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Abstract

Public transport (PT) is a key element in most major cities around the world. With the devel-

opment of smartphones, available journey planning information is becoming an integral part

of the PT system. Each traveler has specific preferences when undertaking a trip, and these

preferences can also be reflected on the smartphone. This paper considers transit assign-

ment in urban public-transport networks in which the passengers receive smartphone-

based information containing elements that might influence the travel decisions in relation to

line loads, as well as passenger benefits, and the paper discusses the transition from the

current widespread choosing approach to a personalized decision-making approach based

on smartphone information. The approach associated with smartphone guidance that con-

siders passengers’ preference on travel time, waiting time and transfer is proposed in the

process of obtaining his/her preferred route from the potential travel routes generated by the

Deep First Search (DFS) method. Two other approaches, based on the scenarios reflecting

reality, include passengers with access to no real time information, and passengers that

only have access to the arrival time at the platform are used as comparisons. For illustration,

the same network proposed by Spiess and Florian is utilized on the experiments in an

agent-based model. Two experiments are conducted respectively according to whether

each passenger’s choosing method is consistent. As expected, the results in the first experi-

ment showed that the travel for consistent passengers with smartphone guidance was

clearly shorter and that it can reduce travel time exceeding 15% and weighted cost exceed-

ing 20%, and the average saved time approximated 3.88 minutes per passenger. The sec-

ond experiment presented that travel cost, as well as cost savings, gradually decreased by

employing smartphone guidance, and the maximum cost savings accounted for 14.2% of

the total weighted cost.
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Introduction

Public transit systems play an important role in transporting passengers in metropolitan areas

[1] and are coping with an increasing demand for the existing transit network, which is cur-

rently one of the largest transport challenges. Most transit users generally have origin and des-

tination locations and expected departure or arrival times before starting a transit journey.

Based on the accessing information from the provided transit agencies, transit users need to

choose travel routes and transfer stations that can appropriately fit their travel needs. However,

seeking a suitable travel route manually is complex because it is difficult for a passenger to

determine proper transfer points between different routes because of the lack of necessary

vehicle real time information, such as the accurate vehicle arrival times because of the fluctua-

tion of traffic speed due to congestion or bad weather. Intelligent Transportation Systems

(ITS) and Advanced Public Transport Systems (APTS) are able to provide timely information

to transit users on the conditions of the network, such as lines, schedule, arrival time, depar-

ture time, occupancy and transfer. This information can be available before trip departure

(pre-trip) or during the trip (en-route) and be delivered via a wide variety of media, such as

audible or visual messages through at-stop or in-vehicle information devices, the Internet, and

through smartphones, which are a widespread communication tool, to individual transit users

or users’ groups. Hence, the analysis on the effects of user choices based on different amounts

of the real time information available needs to be evaluated to enable passengers to take more

adaptive decisions. Several new studies [2–7] discuss the effect of real-time information on

passengers’ route choice. In dynamic path choice model, PT users’ travel choices are adapted

with the received real time information regarding the next vehicle arrival time [2, 3]. Further-

more, real-time information can also affect the choice of departure time and stop as well as

route choice used by PT users [4] who want to save their travel time [5] or maximize their

expected utility [6]. More predictive real-time information, especially crowding information

on board, can attract more PT users to choose a more comfortable and efficient travel route

[7] based on the transit environment [8].

Literature review

Most conventional transit assignment models (TAM) are static equilibrium assignment mod-

els, which are insensitive to service disturbances, the effects of information and incidents.

Transit network formulation can be broadly divided into the two classes: frequency-based

TAM (FB-TAM) and schedule-based TAM (SB-TAM). This classification is based on the

representation of the transit network as it has substantial impacts on the passenger loading

procedure. FB-TAM represents the transit network at the line-level with the corresponding

frequencies, while SB-TAM includes a more detailed representation of the time-dependent

specific vehicle-runs [9].

In the FB-TAMs, a significant improvement in the field of transit path choice is the result of

studies by Spiess and Florian [10]. These researchers defined a travel strategy that allows a per-

son to reach his or her destination at minimum expected cost. The travel strategy aims to mini-

mize the total travel time, including waiting, accessing and in-vehicle time. It is still assumed

that passengers board on the first arriving bus from the attractive transit line, in which the

total actual travel time is no longer than their expected travel time of the remaining lines in the

set. De and Enrique [11] defined an alternative method of generating minimum cost routes

and dispatching paths to different lines using a common route section by non-linear program-

ming. Kurauchi et al. [12] proposed a new approach to solve the transit network loading prob-

lem using an absorbing Markov chain analogy, which incorporates line capacity constraints

through failure-to-board probabilities when considering the common lines problem.
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Furthermore, Schmöcker et al [13] proposed an FB-TAM by introducing a “fail-to-sit” proba-

bility in determining passengers’ route choice, concerning the travel cost based on the likeli-

hood of travelling seated or standing. Although FB-TAMs built the foundation for finding

solutions for transit assignment in varieties of traffic scenarios, these models can be inappro-

priate for today’s reality. With the development of information and communication technolo-

gies, the highly regular and information-rich properties of advanced transit systems may

justify passengers’ clever arrival strategies and it is necessary to model the within-day dynamics

in passengers’ route choices. Hence, schedule-based models appear in recent studies on

dynamic transit assignment.

