
RESEARCH ARTICLE

Efficient methods and readily customizable

libraries for managing complexity of large

networks

Ugur Dogrusoz1*, Alper Karacelik1, Ilkin Safarli1, Hasan Balci1, Leonard Dervishi1, Metin

Can Siper1,2

1 Computer Engineering Dept., Bilkent University, Ankara 06800, Turkey, 2 Computational Biology Program,

OHSU, Portland, OR 97239, United States of America

* ivisatbilkent@gmail.com

Abstract

Background

One common problem in visualizing real-life networks, including biological pathways, is the

large size of these networks. Often times, users find themselves facing slow, non-scaling

operations due to network size, if not a “hairball” network, hindering effective analysis. One

extremely useful method for reducing complexity of large networks is the use of hierarchical

clustering and nesting, and applying expand-collapse operations on demand during analy-

sis. Another such method is hiding currently unnecessary details, to later gradually reveal

on demand. Major challenges when applying complexity reduction operations on large net-

works include efficiency and maintaining the user’s mental map of the drawing.

Results

We developed specialized incremental layout methods for preserving a user’s mental map

while managing complexity of large networks through expand-collapse and hide-show oper-

ations. We also developed open-source JavaScript libraries as plug-ins to the web based

graph visualization library named Cytsocape.js to implement these methods as complexity

management operations. Through efficient specialized algorithms provided by these exten-

sions, one can collapse or hide desired parts of a network, yielding potentially much smaller

networks, making them more suitable for interactive visual analysis.

Conclusion

This work fills an important gap by making efficient implementations of some already known

complexity management techniques freely available to tool developers through a couple of

open source, customizable software libraries, and by introducing some heuristics which can

be applied upon such complexity management techniques to ensure preserving mental map

of users.

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dogrusoz U, Karacelik A, Safarli I, Balci H,

Dervishi L, Siper MC (2018) Efficient methods and

readily customizable libraries for managing

complexity of large networks. PLoS ONE 13(5):

e0197238. https://doi.org/10.1371/journal.

pone.0197238

Editor: Jérémie Bourdon, Universite de Nantes,

FRANCE

Received: January 13, 2018

Accepted: April 28, 2018

Published: May 29, 2018

Copyright: © 2018 Dogrusoz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and in GitHub repositories https://

github.com/iVis-at-Bilkent/cytoscape.js-expand-

collapse and https://github.com/iVis-at-Bilkent/

cytoscape.js-view-utilities.

Funding: I.S., H.B. and L.D. were partly supported

for this work under Google Summer of Code

program during summer 2017. Let me point out

that the funders had no role in study design, data

collection and analysis, decision to publish, or

https://doi.org/10.1371/journal.pone.0197238
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197238&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197238&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197238&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197238&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197238&domain=pdf&date_stamp=2018-05-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0197238&domain=pdf&date_stamp=2018-05-29
https://doi.org/10.1371/journal.pone.0197238
https://doi.org/10.1371/journal.pone.0197238
http://creativecommons.org/licenses/by/4.0/
https://github.com/iVis-at-Bilkent/cytoscape.js-expand-collapse
https://github.com/iVis-at-Bilkent/cytoscape.js-expand-collapse
https://github.com/iVis-at-Bilkent/cytoscape.js-expand-collapse
https://github.com/iVis-at-Bilkent/cytoscape.js-view-utilities
https://github.com/iVis-at-Bilkent/cytoscape.js-view-utilities

Introduction

Networks are widely used in modeling information. Especially with the recent rapid rise of the

web and big data technologies, more and more software companies are making use of so-called

semantic graphs to represent huge amounts of data and employing advanced data visualization

techniques along with data mining and knowledge discovery methods [1].

Effective visual analysis of such large networks in numerous areas including systems biology

(Fig 1) is only possible when interactive operations on these networks can be executed quickly.

Unfortunately, most of these operations such as performing automatic layout or calculating a

graph-theoretic property of a network do not scale well. Besides, even though it might be possi-

ble to render such large networks in its entirety on a computer display, resulting drawings are

consistently overwhelming for the user, if not impossible to make any sense of. Hence, for nav-

igating and visualizing such large networks, one needs to first reduce their complexity [2, 3].

Complexity management techniques range from simple rendering methods like panning,

zooming and ghosting, to collapsing the compound nodes of a hierarchical network, to tempo-

rarily hiding unwanted parts of the topology. Even though existing complexity management

methods are relatively straightforward to implement, their application frequently results in

major changes in network topology, destroying existing layout of the network and user’s men-

tal map of the underlying relational data (Figs 2 and 3).

