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Abstract

With the growing dependence on smartphones for everyday activities, a large number of

pedestrians nowadays are constantly fixated on their smartphone screens, and hence are

susceptible to walking off pavements or colliding with other pedestrians. Reduced attention

and situational awareness can render smartphone-occupied users, or smombies, oblivious

to potential risks when using their smartphones while walking or driving. In this paper, we

introduce a smartphone application, called Smombie Guardian, that detects obstacles and

alerts smombies as they walk while viewing their smartphone screens to prevent potential

collisions. Based on a user study with 74 participants who used Smombie Guardian in a

real-life scenario, we highlight the effectiveness, usefulness, and unobtrusiveness of the

algorithm and Smombie Guardian in helping users to avoid potential obstacles.

Introduction

The global rate of smartphone usage has continued to increase significantly in recent years,

such that they now constitute a major part of most people’s daily lives. According to a Pew

Research report, smartphone ownership rates have skyrocketed in many countries since 2013,

when the global median of smartphone ownership rate was 43%. Smartphone ownership in

the US was at 72%, whereas South Korea stood out as the country with the highest smartphone

ownership rate (88%) [1]. Moreover, a report from Statista has forecast that the number of

smartphone users worldwide will reach 2.8 billion by 2020 (https://bit.ly/2dk8wHh). The pro-

liferation of smartphones, and their connectivity and computational capabilities, have empow-

ered people to engage in the sharing and acquisition of various types of information, anytime

and anywhere, which goes beyond merely making and receiving phone calls.

However, owing to people’s excessive reliance on smartphones and the variety of contents

accessible through them, these devices tend to garner a considerable amount of user attention

in many cases. At times, this absorption in smartphone screens renders people oblivious to

their surroundings [2]. As reduced situational awareness causes pedestrians, in particular, to

become inattentive to hazards in their environments, occurrences of accidents and injuries
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pertaining to such oversights are not uncommon. Such pedestrians are now referred to as

smartphone zombies (henceforth smombies).
The number of accidents involving smombies is reportedly on the rise [2]. Based on the

National Electronic Injury Surveillance System (NEISS) database, Nasar et al. [3] reported that

the number of pedestrian injuries due to mobile phone usage increased from 559 in 2004 to

1,506 in 2010. Furthermore, the authors reported that the number of accidents occurring due

to pedestrians’ use of smartphones was higher than that of driving accidents in 2011. A survey

by the University of Washington found that nearly one third of Americans operate their smart-

phones at dangerous intersections [4]. Big cities have more smombies on the streets, subways,

shopping malls, and corridors of buildings. The Department of Transportation has reported

that 25% of fatal accidents on urban roads in 2014 involved a pedestrian who had failed to look

properly, whereas the number of accidents caused by drivers and pedestrians failing to observe

their surroundings has risen by 12% over the past decade. This establishes a clear connection

between such habits and an increase in accidents involving pedestrians [5]. Because people’s

dependence on smartphones is clear, and as a number of games and applications cause users

to become highly engaged and easily distracted (e.g., Pokemon Go, it is crucial to handle

potential collisions in advance and guarantee the safety of both smartphone users (smombies)

and other pedestrians or drivers.

In the existing literature, many solutions have been proposed and implemented to ensure

pedestrian safety against the distractions caused by immersion in smartphones. In this paper,

to better ensure the safety of smombies and people in their vicinity, we introduce a smart-

phone app called Smombie Guardian to provide distracted smartphone users (i.e., smombies)

with timely alerts to prevent potential collisions.

Smombie Guardian represents a major departure from existing work in two aspects:

• We prototyped Smombie Guardian to accurately detect the size of and distance to an

impending obstacle by tracking the ratio of the user’s displacement to the variation in image

size. The app warns users of unsafe situations (e.g., colliding with obstacles or other pedestri-

ans) at a distance of three meters from an obstacle (this default can be altered by users) by

triggering suitable alerts in a timely manner.