SB-TAMs represent both the supply and demand sides of the transit system as time-inde-

pendent. Transit service is represented in terms of individual vehicle runs following a given

timetable. Nuzzolo and Crisalli [14] review the representative SB approaches in dynamic tran-

sit modeling. The stochastic assignment procedure shows the sensitivity coefficients attached

to the components of generalized cost [15]. Poon et al. [16] provides a dynamic UE transit

assignment, also using an SB network with a given time-dependent O-D demand. It is

assumed that transit vehicles with capacity constraints operate precisely as scheduled and pas-

sengers queue according to FIFO rule. Each vehicle’s available capacity is updated dynamically

as demand is loaded onto the network through a time-increment simulation. Passenger

arrival-departure profiles at all stations are recorded after each run considering queueing

delays. The UE assignment is solved by the method of successive averages (MSA). Moreover,

stochastic components to describe the difference in passengers’ preferences construct the

passenger utility function to describe the passengers’ route choices [17–18]. Schedule-based

models generally use detailed departure or arrival times for each transit vehicle in making

assignment decisions. Passengers who are divided into groups distinguished by desired arrival

time use travel strategies in an ordered set in time-expanded network [19–20]. However, it

may be essential for more precise simulation models that enable the incorporation of multi-

user classes and their respective interactions in the transport network along with information

provisions and decision processes [21]. Hence, a third assignment model called the “Agent-

based” (AB) model is proposed, in which single passengers are simulated and loaded into

buses, as in Cats et al [22]. Aggregate results might reflect the schedule-based approach.

The AB model has substantial advantages in the development of dynamic transit assign-

ment models that are practical for realistic networks. The main issues of the AB approach are

supply uncertainties and adaptive user decisions; hence, they identified dynamic loading pro-

cess and multi-agent-based simulations as two potential approaches for modeling complex

transit systems. In the AB model, transit users make route choices based on the access of real

time information. A multi-agent simulation model of transit passengers was proposed by

Meignan et al [23]. Passenger behavior was modeled as a single pre-trip mode choice decision

based on the numbers of smart card history data [24]. This decision considered three alterna-

tives: the shortest path by car, walking and transit alternatives. Waiting time was calculated as

half the planned headway. This implied that passengers always take the shortest path for a

given travel pattern [25], thereby lacking path choice modeling framework. The transit simula-

tion model in some studies [26–27] was designed to support the evaluation of operations plan-

ning and control in which a framework for a multi-agent transit operations and assignment

model which captured supply uncertainties and adaptive user decisions was illustrated [28–

29]. The evolution of transit reliability influences both the performance and real time informa-

tion schemes and the potential benefits that such information can yield by using BusMezzo, an

agent-based simulation model. Real time information can also affect the passengers’ choice of

departure time and stops and thus the route choice. Fonzone and Schmocker [5] compared

two types of passengers with access to real time information based on the agent-based model.
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Furthermore, the optimal strategy approach of Spiess and Florian [10] was used as a bench-

mark. Cats et al [30] designed a dynamic stochastic model in transit systems accounting for

the dynamic congestion and crowding effects using an agent-based simulation model identi-

cally embedded in a comprehensive framework for project appraisal. Increasingly numerous

applications [31] on driverless vehicles modeling on-demand transit transportation system are

using AB models, which improves the implements of fast dispatching decisions.

Our agent-based model is used to simulate passengers using three decision-making

approaches based on three scenarios. These approaches are, respectively, “First in” without

any real-time information, “Only arrival time” which has access to the arrival time at the plat-

form and “Information from smartphone” with access to travel strategies information in rela-

tion to each passenger’s preference from a smartphone. The latter two have access to real time

information systems, whereas the first one does not. The focus in this paper is to provide a

detailed discussion on the impact of the three decision-making approaches on passengers’

decisions, such as departure time, stop choice and route choice built on an illustrative example

referring to the same network that Spiess and Florian [10] used to describe the optimal behav-

ior of passengers without access to information. The detailed simulation procedures for the

three approaches are illustrated, as well as the two proposed experiments. To the best of our

knowledge, few studies on agent-based transit assignment considering passengers’ personal-

ized preferences on smartphone information, as well as capacity constraints, have been

reported.

The rest of the paper is organized as follows: Section 3 describes the static transit network

and time-expanded network, notation, and the corresponding assumptions. Section 4 presents

the details of three decision-making approaches based on the respective scenarios, as well as

the simulation procedures. The two corresponding transit assignment results are analyzed in

Section 5 followed by a summary of the primary results and a discussion of future research

directions.