Fig 1. Large biological network example. Biological maps can be rather large as can be seen from this example map on plant central metabolism (http://sbgn.github.io/

sbgn/examples).

https://doi.org/10.1371/journal.pone.0197238.g001

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 2 / 18

preparation of the manuscript. There was no

additional external funding received for this study.

Competing interests: The authors have read the

journal’s policy and the authors of this manuscript

have the following competing interests: I.S., H.B.,

and L.D. were supported through Google Summer

of Code for implementing some of the algorithms

in this work as part of open source software

projects. Others have no competing interests. This

does not alter the authors’ adherence to PLOS ONE

policies on sharing data and materials.

http://sbgn.github.io/sbgn/examples
http://sbgn.github.io/sbgn/examples
https://doi.org/10.1371/journal.pone.0197238.g001
https://doi.org/10.1371/journal.pone.0197238

Fig 2. Losing mental map on expand operation. In a map with a certain path of interest highlighted for analysis, a compartment is collapsed to

reduce complexity (A), the same map after the collapsed compartment is expanded but messed up layout is not adjusted (B), the same map after

the collapsed compartment is expanded and layout is re-calculated from scratch; this moves the path of interest to a completely different part of

the map, confusing the user (C).

https://doi.org/10.1371/journal.pone.0197238.g002

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0197238.g002
https://doi.org/10.1371/journal.pone.0197238

Cytoscape.js [4] is an open source web based graph analysis and visualization library with a

plug-in architecture (through so called extensions) for custom use.

Here, we present specialized methods to re-arrange networks upon complexity manage-

ment operations, fixing the network layout and preserving the user’s mental map. In addition,

we introduce two new libraries, which have quickly become two of the most popular Cytos-

cape.js extensions, especially in pathway visualization applications, to efficiently reduce the

complexity of large networks via expand-collapse and hide-show operations.

Background

A graph or a network is a representation of a set of objects, called nodes, where some pairs

of objects are connected by links, called edges. An edge is said to be incident upon its source

and target nodes; and source and target nodes are said to be adjacent. A path in a graph is a

sequence of edges which connect a sequence of distinct nodes. A tree is a graph in which any

two nodes are connected by exactly one path. A rooted tree is a tree with a countable number

of nodes, in which a particular node is distinguished from the others and called the root.
A compound or hierarchical graph C = (V, E, F) consists of nodes V, adjacency edges E, and

inclusion edges F [2]. It is required that the inclusion graph T = (V, F) is a rooted tree, and no

adjacency edge connects a node to one of its descendants or ancestors. Compound nodes

enable modeling complex structures through nesting when drawing graphs. An inter-graph
edge is one with incident source and target nodes included in different compound nodes or

owner graphs (Fig 4). For instance, recently developed Systems Biology Graphical Notation

(SBGN) [5] makes exclusive use of compound structure to represent molecular complexes,

sub-cellular locations, and sub-maps of a biological map.

Fig 3. Losing mental map on unhide operations. In a map with a certain path of interest highlighted for analysis (A), processes currently out of focus are hidden to

reduce complexity (B); subsequent unhide operations reveal hidden processes gradually, but since there is no specialized re-calculation of layout, parts of the map get

tangled and the path of interest is oriented differently, ruining the user’s mental map (C,D).

https://doi.org/10.1371/journal.pone.0197238.g003

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 4 / 18

http://js.cytoscape.org/#extensions
https://doi.org/10.1371/journal.pone.0197238.g003
https://doi.org/10.1371/journal.pone.0197238

A compound node is sometimes shown in a collapsedmanner, particularly for complexity

management purposes. In such cases, it’s customary to represent inter-graph edges with at

least one end in the collapsed content with so calledmeta edges to keep relations intact (Fig 4).

Graphs are usually shown with a pictorial representation. A poor layout of a graph may

confuse the user, whereas a well-organized one aesthetically pleases the users and improves

their understanding of the underlying data. Criteria of a good layout is often subjective. How-

ever, generally accepted criteria include minimal number of edge–edge crossings, minimal

drawing area, minimal total edge length and uniform edge length throughout the graph [6].

Force-directed layout algorithms (i.e., spring embedders) are the most popular and easiest

to implement, where the basic idea is to simulate a physical system adhering to the basic laws

of physics. Nodes are considered to be particles with the same electrical charge, repelling each

other when they are too close, whereas the edges are represented with springs attracting their

end nodes when they are too far [7]. The goal is to move particles iteratively to a stable state,

where all forces cancel each other or the energy of the system is minimized. Most force-

directed layout algorithms make use of a temperature, which is a special case of a more

general technique called simulated annealing to force the algorithm to quickly reach a local

minima of the energy function. CoSE is a force-directed layout algorithm that supports com-

pound nodes [8].

