sectional studies, and the sample size of each study

ranged from 31 to 1,950 subjects. The mean age (29–64 years) and sex ratio (0%–100%) of

each study varied.

The correlation between PFOS exposure and thyroid function

Nine studies provided data suitable for a meta-analysis of correlations between PFOS exposure

and free T4 (Fig 2A). PFOS was positively correlated with free T4 and the pooled z value was

0.05 (95% CI: 0.03, 0.08) without any significant heterogeneity (I2 = 0%). No publication bias

was found. To evaluate the concentration-dependent difference in the association, studies

were divided into three groups according to their mean PFOS concentration: < 8 ng/mL

Perfluoroalkyl substances and thyroid function
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Table 1. Characteristics of studies included.

Study Sampling

Year

Location Population N Age

(years)

Mean

Sex

Number

Chemical (ng/mL)

Geometric mean (95% CI)

or median (range)

Thyroid

hormone

Statistical analysis

PFOS PFOA PFHxS Others

Bloom et al.

2010

1995–

1997

USA Sportfish anglers

and their

partners

31 39 M:27

F:4

19.57

(16.30–

23.50)

1.33

(1.15–

1.53)

0.75

(0.52–

1.06)

PFDA

PFNA

PFUnDA

TSH

Free T4

Multiple linear

regression models

(Log transformed)

Crawford

et al.

2017

2008–

2009

USA Women

attempting to

conceive

99 33.3 All F 9.29

(8.31–

10.38)

2.79

(2.48–

3.16)

1.59

(1.37–

1.84)

PFNA TSH

Total T4

Free T4

Total T3

Pearson correlations

Dallaire

et al. 2009

2004 Canada General

population

(Inuit)

506 36.8 M: 245

F: 378

18.28

(17.19–

19.44)

TSH

Free T4

Total T3

Multiple linear

regression models

(Log transformed)

Ji et al.

2012

2008 Korea General

population

556 42.5 M: 219

F: 337

7.96a

(5.58–

12.10)b

2.74a

(2.04–

3.64) b

1.51a

(0.92–

2.34) b

PFHpS

PFNA

PFDA

PFUnDA

PFDoDA

PFTrDA

TSH

Total T4

Multiple linear

regression models

(Log transformed)

Kato et al.

2016

2001–

2005

Japan Pregnant women

(24–41 weeks of

gestational age)

392 31.1 All F 5.2a

(1.6–

12.3)

1.2a

(LOD–

3.4)

TSH

Free T4

Spearman

correlations

Lewis et al.

2015

2011–

2012

USA General

population

(NHANES)

1682 40 M: 858

F: 824

10 2.55 1.85 PFNA TSH

Total T4

Free T4

Total T3

Free T3

Multiple linear

regression models

Raymer

et al. 2012

2002–

2005

USA IVF Clinic 246 41.6 All M 32.3a

(6.4–

151.0)c

9.2a

(1.3–

66.3)c

TSH

Total T4

Total T3

Multiple linear

regression models

Shrestha

et al. 2015

2005,

2010

USA General

population

(Riverside)

87 63.6 M: 51

F: 36

31.60

(5.29–

139.53)c

9.17

(0.58–

42.69)c

TSH

Total T4,

Free T4

Total T3

Pearson correlations

(Log transformed)

Wang et al.

2013

1999–

2008

Norway Pregnant women

(17–18 weeks of

gestational age)

903 30 All F 12.77

(12.45–

13.10)

2.13

(2.07–

2.20)

0.62

(0.59–

0.64)

PFDA

PFHpS

PFNA

PFUnDA

TSH Multiple linear

regression models

(Log transformed)

Wang et al.

2014

2000–

2001

Taiwan Pregnant women 283 28.8 All F 12.73a

(9.65–

17.48)b

2.39a

(1.54–

3.40) b

0.81a

(0.30–

1.35) b

PFNA

PFDeA

PFUnDA

PFDoDA

TSH

Total T4,

Free T4

Total T3

Multiple linear

regression models

(Log transformed)

Wen et al.

2013

2007–

2010

USA General

population

(NHANES)

1181 NA M: 672

F: 509

14.2

(13.59–

14.86)

4.15

(4.02–

4.29)

2.00

(1.89–

2.11)

PFNA TSH

Total T4,

Free T4

Total T3,

Free T3

Multiple linear

regression models

(Log transformed)

Yang et al.