Network description and notations

Transit networks

Based on the example network used in the Spiess and Florian [10] paper, a transit network pre-

sented in Fig 1 consists of a set of nodes for each run denoting the activity that a passenger

may board or disembark at a bus stop served by a line, as well as a set of links connecting asso-

ciated nodes. The in-vehicle time in a respective line between two nodes for any transit user

may not keep constant with the dwell time related to the number of boarding and alighting.

The passenger might feel inconveniences, such as not obtaining a seat, crowding on the plat-

form and longer interchanging times at the station. To simplify the calculation complexity,

several assumptions in connection with each transit run are given below.

The three situations include (a) no available information accessed by passengers, (b) only

the arrival time information displayed on the stop electric information board and (c) complete

route information from origin to destination provided by a smartphone. Note that all passen-

gers know approximately the simple transit network information, such as the travel time

between two bus stops, the transfer station and the inaccurate frequency through their own

commuting experience.

• Transit users in the first two situations are assumed standing at the bus stop; therefore, walk-

ing links for the two situations are ignored.

• Traveling fare is not considered as a choosing condition. This assumption seems natural in

peak hours for most of the passengers attempting to minimize their total travel time to avoid

Transit assignment in public transport using smartphone guidance
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being late. Furthermore, bus fare is considerably cheaper than other transit modes and has

no influence on users’ choice.

• Dwelling times include the time needed for doors to open, boarding and alighting of passen-

gers, closing the doors, and as bus prepares to get off the stop [28]. In the simulation model,

the dwell times are determined as a function that relates to the alighting and boarding vol-

umes, as well as the in-vehicle crowding condition. For standard buses, the resulting dwell-

ing time is given by

DTijk ¼ maxððb1þb3:d
crowed
ijk Þ:Bijk;b2:AijkÞ þ εijk ð1Þ

where DTijk = dwell time from line i at stop j on trip k;

Bijk = number of boarding passengers from line i at stop j on trip k;

Aijk = number of alighting passengers from line i at stop j on trip k;

β1 = the unit boarding time for per passenger;

β2 = the unit alighting time for per passenger;

β3 = the unit extra dwelling time for per passenger because of crowding;

d
crowded
ijk = crowding indicator (= 1 if number of passengers on the bus exceeds the half number

of capacity, and 0 otherwise);

εijk = error term.

• A unitary demand from origin to destination uniformly distributed over 60 minutes has

been assigned with a time step of 1 minute. It is common that for each user, he/she clearly

knows his/her arrival time at a bus stop, as well as the waiting time.

• Comfort level is determined by boarding on a coming bus or not exceeding the capacity con-

straints and all passengers satisfying the fail-to-board event.

Fig 1. Example of a transit network with four bus lines and four bus stations.

https://doi.org/10.1371/journal.pone.0197181.g001
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• The transfer station is on the same position for a passenger’s alighting, that is, there is no

need for the passenger to walk to the transfer station after alighting from the previous bus.

• All transit users share the same origin and destination and no passengers board or alight

during their travelling.

• Bus capacity is fixed and is related to users’ comfort level and the boarding probability;

• The actual in-vehicle time(or running time) in the simulation process is not fixed, which is

given by

IVTactual
i;j;jþ1;k ¼ IVTinitial

i;j;jþ1;k þ ni;j;jþ1;k ð2Þ

where IVTactual
i;j;jþ1;k = the actual in-vehicle time on line i from stop j to stop j + 1 on trip k;

IVTinitial
i;j;jþ1;k = the initial given in-vehicle time on line i from stop j to stop j + 1 on trip k;

vi,j,j+1,k = the error term.

In Fig 1, four bus lines marked Line 1 to Line 4 are listed with the initial in-vehicle time

labelled on the arrow lines. Line 1 connects A and D directly with the longest in-vehicle time,

as well as Line 2 to 4, covering transfers stations B and C. Line 3 and Line 4 start from the

transfer stations B and C to the destination D with less in-vehicle time.

Associated with each transit line, there is a schedule that lists the departure times at which a

transit vehicle must leave its starting station as well as the scheduled arrival time or departure

time at stations along its route throughout each day. In our experiments, vehicles passing

through stations close to the destination are assumed to depart later in order to ensure the fea-

sibility of passengers’ transfer. All of the departure times on a line depend on the first station’s

departure times, the in-vehicle time and the dwelling time. The object for each user is to mini-

mize his/her total traveling time and reduce the associated waiting time. Different from previ-

ous research, in which passengers are assigned into routes under the same situation, this

assignment method considers a single passenger’s decision under different situations before

boarding a vehicle. Each passenger is loaded into buses and the aggregate results might reflect

the final results based on the referred approach.