• Our app reflects an empirical understanding of user experience and perception, based on a

user study using A/B testing (experiments with and without Smombie Guardian) involving

74 participants. The results highlighted participants’ highly positive experiences, as well as

their reactions to the usefulness and efficiency of Smombie Guardian. The participants also

suggested design implications for future apps of this kind, such as the ability to customize

the type and frequency of alerts and detect potential obstacles in other directions.

Related work

Smartphone applications and technology for pedestrian safety

Wang et al. [6] proposed WalkSafe, a smartphone app for enhancing the safety of people cross-

ing roads while talking on their phones. WalkSafe uses the rear camera of the smartphone to

detect approaching vehicles via machine learning algorithms implemented on the phone. Jain

et al. [7] recently proposed a pedestrian safety app called LookUp, which uses shoe-mounted

inertial sensors to profile ground gradients and step patterns in order to detect sidewalk-street

transitions (i.e., stepping over a curb or walking down sidewalk ramps). They reported that the

detection rates of LookUp were over 90%, with 0.7% false positives. However, WalkSafe

appears to improve smartphone users’ safety only while they walk and talk, and LookUp

Smombie Guardian
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requires shoe-mounted inertial sensors. Foerster et al. [8] proposed SpareEye, an Android app

that warns pedestrian users concerning activities that require continuous focus on the screen

(e.g., texting, watching videos, and gaming). SpareEye only requires the built-in camera of the

smartphone. However, SpareEye relies on variations in image sizes obtained by a monocular

camera, and hence cannot accurately measure the sizes of obstacles and the distances between

users and obstacles. However, Smombie Guardian accurately computes the sizes of obstacles

and the distances to them in a novel manner, by tracking the ratio of the user’s displacement

to the variation in image size (see Implementation).

Pedestrian and obstacle detection

Pedestrian and obstacle detection are rapidly evolving areas in computer vision, and have key

applications in intelligent vehicles, surveillance, advanced robotics, the assistance of visually

impaired people, and so on.

For the detection of pedestrians, detectors typically follow a sliding window paradigm that

entails feature extraction, binary classification, and dense multi-scale scanning of detection

windows, followed by non-maximum suppression (NMS). Dollar et al. [9] recently evaluated

16 pre-trained state-of-the-art detectors (VJ, Shapelet, HOG, and others) across six datasets

(i.e., Caltech, ETH, Caltech-JAPAN, TUD-Brussels, Daimler, and INRIA). They concluded

that a slower detector with multiple features plus motion (i.e., slower than one frame per sec-

ond) performed well and detectors with a gradient histogram worked better for wide ranges of

scales, while high occlusion levels made detection challenging. Angelova et al. [10] recently

proposed a deep neural network-based (DNN) algorithm for pedestrian detection, which com-

bines the ideas of a fast cascade and a deep network, and made C++/CUDA implementations

available via [11]. However, owing to the high computational intensity, the above solutions

cannot be integrated on off-the-shelf smartphones at present. Costea et al. [12] recently pro-

posed a fast pedestrian detection method for mobile devices. The detection scheme relies on

multi-resolution models applied over each half-octave, and employs multi-scale aggregation to

obtain classification features. They reported an average frame rate of approximately 20 frames

per second on mobile devices. However, this was limited to a rough contour resolution that

enveloped the pedestrian within a square area. Moreover, its implementation is still undergo-

ing improvements, and is not yet publicly available.

Obstacle detection constitutes a significant part in systems designed for pedestrian safety.

Popular sensors for range-based obstacle detection systems include ultrasonic sensors, laser

rangefinders, radar, stereo vision, optical flow, and depth from focus. However, none of these

sensors can be viably employed so far. For example, ultrasonic sensors are cheap, but suffer

from specular reflections and poor angular resolution. Laser rangefinders and radar provide

better resolutions, but are more complex and expensive. In Smombie Guardian, the goal is to

achieve pedestrian and obstacle detection on mobile devices (i.e., lightweight computation and

inertial sensors), and measure accurate contours of obstacles with high fidelity to detect varia-

tions in image sizes based on user displacement. Thus, we adopt the monocular color vision

approach recently proposed by Ulrich et al. [13]. This approach uses a single passive color

camera, performs in real time, and provides binary images of obstacles at high resolution. Our

implementation performed well in real time, provided high-resolution obstacle images, and

operated in a variety of environments. Furthermore, the algorithm is very easy to train.