In interactive visualization applications, often times, the graph evolves over time, requiring

a re-layout. Calculating a new layout, taking into account any available current positions, is

said to be incremental, where the goal is “tidying up” the drawing without destroying the cur-

rent respective positions of the nodes referred to as the user’s mental map (Fig 5).

The increase in the size of relational information to be visualized boosted the demand for

more sophisticated complexity management techniques. A good deal of research has been con-

ducted to solve the complexity management problem for large graphs [2, 9]. Some simply sug-

gest ghosting or hiding unwanted details to later reveal on demand. Others make use of various

types of lenses such as fisheye lenses [10] to focus on a user-chosen part of a large network,

usually by making that part of the drawing larger compared to the rest. Some others describe

how to create clusters based on a given data set with support for multiple views and nesting,

and make use of expand-collapse operations to deal with complexity [11].

Abundant research on complexity management typically ignores implementation issues,

not making any effort to preserve the user’s mental map as changes occur in both topology

and geometry. This mental map can be preserved in different aspects: orthogonal ordering,
clusters and topology [12, 13]. Orthogonal ordering is preserved if the horizontal and vertical

orderings of nodes are maintained after an operation. Clusters are preserved by keeping nodes

close in the updated layout if they were close in the original drawing. Finally, the topology is

preserved if the layout of the graph after update is homeomorphism of the previous layout

Fig 4. Compound graph example. A compound graph C = (V, E, F), where V = {a, b, c1, c2, d, e}, E = {{a, b}, {b, d},

{d, e}}, and F = {(c1, a), (c1, b), (c1, c2), (c1, d), (c2, e)}. The graph includes two compound nodes c1 and c2, and only

one inter-graph edge {d, e}. c1 is the only node in root level (level 0), whereas nodes such as c2 and a are level 1 nodes

(A). Same compound graph with c2 collapsed and original inter-graph edge {d, e} represented with a newly introduced

meta edge {d, c2} (B).

https://doi.org/10.1371/journal.pone.0197238.g004

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0197238.g004
https://doi.org/10.1371/journal.pone.0197238

(i.e., preserves respective node positions). Other properties which are important to preserve

for some applications include straightness of lines, orthogonality of lines parallel to the x and y
axes, and relative sizes of nodes.

Storey et al. [13] discusses various layout adjustment strategies upon a node of interest

changing dimensions (Fig 6). Among these strategies, use of proximity (aiming to preserve

clustering and topology) seems to yield the best results in the context of expand-collapse oper-

ations. The idea here is to push out (pull in) surrounding nodes as much as the change in the

required space. Hence, magnitude of the translation vector for each node is dependent on the

relative location of that node and the scaled node (Fig 7).

Many tools have been developed in the past for visualization of all sorts of networks includ-

ing biological ones [3, 14, 15]. Among these, Cytoscape.js [4] stands out as an open-source

web based graph analysis and visualization library with a plug-in architecture through exten-

sions for custom use, distributed under the MIT license. It was developed as a web based ver-

sion of the popular application named Cytoscape [14], and quickly became a favorite choice of

web based visual tool developers. It is currently in use by numerous applications from acade-

mia and industry. The library is compatible with modern technologies and libraries such as

webpack,Node.js, and npm, and runs on all modern browsers.

Almost all network visualization tools support some form of automated layout. However,

compound structures are occasionally supported by tools and almost never taken into account

during automated layout [3, 16].

Fig 5. Incremental vs. static layout. A graph that needs a better layout due to changes in topology and/or geometry

(A), the same graph after an incremental layout, where respective node positions are maintained (B), the same graph

after a non-incremental (i.e., static) layout, during which previous node positions are ignored (C).

https://doi.org/10.1371/journal.pone.0197238.g005

Fig 6. Scaling strategies to adjust layout. A grid of nodes (A), nodes scaled to preserve orthogonality when the node of interest (middle one) is enlarged (B), and nodes

scaled to preserve proximity (clustering and topology, respectively) when the node of interest is enlarged (C and D, respectively) [13].

https://doi.org/10.1371/journal.pone.0197238.g006

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 6 / 18

http://js.cytoscape.org/#introduction/factsheet
https://doi.org/10.1371/journal.pone.0197238.g005
https://doi.org/10.1371/journal.pone.0197238.g006
https://doi.org/10.1371/journal.pone.0197238

Tool support for complexity management operations on large networks is not very com-

mon. To the best of our knowledge (prior to this work) only one commercial visualization soft-

ware by Tom Sawyer Software [17] embraces proper support for such operations. Other tools

rarely support complexity management but without any layout adjustment. For instance, D3

[18], an open source visualization library, has some limited support for hiding a subtree of a

tree structure and gradually revealing it. Furthermore, our libraries are the only free, open

source complexity management libraries that can be customized for application-specific

needs.