Time expanded networks

The model proposed in this study develops a more compact network description (at least for

lines with a number of stops) based on line sections, rather than the route section listing all of

the time stamps in Hamdouch’s approach. Each node in the time expanded network has two

levels: one represents the stop or platform where the event occurs, and the other is a time

stamp of the event itself. For each run at a stop, a set of nodes, as well as the connecting links

from Fig 2, are generated, representing the arrival and departure events.

The departure times at the first stop for each bus are extracted according to the predefined

schedule. The following arrival time at the next stop is determined by the travel time in each

segment. However, the departure time, except for the initial stop, depends on the on or off

boarding passenger volume. Links connecting nodes represent the passenger flow trends for

each run. Beginning with a line link from the previous stop, passengers on board are split into

two groups, one for alighting and the other for remaining, corresponding to the alighting link

and dwelling link.

For all passengers standing on this stop now just after the running bus, the three flow splits

are divided, that is, arriving at the destination, such as at stop D matching the egressing link,

transferring to another line, such as at stop B or C, and boarding onto this bus. The departure
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nodes are also connected by a line link at the beginning of the next stop. Fig 2 shows the typical

time expanded network configuration for each run at one stop. Not all nodes and links are

needed for each stop; for example, there are no arrival nodes and egressing links on the initial

stop. Furthermore, the time expanded network changes depending on the route strategies and

on the received real-time information.

Decision-making approaches

We assume that all the passengers are risk-adverse and that she or he makes a decision in the

choice set that potentially minimizes the total travel cost according to the perceived real time

information. Three decision-making approaches have been proposed based on the preliminary

scenarios. The approach with no real time information in the first scenario is called “First in”

(FI), that is, passengers take the first coming vehicle whenever they are standing at the bus stop

with no available real time information or only approximate frequency information that is

omitted for the risk-adverse passengers. The provided approach called “Only arrival time”

(OAT) addresses the second scenario when passengers only know the arriving time at the ini-

tial station from the electric board and choose one from several coming vehicles. A third

approach considers that the decision maker is supposed to know the schedule of lines in the

whole journey by consulting an online smartphone and chooses the preferred one from the

obtained choice set, referred to as “Information from smartphone” (IFS). Traditionally, it is

assumed that passengers care for real time information only for services with low frequency.

However, it seems reasonable to assume that passenger will take advantage of widespread

online real time information even if the frequency is generally high when considering trans-

fers, especially through advanced smartphone technology. Furthermore, we assume that the

three approaches mentioned before are all Agent-based decision making methods to ensure

their comparison under the same line schedule.

Fig 2. Time expanded network of a single stop for one run.

https://doi.org/10.1371/journal.pone.0197181.g002
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FI method

In the FI method, the passenger does not have access to real time information. Therefore, it is

not possible to distinguish between the earliest arrival connections and shortest connections.

It is assumed that the decision maker leaves immediately from the origin and adopts the least

wait time run and the associated line. However, if the vehicles for both the direct line and

transfer line arrive at the same time (at the origin), he/she chooses the direct line first. The

potential route strategies about Fig 1 are listed below, from which no passengers from stop A

will transfer at stop B to reduce their possibilities to reach the destination. Furthermore, more

runs are chosen at stop C with two lines than stop B with only one line if accessing no real time

information. However, passengers boarding on the first coming bus in this method to mini-

mize their waiting time may occasionally sacrifice the shortest travel time. Therefore, in this

study, this method is set as the comparison with the other two methods.

Route 1: Line 1 (A-D);

Route 2: Line 2 (A-C) -- Line3 (C-D);

Route 3: Line 2 (A-C) -- Line4 (C-D).

OAT method

The second scenario describes a scenario where one passenger accesses the arrival times of

coming buses (generally less than five runs) from an electric information board at the current

station. No extra information is provided in advance to determine the arrival time for the next

transfer stations if one or more transfers are necessary. After receiving the arrival time infor-

mation, he/she chooses the preferred route. This finding implies that he/she may choose differ-

ent routes even when accessing the same information.

An outline of the OAT method for one passenger np standing at the jth bus station is dis-

played in Fig 3. He/she chooses one trip from the potential bus set Schoose_veh constructed by

the three earliest boarding trips. If the chosen bus is not a direct line, it is necessary to choose

the transfer station before arriving at the destination. The main procedures of determining

one’s travel journey are presented below.