User displacement tracking

To track user displacement, we can keep track of accelerometer readings. As a sub-task of dead

reckoning (dead reckoning is composed of two sub-tasks, namely computing the user’s

Smombie Guardian
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displacement from accelerometer readings and continuously tracking changes in directions

from compass and gyroscope readings), this is a well-studied area of indoor localization. Wang

et al. [6] reported that double-integrated accelerometer readings provide unacceptable results

for accurately obtaining a user’s displacement. They further suggested that a user’s physical

displacement can be more accurately computed by multiplying step counts by the user’s step

size, which is a function of the user’s weight and height. Noh et al. [14] further investigated

user step size profiling, and reported that step sizes are not closely correlated with a user’s

height and weight, but rather with their step speed. In another area, Cho et al. [15] proposed

AutoGait, which is a step size auto-calibration method on a mobile platform that trains a user’s

walking profile by effectively processing noisy GPS readings. Conveniently, Smombie Guard-

ian does not require diverse step size profiles according to step speed (i.e., frequency), as a user

exhibits a unique pattern when distracted by activities on a smartphone.

Smartphone-aided situational awareness: Effectiveness

Situational awareness comprises the perception and comprehension of one’s surroundings

and the use this information for action. Owing to the high accessibility of smartphones and

their ability to collect data from various sensors, a large body of research has introduced many

examples of the effectiveness of using smartphones to enhance situational awareness in various

contexts. For example, in the context of healthcare, smartphones have been used to provide sit-

uational feedback to stimulate self-management for people with diabetes [16], chronic and

widespread pain [17], and people in smoking cessation programs [18]. In emergency scenarios,

smartphones have been used to detect in-vehicle accidents through accelerometers, and to

notify authorities (e.g., emergency responders) in a given geographical location [19, 20]. In

line with these findings regarding the potential uses of smartphones to enhance situational

awareness, we aim to investigate how Smombie Guardian can help to enhance the situational

awareness of smartphone users and provide feedback as an alert.

Users and system alerts

The benefits of notification systems include the rapid availability of important information,

access to near-instantaneous communication, and a heightened awareness of the availability of

personal contacts [21]. However, the design of notifications should proceed carefully, as it can

undermine user experience. According to a survey by Appiterate, 68% of smartphone users

decided to delete apps because they found their notifications annoying (https://bit.ly/

2JiGWs0). Therefore, in the context of this study our goal was to provide users with situational

awareness to recognize obstacles and prevent potential collisions, while making this as unob-

trusive as possible.

Application design

Choosing alert mechanisms

Four types of alerts (e.g., border, pop-up, vibration, and sound) can easily be supported and

triggered by commercial smartphones. As part of our design process, before implementing the

app we conducted an online pre-design survey to examine the types of alert mechanisms that

smartphone users would prefer (i.e., the most effective and unobtrusive). Note that our inten-

tion in this design probe was not to present a novel user interface for the feedback mechanism

in Smombie Guardian. Rather, we intended to adopt the most preferable type of feedback in

order to focus on the feasibility our algorithm and understand the user experience for the idea

of Smombie Guardian.

Smombie Guardian
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The survey began with the following simple usage scenario:

Suppose that you are walking while reading an article on your smartphone. You focus too

much on the smartphone screen, and become unaware of a person (or an obstacle) in your

way. You may collide with the person (or the obstacle) if you keep walking and reading the

article on your smartphone screen.

Next, the survey asked whether respondents had been in such a situation, and introduced

the four alert types—a red-colored border (red border, interchangeably), a pop-up message,

vibration, and sound (Fig 1). It asked the respondents to rate each alert type when generated

by the smartphone based on three aspects (i.e., level of effectiveness, obtrusiveness, and

preference).