2016

2013 China Pregnant women 157 29.8 All F 4.23

(0.73–

19.96)c

1.74

(0.73–

8.11)c

0.53

(0.12–

4.22)c

PFNA

PFDA

PFUnA

PFDoA

TSH

Total T4

Free T4

Total T3

Free T3

Spearman

correlations

CI, Confidence interval; M, Male; F, Female
a Median
b Interquartile range
c Range (Min–Max)

https://doi.org/10.1371/journal.pone.0197244.t001
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(low), 8–16 ng/mL (intermediate), and > 16 ng/mL (high). The correlation became more pro-

nounced in the intermediate concentration group; the pooled z values of the studies were 0.07

Fig 2. Forest plots of the summary z value with corresponding 95% CIs for the correlation between PFOS and thyroid hormone. A. Correlation between

PFOS and free T4. B. Correlation between PFOS and total T4. C. Correlation between PFOS and total T3 D. Correlation between PFOS and TSH.CI, confidence

interval; W, weight.

https://doi.org/10.1371/journal.pone.0197244.g002
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(95% CI: 0.02, 0.11; I2 = 0%). Because pregnancy itself can affect thyroid hormone levels and

the thyroid function plays an important role in fetal neurodevelopment [43, 44], the associa-

tion between PFASs and thyroid hormones in pregnant women was analyzed separately

(Table 2). However, no significant correlation between PFOS and free T4 was observed in the

subgroup of pregnant women, while a significant correlation was found in the subgroup with

the general population (z value 0.06; 95% CI: 0.02, 0.09; I2 = 18%).

Eight studies were suitable for meta-analysis of correlations between PFOS exposure and

total T4. Unlike free T4, the pooled z value between PFOS and total T4 was insignificant (z value

0.01; 95% CI: -0.05, 0.07) and showed significant heterogeneity (I2 = 70%; p< 0.01) (Fig 2B).

One outlier study was found using sensitivity analysis [28]. After omitting that study, PFOS was

found to be negatively correlated with total T4 (z value -0.04; 95% CI: -0.07, -0.01; I2 = 5%) (S2

Table). Subgroup analyses based on the mean PFOS concentration and pregnancy status showed

no correlation (Fig 2B and Table 2).

Eight studies were included for a meta-analysis of correlations between PFOS and total T3.

PFOS was not associated with total T3 (z value -0.02; 95% CI: -0.07, 0.04) and showed signifi-

cant heterogeneity (I2 = 63%) (Fig 2C). One outlier study was found using sensitivity analysis

[30]. After omitting that study, PFOS was found to be negatively correlated with total T3 (z

value -0.04; 95% CI: -0.06, -0.01) (S2 Table). In the subgroup analysis based on the mean PFOS

concentration, PFOS also showed a negative correlation with total T3 in the intermediate con-

centration group (z value -0.05; 95% CI: -0.10, -0.01; I2 = 46%). A subgroup analysis based on

pregnancy status showed no correlation (Table 2).

Twelve studies were used for meta-analysis of correlations between PFOS exposure and

TSH. The pooled z value between PFOS and TSH was -0.02 (95% CI: -0.07, 0.03) with consid-

erable heterogeneity (I2 = 71%) (Fig 2D). Even after omitting two outlier studies [25, 26] found

by the sensitivity analysis, no significant correlation was observed (z value 0.01; 95% CI: -0.02,

0.03). In the subgroup analysis stratified by mean PFOS concentration, a significant positive

correlation between PFOS and TSH in the intermediate group was found (z value 0.03; 95% CI

0.00, 0.07) (Fig 2D). PFOS was not associated with TSH in pregnant women or the general

population (Table 2).

The correlation between PFOA exposure and thyroid function

Eleven studies were included in the meta-analysis of correlations between PFOA exposure and

thyroid hormones: eight for free T4, eight for total T4, seven for total T3, and eleven for TSH.

There was no significant correlation between PFOA exposure and total/free T4 (Fig 3A and

3B). The pooled z value between PFOA and total T4 was -0.01 (95% CI: -0.07, 0.05) with signif-

icant heterogeneity (I2 = 66%). One outlier study was found using sensitivity analysis [28]. The

study by Shrestha et al. has distinct characteristics [28]; the mean age of this study (63 years)

was the highest compared with the other studies (28–41 years), and the mean PFOA level was

relatively high (9.1 ng/mL) compared to the other studies. After omitting the one outlier study,

the pooled z value between PFOA and total T4 showed a modest negative correlation (z value

-0.06; 95% CI: -0.08, -0.03; I2 = 47%) (S2 Table). PFOA showed a modest correlation with total

T3 (z value 0.03; 95% CI: 0.00, 0.06; I2 = 43%) (Fig 3C). There was no significant association

between PFOA exposure and TSH (Fig 3D).

The studies were divided into three groups according to the mean PFOA concentration: <

2 ng/mL (low), 2–3 ng/mL (intermediate), and> 3 ng/mL (high). The subgroup analysis strat-

ified by either the PFOA levels or pregnancy revealed no significant correlation (Fig 3 and

Table 2).