1) Roulette method to determine the next coming bus. In this method, we assume that

the maximum number of potential trip set is three, and for each vehicle nv, a passenger’s maxi-

mum expected waiting time is Tmax
w . We assume that the decision maker possesses the informa-

tion regarding the next three earliest trips based on his/her expected or actual arrival time tarr
np;j

at the jth station. If the departure time tdep
nv ;j for each trip is not more than one’s arrival time, this

bus is placed into the potential bus set Schoose_veh, seen in Fig 4, and the passenger attempts to

board the bus. Thus, the choosing probability Pdep
nv ;j for each vehicle nv is formulated as

Pdep
nv ;j ¼

Tmax
w � ðtdep

nv ;j � tarr
np;j
Þ

X

nv2Schoose veh

Tmax
w � ðtdep

nv ;j � tarr
np;j
Þ

Tmax
w � ðtdep

nv ;j � tarr
np;j
Þ

0:1
X

nv2Schoose veh

Tmax
w � ðtdep

nv ;j � tarr
np;j
Þ

Tmax
w < ðtdep

nv ;j � tarr
np;j
Þ

8
>>>>>>><

>>>>>>>:

ð3Þ
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Fig 3. Procedure of OAT method.

https://doi.org/10.1371/journal.pone.0197181.g003
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Fig 4. Procedure of choosing departure time using the OAT method.

https://doi.org/10.1371/journal.pone.0197181.g004
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The choosing probability Pdep
nv ;j closely associates with Tmax

w . If one passenger’s waiting time is

lower than Tmax
w , Pdep

nv ;j entails a higher value to enlarge the selected probability. In contrast, the

preliminary numerator formula is replaced by a relatively small value (0.1 in this instance).

Next, in the roulette method, one trip is randomly chosen based on the respective proportion

probability Prou
nv ;j

.

Prou
nv ;j
¼

Pdep
nv ;jX

nv2Schoose veh

Pdep
nv ;j

ð4Þ

Prou
nv ;j

: Proportion probability for vehicle nv at the jth station.

2) Determine the transfer station. Once a passenger determines the boarding vehicle,

then it is essential for him/her to choose the transfer station or next alighting station if the

boarding trip is not on a direct line. In this case, the dominant rule is to reduce the transfer

times. If the minimum transfer times are the same for some transit routes, we randomly

choose one station from the potential transfer station set. For example, in Fig 1 for the depar-

ture trips from line 2, three transit routes presented below transfer for once. One transfer sta-

tion is stochastically retrieved from the potential transfer station set consisting of station B and

station C.

Route 1: Line 2 (A-B) -- Line3 (B-D);

Route 2: Line 2 (A-C) -- Line3 (C-D);

Route 3: Line 2 (A-C) -- Line4 (C-D).

IFS method

The decision-maker has the information concerning a list of potential travel routes, illustrated

in next section, from all possible lines (in our network, all buses directly or indirectly con-

nected to the destination) by searching from their mobile device, allowing them to know the

different route options and benefits, such as less transfers from Fig 5, shorter travel distance,

less waiting time, less walking and best route from Fig 6. The records of routes consist of lines

and the related boarding or alighting stations from origin to destination represented on the

mobile device. The decision-maker chooses one of them as his/her best route. The whole cho-

sen routes generated by the Deep First Search (DFS) method based on Fig 1 are described

below:

Route 1: Line 1 (A-D);

Route 2: Line 2 (A-B) -- Line3 (B-D);

Route 3: Line 2 (A-C) -- Line3 (C-D);

Route 4: Line 2 (A-B) -- Line3 (B-C) -- Line4 (C-D);

Route 5: Line 2 (A-C) -- Line4 (C-D).

The generating procedures of the detailed travel strategy are shown on Fig 7. After input-

ting the current location (based on the Global Positon System (GPS)) and a passenger’s

expected arrival time tarr
np;j

at the origin station, he/she acquires a list of routes from the mobile

device, chooses the best one according to his/her travel preference as the objective strategy,

and waits for the first bus displayed in the strategy. Because of capacity or congestion
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PLOS ONE | https://doi.org/10.1371/journal.pone.0197181 May 10, 2018 11 / 22

https://doi.org/10.1371/journal.pone.0197181


constraints, he or she has to decline the currently incoming bus if the objective bus is quite cro-

wed. Two main procedures are divided based on the two key factors seen in Fig 7. For one pas-

senger preparing to travel or just arriving at the bus stop, we assume that he/she has no travel

strategy before searching on the mobile device widely used by transit users and that the search

is the only way to receive travel information in this method. When a passenger arrives at the

bus stop at the arrival time tarr
np;j

, he/she chooses the optimal route as the current strategy by

searching from a smartphone. Next, he/she waits for the arrival of the first bus on the chosen

route. If the chosen bus arrives later than the passenger at the current stop j, he/she has to wait.

Fig 5. Real time information on fewer transfers option from Google Maps.

https://doi.org/10.1371/journal.pone.0197181.g005
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If the chosen bus is crowded such that it has no seats or insufficient capacity to board, he/she

has to wait for the next coming bus. The procedure for generating the optimal strategy associ-

ated with one’s preference is presented on Fig 8. The calculation process of each respective

cost attribute, including expected travel time, expected waiting time and number of transfers,

begins after the input of the set route. Then, the weighted cost based on the related passenger’s

preferences is computed before choosing the best route with a minimal cost value. In this

instance, the expected waiting time is calculated with the consideration of the maximum dwell-

ing time.