We recruited university students through class announcements and mailing lists in March

2017. The survey took five minutes to complete, and we received 105 responses. Here, 75.2%

of the respondents were in their 20s, and 24.8% were in their 30s. Because we ran the pre-sur-

vey at the university, 92.1% of the respondents were either undergraduate or graduate stu-

dents, and 67.1% of the respondents were female.

The survey results provided us with a number of insights and design guidelines. First, a

total of 67.3% respondents (50.0%—occasionally, 16.3%—sometimes, 1.0%—often) indicated

that they had encountered a similar situation to the one described in the above scenario. Sec-

ond, 32.7% of the respondents reported having experienced becoming unaware of their sur-

roundings and of colliding with an object or a person. Third, regarding the alert type

(summarized in Table 1), the pop-up method yielded the most beneficial result (4.13±0.98) in

Fig 1. Four types of alert mechanism. Based on the results of our user study, we chose the two most preferred features

(colored border and vibration) for the design of our app.

https://doi.org/10.1371/journal.pone.0197050.g001

Table 1. Summary of 105 responses (Mean and SD) for four types of alert mechanism with respect to effectiveness, obtrusiveness, and preference (1: Strongly dis-

agree; 5: Strongly agree).

Type Effectiveness Obtrusiveness Preference

Border 3.69 (1.08) 2.84 (1.12) 3.68 (1.12)

Pop-up 4.13 (0.98) 4.09 (0.92) 3.24 (1.25)

Vibration 3.00 (1.20) 2.30 (1.04) 3.16 (1.20)

Sound 2.75 (1.20) 2.77 (1.14) 2.22 (1.01)

https://doi.org/10.1371/journal.pone.0197050.t001
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terms of effectiveness, and the second best result (3.24±1.25) in terms of preference. However,

it also delivered the best result in terms of obtrusiveness (4.09±0.92), which makes it likely that

users could end up turning off the feature. The border method showed the second-best results

(3.69±1.08) in terms of effectiveness, poor results for obtrusiveness (2.84±1.12), and the best in

terms of preference (3.68±1.12). Thus, it appeared to be a useful feature overall.

As our design rationale involved providing alerts (using at least two methods) to users in an

effective and unobtrusive fashion, based on the survey results we decided to apply the border

and vibration alerts in our app.

Prototype design and implementation

Prototype design

Smombie Guardian is composed of two components. As shown in Fig 2(A), the first compo-

nent comprises step size calibration. For evaluation purposes, we instantly obtained the step

size of each user by counting the number of steps as a subject in our experiments walked along

a fixed trail (i.e., 30 meters in our study setting). Having obtained the number of steps, we eas-

ily obtained the average step size of each user by dividing the fixed trail length by his/her step

count. Fig 2(B) shows a screenshot of the initial user interface (UI), the second component of

Smombie Guardian. Users manually activate and deactivate Smombie Guardian by using two

toggle buttons (located at the bottom left of the screen). Note that we implemented Smombie

Guardian as a foreground app for the purpose of the experiment. It could easily be imple-

mented as a background service so that the user can freely use Smombie Guardian with other

smartphone apps while walking. Fig 2(C) shows a screenshot of the red border alert triggered

by Smombie Guardian when a user is about to collide with an obstacle.

Implementation

It is fairly challenging to measure the distance between a user and an obstacle with a single-

lens camera. To the best of our knowledge, no existing study has computed this distance with

an acceptable accuracy. Instead of relying on a vision-based approach, we resolve to use the

ratio of the user’s displacement to the variation in image size to accurately estimate the size of

an obstacle and the distance between it and the user. With this novel approach, we can com-

pute the sizes of and distances to obstacles with a considerably high precision (average error

with fixed displacement < 1%). Moreover, Smombie Guardian needs to notify the user of

impending collisions in a timely manner, without consuming too much battery power. The

following will explain the implementation details of our proposal to achieve these objectives.