Methods

Adjusting layout upon an operation

As stated earlier, a major challenge upon application of complexity reduction operations on

large networks is to keep the user’s mental map intact. This might require a customized layout

algorithm for each complexity management operation. Towards this goal, we adapted and

used methods described below.

Fig 7. Calculations for preserving proximity. [13]. Node of interest A is expanded to be larger, keeping its center.

This requires a neighboring node B to move in the direction from the center of A at (xa, ya) to center of B at (xb, yb) by

as much as the change in the required space (Tx, Ty).

https://doi.org/10.1371/journal.pone.0197238.g007

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0197238.g007
https://doi.org/10.1371/journal.pone.0197238

Adjusting layout on collapse. A collapse operation always results in reduction in the

dimensions of the node of interest, which, in turn, results in unnecessary space around this

node (Fig 8). Hence, an incremental force-directed layout, where current node positions are

used as initial positions should work just fine. One needs to make sure nodes are not allowed

to move drastically however. Hence, starting an incremental layout with a low temperature

should eliminate the unnecessary space around the node of interest introduced by the opera-

tion, while preserving the mental map.

Adjusting layout on expand. Expand operation, on the other hand, almost always will

result in an overlap of the node of interest with nearby nodes if enough space is not opened

up prior to the operation (Fig 9). The method by Storey et al. [13] described earlier, which

is inspired by the fisheye lens paradigm, will make enough room around the node to be

expanded to accommodate the change in size. However, a final polishing step of an incremen-

tal layout with a low initial temperature can improve the drawing in terms of commonly

accepted criteria of a good layout such as uniform edge length and minimal drawing area.

Adjusting layout on hide. Similar to the collapse operation, layout of a network with hid-

den parts can be adjusted by simply applying a specialized incremental layout. This should dis-

pose of any unnecessary space introduced by the hide operation, while maintaining respective

locations of nodes.

Adjusting layout on show. Adjusting layout upon a show (i.e., unhide) operation might

not be straightforward however, especially when hidden content has neighbors in the network.

This is due to the fact that after a certain part of a network is hidden, the layout of the remain-

ing network might change drastically. In fact, even a simple translation of the entire drawing

by the same amount will invalidate (i.e., destroy respective positioning) coordinates of the hid-

den content. Hence, unhidden neighbors of existing nodes need to be carefully placed back

to the drawing without introducing any overlaps. For this, we devised a greedy algorithm to

introduce hidden neighbors level by level while applying an incremental layout.

In order to determine the initial position of a newly unhidden node, we use a heuristic

as sketched in Fig 10. Here, the idea is to split the neighboring space around the node with

neighbors to be unhidden (i.e., the node of interest) into quadrants and scoring how crowded

each quadrant is, using a simple metric. In order to be able to calculate this score quickly (in

expected constant time), we only consider first and second degree (distance 1 and 2, respec-

tively) neighbors of the node of interest, and assign a score of +3 and +1, respectively. We then

determine the most available quadrant based on these scores and place unhidden neighbors

randomly around the center of that quadrant with an approximate distance of ideal edge
length from the node of interest. Once immediate neighbors of the node of interest are placed

in this manner, several iterations of incremental layout are performed before a new level of

neighbors of neighbors can be placed and integrated into the current drawing recursively.

Unlike previous methods, where adjustment of layout is a post-processing step to the complex-

ity management operation, with this method, layout adjustment interleaves with the complex-

ity management operation.

Handling meta edges

If not designed carefully, meta edge handling in expand-collapse operations can be rather

costly in terms of both execution time and memory requirements. In order to achieve this, we

came up with a robust and consistent mechanism, in which no meta edge is redundantly cre-

ated (only one meta edge per original hidden edge) and resulting representation is indepen-

dent of the order of expand-collapse operations. The only additional memory requirement

besides the source and target of a meta edge is a pointer to the associated original edge.