Fig 6. Real time information on best route option from Google Maps.

https://doi.org/10.1371/journal.pone.0197181.g006
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The weighted route travel cost associated with each parameter, is defined by

dr ¼
X

m

amcm
r 8r 2 R ð5Þ

where cm
r is the cost attribute m associated with route r and αm is the weighting parameter

applied to attribute m based on users’ preferences.

The cost of transfer, per passenger, is assumed to be 1.0 ¥ for one transfer and the values of

waiting time and travel time are set 0.35 ¥/min and 0.24 ¥/min, respectively. The base values of

different attributes associated with the three path options, along with unweighted path costs,

were computed in Table 1.

Table 2 lists the path recommendations for three types of travelers with different prefer-

ences. Traveler 1 weights all the preferences equally, while passengers 2 and 3 dislike waiting

and traveling for long periods of time, respectively. For passengers 1 and 2, the best route is

Route 1, while for passenger 2 it is Route 2. This result demonstrates that different passenger’s

preferences lead to a different order of routes. Clearly, more complex travel strategy methods

are conceivable and could be generated by various cost functions. For example, it is likely that

passengers will consider any or all of the following: fares, seat availability, and different

Fig 7. Passengers’ travel procedures using real time information on a smartphone.

https://doi.org/10.1371/journal.pone.0197181.g007
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Fig 8. Procedure of generating optimal routes displayed on smartphone.

https://doi.org/10.1371/journal.pone.0197181.g008

Table 1. Numerical example base values.

Travel Waiting Transfer Route cost

Value (mins) Value (¥) Value (mins) Value (¥) Value (¥) Value (¥) Value (¥)

Route 1 25 6 10 3.5 0 0 9.5

Route 2 15 3.6 20 7 1 1 11.6

Route 3 17 4.08 17 5.95 1 1 11.03

Route 4 21 5.04 17 5.95 2 2 12.99

Route 5 23 5.52 15 5.25 1 1 11.77

https://doi.org/10.1371/journal.pone.0197181.t001

Table 2. Route recommendations for travelers with different preferences.

Value of Weighting Parameters Weighted Path Cost (¥)

Traveler 1 Traveler 2 Traveler 3 Route No. Traveler 1 Traveler 2 Traveler 3

αwait 1/3 0.6 0.2 Route 1 3.17 3.3 4.3

αtravel 1/3 0.2 0.6 Route 2 3.87 5.12 3.76

αtransfer 1/3 0.2 0.2 Route 3 3.68 6.586 3.838

Route 4 4.33 4.978 4.614

Route 5 3.92 4.454 4.562

Route recommendation 1,3,2,5,4 1,5,4,2,3 2,3,1,5,4

https://doi.org/10.1371/journal.pone.0197181.t002
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decision processes such as the consideration of real time information in connection with previ-

ous experience. Furthermore, decisions may be subject to particular constraints, such as that

some passengers might be captive to a subset of lines and specific departure times. Such con-

straints may reduce the impact of information provided by a smartphone. For example, pas-

sengers aim to minimize their travel times, but if they can use only certain lines, they will have

fewer chances to select a trip that is different from what they could choose with real time infor-

mation from a smartphone.

Experiments and results

Six thousand simulation runs were performed for the three mentioned methods. In every run,

the distribution of the demand among different lines is calculated under each decision-making

approach. A fixed demand N (200 in this experiment) of passengers from Stop A to Stop D in

Fig 1, uniformly distributed over 3600 seconds (60 minutes), has been assigned with a time

step of 1 second. Two experiments associated with the same condition have been performed:

1) the experiment associated with the three decision-making methods is conducted respec-

tively based on consistent passengers; 2) an experiment related to passengers inconsistent with

their decision-making methods is implemented. The simulations were run with MATLAB

2015b on an Intel Core(TM) i7-6500 CPU at 2.50 GHz with 8.00GB of RAM. The timetable

was given in Table 3 according to the initial departure stop of the given lines in Fig 1. Depar-

ture times of the passing stops were calculated depending on the in-vehicle time depicted

between two stops of the respective line in Fig 1, and the dwell time was calculated by Formula

(1). In addition, the limited capacity C for each vehicle is set as 20 and the weighting parameter

is set as 0.7 for the cost preference attribute. β1, β2 and β3 are set as 4, 2 and 4 seconds, respec-

tively. The maximum transfer number is set as 3, the dwell time error term εijk is randomly

obtained, ranging from 0 to 20 seconds, and the error term of in-vehicle time vi,j,j+1,k ranges

from 0 to 120 seconds (2 minutes). The preferences of each passenger are randomly generated,

and the number of simulation runs is set as 6000.