Perfluoroalkyl substances and thyroid function
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The correlation between PFHxS exposure and thyroid function

Eight studies met the eligibility criteria for meta-analysis of correlations between PFHxS expo-

sure and thyroid hormones: Six for free T4, six for total T4, five for total T3, and eight for TSH.

There were no associations between PFHxS and free T4, total T3, or TSH (Fig 4). The studies

were divided into two groups according to the mean PFHxS concentration:< 0.8 ng/mL (low),

and� 0.8 ng/mL (high). The subgroup analysis stratified by the mean PFHxS level revealed no

correlations between PFHxS and thyroid hormone levels (Fig 4). PFHxS was negatively corre-

lated with total T4 (z value -0.04; 95% CI -0.07, -0.01; I2 = 30%) (Fig 4C). Subgroup analysis

based on pregnancy status showed a significant correlation in the general population (z value

-0.04; 95% CI: -0.07, -0.01; I2 = 30%) while there was no significant correlation in pregnant

women (Table 2).

Discussion

Whether exposure to PFASs can disrupt thyroid function remains uncertain because previous

epidemiological studies have reported conflicting results regarding the relationship. This is the

first meta-analysis that provides evidence on the health effects of PFASs as a thyroid disrupting

chemical; although a systematic review on the association between PFASs and thyroid function

was reported previously [45], the subjects of that study were limited to pregnant women and

their children and a meta-analysis was not performed. In this study, we performed meta-analy-

sis of the correlation between PFASs and thyroid hormone in adults, and found PFASs and

thyroid hormone levels to be associated. The strongest correlation was observed in studies

with intermediate mean PFOS concentrations; PFOS was positively correlated with free T4

and TSH and negatively correlated with total T4. The results suggest that PFASs could induce

thyroid dysfunction and disease. The association between PFOA exposure and thyroid disease

has been reported in some studies which were not included in our meta-analysis [24, 46].

Our results suggest that PFOS exposure could increase free T4 levels and decrease total T4

levels. In all the studies included in our analysis, free T4 was measured by the analog method,

which is subject to a methodological issue. PFOS can bind to thyroid hormone binding

Table 2. Association between PFAS and thyroid hormone according to the pregnancy status.

Pregnant women General population

No of studies Pooled z value I2 No of studies Pooled z value I2

PFOS

Free T4 3 0.05 (-0.02; 0.11) 0 6 0.06 (0.02; 0.09) 18

Total T4 2 0.06 (-0.03; 0.15) 0 6 0.00 (-0.07; 0.07) 74

Total T3 2 -0.01 (-0.10; 0.09 0 6 -0.01 (-0.08; 0.06) 72

TSH 4 -0.08 (-0.12; 0.08) 89 8 -0.01 (-0.04; 0.02) 27

PFOA

Free T4 3 0.00 (-0.07; 0.06) 0 5 0.01 (-0.02; 0.05) 11

Total T4 2 0.04 (-0.06; 0.13) 0 6 -0.03 (-0.09; 0.04) 69

Total T3 2 0.04 (-0.05; 0.14) 29 5 0.05 (-0.01; 0.11) 56

TSH 4 0.00 (-0.05; 0.04) 44 6 0.00 (-0.03; 0.04) 32

PFHxS

Free T4 2 0.01 (-0.01; 0.05) 0 4 0.02 (-0.01; 0.05) 0

Total T4 2 0.01 (-0.18; 0.20) 74 4 -0.04 (-0.07; -0.01) 1

Total T3 2 -0.01 (-0.16; 0.14) 57 3 0.01 (-0.03; 0.04) 0

TSH 3 0.00 (-0.12; 0.13) 74 5 0.00 (-0.04; 0.03) 0

https://doi.org/10.1371/journal.pone.0197244.t002
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proteins, such as albumin and transthyretin (TTR) competing with thyroid hormone [47, 48],

and this competition could result in an increase of circulating free thyroid hormone [49]. In

Fig 3. Forest plots of the summary z value with corresponding 95% CIs for the correlation between PFOA and thyroid hormone. A. Correlation between

PFOA and free T4. B. Correlation between PFOA and total T4. C. Correlation between PFOA and total T3 D. Correlation between PFOA and TSH.CI,

confidence interval; W, weight.

https://doi.org/10.1371/journal.pone.0197244.g003
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rats, the change of free T4 observed after PFAS treatment, when measured by the analog

method, disappeared when measured by equilibrium dialysis [50]. However, no significant dif-

ference in free T4 was observed in human serum with change in measurement method [51]. In

humans, thyroxine-binding globulin (TBG) is the main thyroid hormone binding protein,

whereas TTR is the main binding protein in rodents [52]. While most PFASs bind with TTR,

only a few PFASs bind with TBG, and its binding affinity is low [53]. Therefore, the effects of

PFASs on binding proteins may be much weaker in humans than in rodents. However, our

Fig 4. Forest plots of the summary z value with corresponding 95% CIs for the correlation between PFHxS and thyroid hormone. A. Correlation between

PFHxS and free T4. B. Correlation between PFHxS and total T4. C. Correlation between PFHxS and total T3 D. Correlation between PFHxS and TSH.CI,

confidence interval; W, weight.

https://doi.org/10.1371/journal.pone.0197244.g004
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results show that total/free T4 is inversely related to PFOS and suggest that PFOS may interfere

with the binding of thyroid hormone and binding proteins in humans.