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0197238

Fig 8. Adjust layout on collapse. An example of how applying incremental force-directed layout with a low initial temperature upon a collapse operation can

predominantly keep respective positions of nodes while disposing of any newly introduced space around the collapsed node. A biological network (A) after a node of

interest is collapsed (B), and additionally an incremental layout is applied as described (C).

https://doi.org/10.1371/journal.pone.0197238.g008

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0197238.g008
https://doi.org/10.1371/journal.pone.0197238

Fig 9. Adjust layout on expand. An example of how space proportional to the growth in expanded node needs to be opened up around the

node before expand can be performed. For the graph in Fig 8.A, an expand is performed on the central node without any adjustment (A),

when an expand is performed on the central node after an adjustment using a method by Storey et al. inspired by fisheye lens paradigm (B),

followed by an incremental layout with low initial temperature to “polish” the layout (C).

https://doi.org/10.1371/journal.pone.0197238.g009

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0197238.g009
https://doi.org/10.1371/journal.pone.0197238

As a result, expand-collapse operations can be performed as follows:

algorithm COLLAPSENODE(CompoundNode c)
1 ig-edges {e = {x, y} | x is inside c ^ y is outside c}
2 for each e = {x, y} 2 ig-edges do
3 if e is an original edge then
4 create a meta edge m between c and y
5 m.original e
6 else //meta edge
7 e.reconnect(c,y) //e.original remains same

algorithm EXPANDNODE(CompoundNode c)
1 G c.owner
2 meta-edges {m = {x, y} | m is a meta edge ^ (x = c _ y = c)}
3 for each m = {x, y}2 meta-edges do
4 e m.original
5 s e.source //assume c to be source of m; other case is symmetric
6 if s.owner = c then //s is (immediately) in c
7 t e.target
8 if t.owner = G then
9 discard m
10 else
11 m.reconnect(s,m.target)
12 else

Fig 10. Heuristic for calculating location of unhidden neighbors. Each first (nodes B1 and B2) and second (node C)

degree neighbor of node of interest (node A) contribute a score of +3 and +1, respectively, to the quadrant that they are

in. Total score of each quadrant is circled. The quadrant with the least total score (quadrant I in this example) is chosen

to place unhidden neighbors of the node of interest. The neighbors are placed to be “roughly” ideal edge length

(l ¼ jAcenterp1 j) away from the node of interest.

https://doi.org/10.1371/journal.pone.0197238.g010

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0197238.g010
https://doi.org/10.1371/journal.pone.0197238

13 cs compound node (immediately) in c ^ (recursively) containing s
14 m.reconnect(cs, m.target)

The complexity of above algorithms is linear in the number of nodes collapsed (expanded)

and the number of their associated edges. For the expand operation, however, there is an

additional cost factor for the method that finds the highest level of a compound containing a

particular node for each meta edge incident with the compound being expanded. This factor

though, can be assumed to be a constant since the nesting depth is expected to be not very

high and independent of network size in real-life networks.

Libraries

We implemented aforementioned methods in JavaScript, making sure to meet the industry

requirements for generality (works for undirected graphs from all domains), efficiency (per-

forms well within an interactive tool), and extendibility (can be easily customized). These

libraries, which were developed and packaged as Cytoscape.js extensions, are two of the most

widely used ones among dozens of available extensions.

Expand-collapse

Expand-collapse related functionality is available in GitHub as a Cytoscape.js extension

(https://github.com/iVis-at-Bilkent/cytoscape.js-expand-collapse) and on npm as a module

(https://www.npmjs.com/package/cytoscape-expand-collapse). Fig 11 shows an example usage

of this extension.

API for version 3.1.1. To initialize or subsequently set options of this extension defined

and registered on a Cytoscape.js instance cy:
cy.expandCollapse(options)

To get a handle to the extension instance after initialization:

var api = cy.expandCollapse(‘get’)
Once initialized, following functions can be applied on an instance. These functions return

a handle to options parameter to apply during a particular event unlike the function above:

• Collapse specified nodes, extending options with given parameters:

api.collapse(nodes, options)

• Collapse specified nodes recursively, extending options with given parameters:

api.collapseRecursively(nodes, options)

• Collapse all nodes in graph recursively, extending options with given parameters:

api.collapseAll(options)

• Expand specified nodes, extending options with given parameters:

api.expand(nodes, options)

• Expand specified nodes recursively, extending options with given parameters:

api.expandRecursively(nodes, options)

• Expand all nodes in graph recursively, extending options with given parameters:

api.expandAll(options)

• Return whether specified node is expandable (i.e., collapsed):

api.isExpandable(node)

• Return whether specified node is collapsible (i.e., expanded):

api.isCollapsible(node)