Experiments for passengers with consistent choosing method

Table 4 illustrates the results incorporating total travel time, waiting time of the whole journey,

saved time and waiting time at the origin stop of the experiments as well as the weighted cost

based on the three mentioned methods. One passenger’s travel time is calculated from the

time elapsed between his/her arrival at the origin to his/her arrival at the destination, incorpo-

rating waiting time, in-vehicle time and dwelling time. Compared with the aforementioned FI

and OAT methods, the IFS methods can reduce travel time by approximately 18.4% and

15.3%, respectively. The total waiting time of the whole journey for the IFS method is relatively

lower than the other two methods due to a decreased waiting time at the origin stop. The dif-

ference between the time at which the passenger consults the information and that at which

he/she leaves the origin is called saved time. For the passenger accessing information by smart-

phone, the waiting time at the origin is regarded as zero if the first vehicle in the optimal route

Table 3. Timetable based on the initial departure stop of the respective line illustrated in Fig 1.

Vehicle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Line1 0 7 14 21 28 33 38 43 50 58 66 74 82 90 98 106 114

Line2 1 6 11 16 21 25 29 33 37 43 50 57 64 71 78 85 92

Line3 8 13 18 23 28 34 40 46 52 60 68 76 84 92 100 108 116

Line4 12 15 18 22 26 30 34 38 42 47 52 57 63 69 75 81 87

https://doi.org/10.1371/journal.pone.0197181.t003
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is available. Therefore, the saved time can also be described as the unnecessary waiting time.

The average saved time in this case approximates to 3.88 minutes per passenger. The total wait-

ing time at the origin stop for IFS methods is evidently lower than for other methods due to

the utilization of real time information from the smartphone. The OAT method has the least

total number of transfers. The weighted cost for IFS is decreased by 23% and 26.5% compared

with FI and OAT methods, respectively.

Figs 9 and 10 illustrate the specific assignment results on line usage. In the upper part of the

figure the bars represent the passenger load for each segment derived from the divided bus

lines by the middle stops. The bottom part of figure shows the average waiting time for passen-

gers at the stops. This stop-related information can be useful for public transportation opera-

tors, who may use it to decide where to locate their services. In Fig 9, the IFS method aims to

save passengers’ waiting time, as well as minimizing the travel time without delaying arrival

time excessively. In comparison with the network usage in FI method, passengers under IFS

migrate from L4 to L3. In particular, the IFS method induces a reduction of 93% of L3 com-

pared to the FI method. The usage of L3 is much less under the FI method, but it becomes the

second-most-used line under the IFS method. In addition, in the FI method, the segment L3 at

stop B is not used at all, whereas under IFS, nearly one fifth of passengers travelling from L2 at

stop B transfer to L3, which is faster than the segment on line L2. At stop C, the ratio of the

shares on the two segments is balanced under the FI method, whereas there are a large propor-

tion of passengers changing from L4 to L3 because of the tendency to prefer fast lines induced

Table 4. Results of experiments for passengers with the same preference.

Method Total travel time

(minutes)

Total waiting time of the whole

journey(minutes)

Total saved time

(minutes)

Total waiting time at origin

stops (minutes)

Total number of

transfer

Weighted

cost

(¥)

FI 5649.48 1479.48 0 777.48 160 571.2161

OAT 5441.9 1138.85 0 730.05 104 597.8661

IFS 4609.57 1359.38 776.85 19.47 119 439.3741

https://doi.org/10.1371/journal.pone.0197181.t004

Fig 9. Assignment results of load per segment.

https://doi.org/10.1371/journal.pone.0197181.g009
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by the availability of information. In general, under the OAT method, the use of lines is in

between the usage observed with the FI and IFS. Similar to IFS, OAT passengers tend to shift

to faster lines as a consequence of the availability of information, but their tendency to reduce

the travel time is limited by the preference of specific lines, such as the direct line.

In Fig 10, clearly stop A is used by all passengers in all of the decision-making methods.

The maximum average waiting time at stop A for the FI method is the highest among the

above three methods, but there is less waiting time for the IFS methods because in those strate-

gies, passengers are assumed to arrive at the departure stop at the very last moment. The differ-

ence of utilizing lines is mirrored in a different use of Stop B. The average waiting time for

passengers in the OAT method is the highest. In addition, the transfer frequency is relatively

high at stop C involving all passengers using indirect lines, and the average waiting time at

stop C is the highest under IFS. This finding implies that more passengers attempt to wait for

the shorter route, even though they may spend considerably more time waiting.