All three studied PFASs were negatively correlated with total T4 in the meta-analysis. There

is sufficient evidence showing that PFASs lower total T4. Experimental studies performed in

rats and monkeys have reported that PFOS or PFOA treatment lowered the total and/or free

T4 concentrations [21, 22, 54, 55]. Increased hepatic degradation of thyroid hormone by

PFOS-induced UDP-glucuronyltransferase (UGT) was suggested as a possible underlying

mechanism [22, 49]. However, the results of animal studies may not be relevant in humans

because the metabolic rates for xenobiotics in rodents are much higher than those in human

[56]. Thus, the half-life of PFASs in rodents is only a few days while it takes years for humans

to metabolize PFOS [12, 13, 57]. Moreover, peroxisome proliferation mechanism, which has

little role in humans, has an important role in the metabolism of xenobiotics in rodents [58].

The effect of PFASs can be different according to the concentration. Therefore, we per-

formed a subgroup analysis. Interestingly, PFOS showed a significant correlation with thyroid

hormones in the intermediate concentration group (8–16 ng/mL). It was not a typical linear

dose-response relationship. Such nonmonotonic or U-shaped dose response is considered to

be one of the characteristics of endocrine-disrupting chemicals [33, 34].

Pregnancy can affect the influence of PFASs on thyroid function. Maternal PFASs can be

transferred to fetuses, and the PFAS concentration in cord sera is positively correlated with

PFASs in maternal serum [26]. Therefore, many studies have been done on pregnant women

to investigate whether maternal exposure to PFASs could affect fetal outcomes, and there are

reports that PFAS concentrations in cord blood are associated with lower birth weight or neu-

rodevelopment status [59, 60]. Considering the crucial influence of thyroid function on fetal

development [19], we can suppose that those adverse outcomes correlated with PFASs might

be mediated, at least partially, by PFAS-induced changes in maternal thyroid hormone levels.

Fetal development is influenced by maternal thyroid hormone throughout pregnancy, espe-

cially in the first half of gestation. Moreover, several studies have reported that maternal PFOS

concentrations are associated with maternal thyroid hormone levels and fetal thyroid hormone

levels [25, 61]. However, there are also studies that report no association between maternal

PFAS concentrations and maternal or fetal thyroid hormone levels [62]. Therefore, to clarify

the association in pregnant women, we performed a subgroup analysis of the relationship

between PFAS exposure and maternal thyroid hormone levels for comparison with the general

population. In this meta-analysis, we found no significant association between PFASs and thy-

roid function among pregnant women. However, a recent systematic review suggested a posi-

tive association between maternal PFAS exposure and TSH levels [45]. Our result may be

affected by the timing of the PFAS exposure because each study took blood samples at different

times during pregnancy.

Our study has limitations. Although we performed subgroup analyses based on the mean

PFAS concentration and pregnancy status, there are potential confounding factors such as age

and gender. Both PFAS and thyroid hormone levels vary with age and gender [2, 31]. How-

ever, Dallaire et al. [27] reported that the positive association between PFOS and free T4 was

significant after adjustment for age and gender, and Shrestha et al. [28] reported that increas-

ing age may potentiate the association between PFOA and total T4. In addition, it is possible

that PFASs may have a greater impact on certain populations with autoimmune diseases or

low iodine conditions. It was reported that the correlation between PFASs and thyroid hor-

mone was stronger in subjects with high thyroid peroxidase (TPO) antibody levels and low

iodine [63, 64]. However, we could not perform a subgroup analysis based on TPO and iodine

status because of the limited number of studies that measured these factors. Further studies

that include populations which high risk of thyroid dysfunction are required.
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Because people are simultaneously exposed to multiple PFAS chemicals and other endo-

crine-disrupting chemicals, chemical co-exposures can be a potential confounding factor or

have mixture effects. Although there was a study that reported results based on the sum of

total PFAS concentrations, most studies evaluated the relationship between single PFAS and

thyroid hormones [29]. The effects of PFAS mixtures on thyroid function may differ from

those of single PFASs [65]. Further studies are required.

In conclusion, this meta-analysis suggests a negative correlation between certain PFASs and

total T4 levels. Among PFASs, PFOS had the greatest effect on thyroid hormones, especially at

intermediate concentrations (8–16 ng/mL).
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