Fig 2. Screenshots of the Smombie Guardian (SG) prototype. In (a), each user can calibrate SG by creating a step

size profile to improve the distance accuracy. When the user is about to collide with an obstacle, SG triggers a red

border and a vibration (from (b) to (c)). SG extracts the contour of the obstacle based on color in (d).

https://doi.org/10.1371/journal.pone.0197050.g002
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Obstacle size and distance estimation. Recognizing the depth (or distance) of an object

from a monocular image is a non-trivial and error-prone task [22]. A large body of research

has been carried out in this area, but the only applicable approaches to smartphones are mon-

ocular cues and motion parallax [23]. The former uses cues of how humans recognize dis-

tances from monocular images (e.g., known object sizes, defocusing, and texture gradients)

[24]. However, this approach requires machine learning techniques to process additional

information in order to better estimate distances of target objects (i.e., deep convolutional neu-

ral fields [25], reinforcement learning [26], etc.), which are computationally challenging, and

not applicable to off-the-shelf smartphones. On the other hand, the latter relies on optical flow

(i.e., image velocity), and is widely employed as an approximation method for the motion

fields in images. To infer the distance, differential techniques are employed, such as regional-

based, energy-based, and phase-based schemes [27]. However, these cannot measure station-

ary obstacles, and require each pixel displacement (with a dense series of images) to be calcu-

lated (which is computationally intensive). Instead, our novel scheme accurately computes the

distances to and sizes of both stationary and non-stationary objects with the help of the user’s

displacement.

To obtain size of an obstacle and the distance between it and the user, we can use the trian-

gle similarity of a single-lens reflex camera (Fig 3). For example, consider an object of

unknown width W (or area in our implementation). We place it at some distance D from our

camera. When we photograph the object using the single-lens camera, we can obtain the

apparent width in pixels, P. As the focal length F of our camera is fixed (i.e., known), we have

the equation F/P = D/W, which is used to calculate the distance between the camera and an

object in an image. However, in this example there are two unknowns, namely D and W. As

shown in Fig 4, to solve the unknowns in the equation we need at least two equations at differ-

ent locations, namely D at time t1 and D+ΔD (user’s displacement) at time t2, as the pixels P on

the smartphone screen will be altered from P to P+ΔP. As we now have two equations for the

Fig 3. Triangle similarity of the single-lens reflex camera at t1 and t2.

https://doi.org/10.1371/journal.pone.0197050.g003
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two unknown variables, we can solve them with ease. Furthermore, to accurately compute the

user’s displacement (i.e., step size) and the variation in the image size on the screen (pixel vari-

ation before and after the step), two aspects must be considered.

First, we note that each user typically has a unique gait pattern (i.e., step size) as they walk

while occupied by activities on a smartphone (e.g., texting, reading an article, or playing a

smartphone game) [28]. Step profiling [14], which a GPS-based learning approach, requires a

long training time to obtain an acceptable user step size. The Smombie Guardian can learn the

user step size by tracking the outdoor displacement (only when the smartphone screen is on)

through GPS with the help of a pedometer. Second, continuously tracking an object (i.e., con-

touring) and computing its area in a series of images (e.g., 15 frames per second) are both well-

studied research problems [9, 12, 29]. However, carrying out these tasks on an off-the-shelf

smartphone is challenging. To prove the concept of our design, we instead used a distinct

color (as shown in Fig 2(D), with a red color in our field study) to obtain the contour and its

area on a commercial smartphone screen, at a rate of least 10 frames per second. We imple-

mented a prototype of Smombie Guardian on the Nexus 5X (released October 2015, where the

app can be installed on phones with Android version 5.0 and above), and confirmed that we

could obtain the contours of obstacles at 15 frames per second, which was sufficiently high to

track variations in the contour sizes of obstacles in real time. It is also important to know the

distance that can be covered by a rear-facing single-lens camera. As shown in Fig 4, when a

user holds a smartphone (Nexus 5X in our setting) at a height of 1.3 meters, the distances cov-

ered by it are depicted according to the angle of the smartphone. Considering that the Nexus

5X is equipped with a 26.6-millimeter lens, its field of view is 69.4 degrees (i.e., θ in Fig 4).