Experiments for passengers with inconsistent choosing methods

This experiment is proposed in order to compare changes from the FI method, which is widely

used in real life, to the IFS method, which may become more popular in the future. In Table 5,

passengers are divided into five groups based on ratio γFI from high to low. The ratio γOAT of

passengers using the OAT method is set as 0.1, a small proportion compared with other two

methods. The ratio of passengers using three choosing approaches is defined as

gs ¼
Ns

N
ðs 2 S ¼ FI;OAT ; IFSf gÞ ð6Þ

Fig 10. Assignment results of average waiting time per stop.

https://doi.org/10.1371/journal.pone.0197181.g010

Transit assignment in public transport using smartphone guidance

PLOS ONE | https://doi.org/10.1371/journal.pone.0197181 May 10, 2018 18 / 22

https://doi.org/10.1371/journal.pone.0197181.g010
https://doi.org/10.1371/journal.pone.0197181


In Fig 11, four types of cost are displayed, including travel time cost, waiting time cost,

transfer cost and weighted cost. Clearly, when most passengers choose their travel routes using

the FI method, their travel costs are considerably higher. In contrast, the entire costs reduce

under the IFS method, which involves the dissemination of real-time information presented

by a smartphone. In addition, weighted cost savings gradually decline, and the largest one,

96.23048, takes up 14.2% when the proportion of passengers using the FI method changes

from 80% to 60%. This finding implies that passengers’ trips can be improved efficiently in

real life using the smartphone-provided travel strategies when the FI method is used by most

passengers. However, when the ratio of passengers utilizing smartphone reaches a certain

point, cost savings are fewer and even negligible. Furthermore, the travel time weighted cost is

the highest and takes up approximately half of total weighted cost. It is reasonable that most

passengers pay more attention to travel time, particularly during peak hours.

Conclusions

This study described the effect of real time information from a smartphone on the passen-

ger’s saved costs. Passengers were able to access information through three methods, which

Table 5. Ratio and the related volume of passengers using three choosing methods (N = 200).

FI OAT IFS

γFI NFI γOAT NOAT γIFS NIFS

0.8 160 0.1 20 0.1 20

0.6 120 0.1 20 0.3 60

0.4 80 0.1 20 0.5 100

0.2 40 0.1 20 0.7 140

0.1 20 0.1 20 0.8 160

https://doi.org/10.1371/journal.pone.0197181.t005

Fig 11. Results of experiments with different ratio of passenger under three choosing methods (811 in horizontal

axis is defined as γFI = 0.8, γOAT = 0.1, γIFS = 0.1).

https://doi.org/10.1371/journal.pone.0197181.g011
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were having access to no travel information, the vehicle arrival information at the platform,

and travel route strategies provided by a smartphone to minimize the travel time from origin

to destination. Passengers accessing no travel information normally take the first arriving

vehicle in our decision making approaches. In the second scenario, where only the arrival

information of the vehicles is available, passengers choose their travel methods depending

on their preference, simulated by a Roulette and Stochastic method to decide which bus to

take and which stop to disembark at, respectively Instead of choosing routes only based on

travel time, a more comprehensive method that considers passengers’ preference on travel

time, waiting time and number of transfer is designed in the process of generating his/her

preferred strategy from the potential travel routes generated by the DFS method in the third

scenario. In the experiments, four bus lines with four bus stops are represented in a static

transit network and share the same origin and destination, as well as time expanded net-

works that are designed to describe the process of a passenger’s ride. Two experiments are

provided based on whether each passenger’s method of choice is consistent. The results in

the first experiment show that even in relatively simple networks, different combinations of

providing travel information and approaches lead to significantly different solutions. It is

observed that real time information accessed from a smartphone can reduce travel times by

more than 15% and save approximating 3.88 minutes per passenger. Furthermore, the total

waiting time decreases to a relatively low value leading to an improved reliability of the

transport system services and the satisfaction of passengers. From a network management

perspective, it is concluded that loads can differ significantly depending on the available

information and passenger strategy. Evidently, accessing real time information from a

smartphone makes the network more reliable and efficient when it is broadly used. The sec-

ond experiment illustrates the cost changes or savings when passengers decide their travel

using the FI method widely used in real life, compared to the IFS method provided using a

smartphone. The result shows that the IFS method can notably reduce travel cost and that

cost savings gradually decline when passengers widely choose the FI method over the IFS

method. The maximum cost savings reach 96.23048, accounting for 14.2% of the weighted

cost, when 80% of passengers choose the FI method.

The present study can be extended in a number of ways. Limitations, such as the missing

consideration of ignoring the in-vehicle state information of the coming buses, have already

been mentioned. Furthermore, comfort level is only determined by whether the incoming bus

has reached capacity. The current study describes the saved time and the related costs when

only accessing route information from a smartphone. Further research is also warranted to

investigate the effect of newly added information accessed in-vehicle, such as changed arrival

times and dynamic in-transit times. In particular, larger networks related to the real-world

cases should be analyzed. Additionally, different user cost functions referring to more prefer-

ences, such as walking time and travel fare, should be explored in connection with the journey

planning strategies. By obtaining actual data when passengers make choices on generating

travel strategies, one might obtain more information regarding the actual strategies that pas-

sengers use.
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