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 12 / 18

http://js.cytoscape.org/#extensions
https://github.com/iVis-at-Bilkent/cytoscape.js-expand-collapse
https://www.npmjs.com/package/cytoscape-expand-collapse
https://doi.org/10.1371/journal.pone.0197238

• Return expandable ones inside specified nodes (if nodes parameter is not specified consider

all nodes):

api.expandableNodes(nodes)

• Return collapsible ones inside specified nodes (if nodes parameter is not specified consider

all nodes):

api.collapsibleNodes(nodes)

• Reset the options to the given parameter:

api.setOptions(options)

Fig 11. Expand-collapse example. Size of a biological map (A) is drastically reduced after all complexes (B) and then nucleus (C) are collapsed.

https://doi.org/10.1371/journal.pone.0197238.g011

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 13 / 18

https://doi.org/10.1371/journal.pone.0197238.g011
https://doi.org/10.1371/journal.pone.0197238

• Set value of the option given by the name to the specified value:

api.setOption(name, value)

• Return children of the specified collapsed node, which are removed during collapse opera-

tion. Returned value includes both nodes and edges; use selector to get only nodes or only

edges:

api.getCollapsedChildren(node)

• Return collapsed children recursively, including nested ones. Returned value includes both

nodes and edges; use selector to get only nodes or only edges:

api.getCollapsedChildrenRecursively(node)

• Return collapsed children of all collapsed nodes recursively. Returned value includes both

nodes and edges; use selector to get only nodes or only edges:

api.getAllCollapsedChildrenRecursively(node)

• Force the visual cue to be cleared. It is to be called in exceptional cases:

api.clearVisualCue()

Events. Following events are triggered at specified points during expand-collapse

operations:

• Before a node is collapsed:

cy.nodes().on(“expandcollapse.beforecollapse”,
function(event) { var node = this; . . . })

• After a node is collapsed:

cy.nodes().on(“expandcollapse.aftercollapse”,
function(event) { var node = this; . . . })

• Before a node is expanded:

cy.nodes().on(“expandcollapse.beforeexpand”,
function(event) { var node = this; . . . })

• After a node is expanded:

cy.nodes().on(“expandcollapse.afterexpand”,
function(event) { var node = this; . . . })

Customization. The expand-collapse library is highly customizable. The customizable

options should be provided as a JSON object during initialization of the library. If no options

are provided, then default options are used. The list of all customizable options, their explana-

tions and default values are given below:

• layoutBy: this option is used to specify whether or not nodes are rearranged (apply lay-

out) after expand/collapse operations. The default value is null (i.e., nodes are not rear-

ranged after expand/collapse) We recommend the use of cose-bilkent layout with

randomize: false to preserve their mental map upon expand/collapse.

• fisheye:whether to perform fisheye based translation of neighboring nodes after

expand/collapse. Value can be either a boolean or a function, which returns a boolean value

dynamically. The default value of this option is true.

• animate:whether to animate on drawing changes. Value can be either a boolean or a func-

tion, which returns a boolean value dynamically. The default value of this option is true.

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0197238

• undoable:whether to make expand/collapse operations undoable or not. The default

value of this option is true.Note: requires undo-redo extension.

• cueEnabled:whether cues are enabled or not. The default value of this option is true.

• expandCollapseCuePosition: specifies the position of cues. The default value of

this option is top-left. A function can be specified to calculate the position of cue per

node as well. This function needs to return a position object.

• expandCollapseCueSize: this option is used to specify the size of expand/collapse

cues. The default value is 12.

• expandCollapseCueLineSize: default cue icon for expand (collapse) operation is a

plus (minus) sign. This option is used to specify the width of lines which are used for draw-

ing default icons. The default value is 8.

• expandCueImage: image of expand icon. The default value is undefined (in this case,

a plus icon is drawn).

• collapseCueImage: image of collapse icon. The default value is undefined (in this

case, a minus icon is drawn).

• expandCollapseCueSensitivity: sensitivity of expand-collapse cues for hit-test-

ing. The default value is 1.

Hide-show

Hide-show related functionality is available in GitHub as a Cytoscape.js extension (https://

github.com/iVis-at-Bilkent/cytoscape.js-view-utilities) and on npm as a module (https://

www.npmjs.com/package/cytoscape-view-utilities). Fig 12 shows an example usage of this

extension.