Thus, a smartphone angle of 44 degrees from the horizon is adequate to capture a 70-centime-

ter obstacle located at a distance of three meters from the camera.

Timely alert. In a study on drivers’ reaction times, Johansson et al. [30] found that the

corrected median of the resulting distribution was 0.9 seconds, and 25% of the considered

group were estimated to have brake reaction times of over 1.2 seconds. Taoka [31] reviewed

four studies concerning drivers’ reaction times, and found that the median value ranged from

1.07 to 1.14 seconds, whereas the mean was between 1.14 and 1.30 seconds. Based on these

results, we used the worst (or longest) time taken to generate alerts as a user approaches an

Fig 4. An obstacle that can be captured at each step (t1 and t2). The field of view (θ) was 69.4 degrees for the Nexus

5X (focal length of 26.6 millimeters) smartphone.

https://doi.org/10.1371/journal.pone.0197050.g004
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obstacle (or vice versa), which was approximately 2 seconds. Considering that each step took

0.5 ~ 0.6 seconds as a user walks and the step size was between 0.6 ~ 0.8 meters, we set the

default setting to 3 meters (approximately four steps). However, we also provide a knob for

users to freely vary this distance based on their preferences.

Necessity-based activation. To minimize the smartphone’s resource utilization and maxi-

mize the usefulness of Smombie Guardian, it can be easily implemented as a background ser-

vice. In the background, Smombie Guardian is activated when a user is using their

smartphone while walking. To be activated at the correct time, Smombie Guardian monitors

the user’s displacement via inertial sensors (i.e., accelerometers) and foreground apps that may

require the user to attend to their screen. Smombie Guardian suspends its service if both con-

ditions are not met. Through this conservative design, Smombie Guardian can save system

resources (such as computation and battery power).

User study design

The following research question has guided the design of our user study:

• How effectively does our app provide alerts to users to avoid potential collisions while using

a smartphone and walking?

Our studies (both the prototype design and the main user study) were reviewed and

approved by the Institutional Bioethics Committees of the Internal Institutional Review Board

(IRB) at the Inha University.

Design considerations

Content displayed on the phone. A study on the impacts of talking, texting, and listening

to music on a phone [32] indicated that texting, which involves communication interchange as

well as reading and typing, is more cognitively distracting and demanding than talking, and

poses a higher risk of injury. Similarly, Lamberg and Muratori [33] studied changes in the gait

velocity and trajectory of walkers when they interacted with a mobile device. The result

showed that participants who texted while walking moved 33% slower and deviated from their

intended course 61% more often than those who did not. Under the same circumstance, we

asked all participants in our experiment to read the same news article. As with texting, we

believe that reading a news article will make users sufficiently distracted to not focus on their

surroundings.

Pre-test. Walking patterns and speed tend to vary from person to person. Because it

would be challenging to consider different walking patterns and speeds in designing our app,

we ran a small study to measure a common range for these parameters before conducting the

main user study. We placed five obstacles along the same path that we used for the main study.

We invited seven participants (three undergraduate and four graduate students, average age

28.1, two females and five males). Following the demo and pre-test, the participants mentioned

that the app had functioned correctly, generating alerts when they had felt obstacles close to

them. On the whole, the design choices of Smombie Guardian and the pre-test results allowed

us to focus on studying the user experience and perception of the app, as well as suggestions

and implications for the design of an alert-based mobile system.

Study procedure. The main study was conducted in May 2017. Before conducting the

experiment, participants were first asked to read the informed consent document, which

explains the goal and procedure of our survey study. Only the participants who read and

agreed with our study procedures and requirements and provided written consent for the user

study and publication could begin answering the survey.

Smombie Guardian
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We designed a within-subject study, in which every participant first walked to the five

obstacles sequentially without turning on Smombie Guardian, and then walked to the same

five obstacles with Smombie Guardian turned on. As shown in Fig 5, the study consisted of

five steps.