API for version 2.1.0. To initialize the extension with options or override default

options subsequently, use:

var instance = cy.viewUtilities(options)
Once an instance is initialized, following functions can be invoked:

• Hide specified elements:

instance.hide(eles)

• Unhide specified elements:

instance.show(eles)

• Highlight specified elements and unhighlight others at first use:

instance.highlight(eles)

• Unhighlight specified elements:

instance.unhighlight(eles)

• Highlight specified elements’ neighborhood and unhighlights others at first use:

instance.highlightNeighbors(eles)Alias:

instance.highlightNeighbours(eles)

• Unhighlight specified elements and their neighbors:

instance.unhighlightNeighbors(eles)Alias:

instance.unhighlightNeighbours(eles)

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 15 / 18

https://github.com/iVis-at-Bilkent/cytoscape.js-undo-redo
https://github.com/iVis-at-Bilkent/cytoscape.js-view-utilities
https://github.com/iVis-at-Bilkent/cytoscape.js-view-utilities
https://www.npmjs.com/package/cytoscape-view-utilities
https://www.npmjs.com/package/cytoscape-view-utilities
https://doi.org/10.1371/journal.pone.0197238

• Remove highlights and unhighlights from specified elements. If the eles parameter is not

specified, sets it to cy.elements():

instance.removeHighlights(eles)

Customization. The hide-show library is highly customizable. The customizable options

should be provided as a JSON object during initialization of the library. If no options are pro-

vided, then the default options are used. The list of all customizable options, their explanations

and default values are given below:

• Style of highlighted/unhighlighted nodes and edges can be set as follows:

node: {
highlighted: {}, // style for when nodes are highlighted

Fig 12. Hide-show example. First the user chooses to focus on a single process in an SBGN map (A,B) Then, the hidden details are gradually shown to assist

in analysis (C,D).

https://doi.org/10.1371/journal.pone.0197238.g012

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 16 / 18

https://doi.org/10.1371/journal.pone.0197238.g012
https://doi.org/10.1371/journal.pone.0197238

unhighlighted: { // style for when nodes are unhighlighted
‘opacity’: 0.3 // set opacity of unhighlighted nodes

}
},
edge: {
highlighted: {}, // style for when edges are highlighted
unhighlighted: { // style for when edges are unhighlighted
'opacity': 0.3 // set opacity of unhighlighted edges

}
}
By default, the opacity is set to 0.3 when nodes/edges are unhighlighted.

• setVisibilityOnHide:whether to set visibility parameter of elements on hide/

show. The default value is false.

• setDisplayOnHide:whether to set display parameter of elements on hide/show.

The default value is true.

• neighbor: the vaule of this option should be a function, which returns neighbors of a

given node. By default, no neigbours are returned.

• neighborSelectTime:users can select neighbors of a node interactively by presing

Shift key and tapholding on that node. This option specifies the time required to taphold

on a node to select desired neighbors. The default value is 500ms.

Conclusion

In this paper, we presented new specialized algorithms and readily customizable libraries for

managing complexity in visual analysis of large networks. With these methods and libraries,

we hope that tool developers will be more equipped in dealing with this challenge in network

analysis software.

Acknowledgments

The authors would like to thank Selim Firat Yilmaz and Erdinc Basci for their help with imple-

mentation. We are also grateful for the support of the Google Summer of Code program.

Author Contributions

Conceptualization: Ugur Dogrusoz.

Investigation: Ugur Dogrusoz.

Methodology: Ugur Dogrusoz, Alper Karacelik, Ilkin Safarli, Hasan Balci, Leonard Dervishi.

Project administration: Ugur Dogrusoz.

Software: Alper Karacelik, Ilkin Safarli, Hasan Balci, Leonard Dervishi, Metin Can Siper.

Supervision: Ugur Dogrusoz.

Validation: Ugur Dogrusoz.

Writing – original draft: Ugur Dogrusoz, Ilkin Safarli.

Writing – review & editing: Ugur Dogrusoz, Ilkin Safarli, Hasan Balci, Leonard Dervishi,

Metin Can Siper.

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 17 / 18

https://doi.org/10.1371/journal.pone.0197238

References
1. Khan N, Yaqoob I, Hashem IAT, Inayat Z, Ali M, Kamaleldin W, et al. Big Data: Survey, Technologies,

Opportunities, and Challenges. The Scientific World Journal. 2014;p. 712826. https://doi.org/10.1155/

2014/712826 PMID: 25136682

2. Dogrusoz U, Genc B. A multi-graph approach to complexity management in interactive graph visualiza-

tion. Computers & Graphics. 2006; 30(1):86–97. https://doi.org/10.1016/j.cag.2005.10.015

3. Sari M, Bahceci I, Dogrusoz U, Sumer SO, Aksoy BA, Babur O, et al. SBGNViz: a tool for visualization

and complexity management of SBGN process description maps. PLoS ONE. 2015; 10(6):e0128985.

https://doi.org/10.1371/journal.pone.0128985 PMID: 26030594

4. Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD. Cytoscape.js: a graph theory library for visu-

alisation and analysis. Bioinformatics. 2016; 32(2):309–311. https://doi.org/10.1093/bioinformatics/

btv557 PMID: 26415722

5. Novère NL, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, et al. The systems biology graphical

notation. Nature Biotechnology. 2009; 27(8):735–741. https://doi.org/10.1038/nbt.1558 PMID:

19668183

6. Battista GD, Eades P, Tamassia R, Tollis IG. Graph Drawing: Algorithms for the Visualization of

Graphs. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR; 1998.

7. Fruchterman TMJ, Reingold EM. Graph Drawing by Force-directed Placement. Software Practice &

Experience. 1991; 21(11):1129–1164. https://doi.org/10.1002/spe.4380211102

8. Dogrusoz U, Giral E, Cetintas A, Civril A, Demir E. A compound graph layout algorithm for biological

pathways. In: Graph Drawing. Springer; 2005. p. 442–447.

9. Herman I, Melançon G, Marshall MS. Graph Visualization and Navigation in Information Visualization:

A Survey. IEEE Transactions on Visualization and Computer Graphics. 2000; 6(1):24–43. https://doi.

org/10.1109/2945.841119

10. Sarkar M, Brown MH. Graphical Fisheye Views. Communications of the ACM. 1994 Dec; 37(12):73–83.

https://doi.org/10.1145/198366.198384

11. Buchsbaum AL, Westbrook J. Maintaining hierarchical graph views. In: Proceedings of the Eleventh

Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA.;

2000. p. 566–575.

12. Misue K, Eades P, Lai W, Sugiyama K. Layout adjustment and the mental map. Journal of Visual Lan-

guages and Computing. 1995; 6(2):183–210. https://doi.org/10.1006/jvlc.1995.1010

13. Storey MAD, Fracchia FD, Müller HA. Customizing a Fisheye View Algorithm to Preserve the Mental

Map. Journal of Visual Languages and Computing. 1999; 10:245–267. https://doi.org/10.1006/jvlc.

1999.0124

14. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, et al. Cytoscape: a software environment

for integrated models of biomolecular interaction networks. Genome Research. 2003; 13(11):2498–

2504. https://doi.org/10.1101/gr.1239303 PMID: 14597658

15. Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating

Networks. In: International AAAI Conference on Weblogs and Social Media; 2009.

16. Dogrusoz U, Erson EZ, Giral E, Demir E, Babur O, Cetintas A, et al. PATIKAweb: a Web interface for

analyzing biological pathways through advanced querying and visualization. Bioinformatics. 2006; 22

(3):374–375. https://doi.org/10.1093/bioinformatics/bti776 PMID: 16287939

17. Tom Sawyer Perspectives;. Accessed: 2018-04-04. http://www.tomsawyer.com.

18. Bostock M, Ogievetsky V, Heer J. D3 Data-Driven Documents. IEEE Transactions on Visualization and

Computer Graphics. 2011; 17(12):2301–2309. https://doi.org/10.1109/TVCG.2011.185 PMID:

22034350

Methods and libraries for complexity management of networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0197238 May 29, 2018 18 / 18

https://doi.org/10.1155/2014/712826
https://doi.org/10.1155/2014/712826
http://www.ncbi.nlm.nih.gov/pubmed/25136682
https://doi.org/10.1016/j.cag.2005.10.015
https://doi.org/10.1371/journal.pone.0128985
http://www.ncbi.nlm.nih.gov/pubmed/26030594
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.1093/bioinformatics/btv557
http://www.ncbi.nlm.nih.gov/pubmed/26415722
https://doi.org/10.1038/nbt.1558
http://www.ncbi.nlm.nih.gov/pubmed/19668183
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1109/2945.841119
https://doi.org/10.1109/2945.841119
https://doi.org/10.1145/198366.198384
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1006/jvlc.1999.0124
https://doi.org/10.1006/jvlc.1999.0124
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://doi.org/10.1093/bioinformatics/bti776
http://www.ncbi.nlm.nih.gov/pubmed/16287939
http://www.tomsawyer.com
https://doi.org/10.1109/TVCG.2011.185
http://www.ncbi.nlm.nih.gov/pubmed/22034350
https://doi.org/10.1371/journal.pone.0197238