First, to improve step count and distance accuracy for each participant, we calibrated

Smombie Guardian by asking each participant to walk 30 meters (normally generating 35 ~ 45

steps). Second, we asked the participants to complete the pre-survey, containing questions

concerning their demographics, the duration and frequency of their smartphone usage, and

their experiences of colliding with objects or people while preoccupied with their smartphones.

Third, we asked the participants to read a news article on their smartphones while walking

along a path, and dodge obstacles when they noticed them. Smombie Guardian was turned off

during this step. Fourth, we asked the participants to turn on Smombie Guardian and repeat

the above step. Before beginning the walk with Smombie Guardian, we asked the participants

to take 10-minute break in order to minimize the learning effect. Once they had completed

this, we asked them to summarize the contents of the article that they had read, to ensure that

they had focused on reading it while walking. Finally, we asked the participants to answer the

post-survey, containing questions about their experiences (e.g., effectiveness, usefulness, and

obtrusiveness), and soliciting feedback concerning the design of Smombie Guardian (and

more broadly alert systems for smombies). We validated the questionnaire in the survey prior

to testing it on the participants. The study lasted for approximately 15 minutes, and we offered

a small compensation (a $5 gift card) to the participants for their time.

Results

Participants

We completed the user study, which involved 74 participants, over 10 days. Once the partici-

pants had finished walking along the 30-meter track, we asked them to describe the content

they had read on their smartphone screens. All participants correctly answered and summa-

rized the article, which showed that they had focused on reading it while walking along the

path. Most participants in the study were in their 20s (71; 97.3%), and three participants were

in their 30s.

Forty-nine participants (67.1%) were male. As expected, all were familiar with the use of

smartphones. Over 85% (63 participants) had been frequently using them for over four years

(constant use for 31 participants, frequent use for 32 participants). Regarding the frequency of

smartphone use while walking, eight participants (11.0%) mentioned that they normally did

this, 32 (43.8%) participants said that they had often done so, and 24 (32.9%) claimed that they

had sometimes used their smartphones while walking. This implies that many of the partici-

pants may act like smombies in many situations. Regarding their experiences of collisions, 30

participants (40.5%) said that they had previously come very close to colliding with a person or

object because they had been preoccupied with their phone.

Collision analysis

All participants. To assess the usefulness of Smombie Guardian, we conducted a large-

scale field test (involving 74 participants) on our campus. Fig 6(A) shows the field test settings.

We placed five obstacles (four fixed and one moving toward the participants) on the track. Fig

6(B) shows a participant confronting an obstacle moving toward them.

Fig 7 shows the measured distances at which the participants reacted to the five obstacles.

The two conditions of having Smombie Guardian on or off are plotted with a 5% confidence

interval. As shown in the Fig 7, users with Smombie Guardian acted to avoid obstacles
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approximately one meter earlier than those not using Smombie Guardian. Statistically, the dis-

tance without Smombie Guardian is significantly different from that with Smombie Guardian

for all obstacle numbers at p< 0.001 from the ANOVA analysis (F(1,124) = 12.41). According

to studies on drivers’ reaction times [30, 31], drivers may require reactions times ranging from

1.14 to 1.30 seconds to safely avoid possible collisions. Considering that each step takes

between 0.5 and 0.6 seconds and their sizes range from 0.6 to 0.8 meters, users may be required

to become aware of obstacles at a distance of 1 to 1.6 meters. This shows the usefulness and

effectiveness of Smombie Guardian with respect to helping the participants take actions in

advance. It was also interesting that each error bar for Smombie Guardian was wider than the

corresponding one without Smombie Guardian. That is, without Smombie Guardian reaction

distances were convergent, whereas with Smombie Guardian these distances varied by

Fig 5. Procedure of the main user study. We designed a within-subject user study. We first (1) calibrated Smombie

Guardian to improve the step count and distance accuracy for each participant. After (2) completing the pre-survey,

the participants were asked to read a news article on a smartphone screen and walk along a path (3) without the

proposed app turned on. Then, they were asked to walk the same path (4) with it turned on. Five obstacles were placed

along the path. Obstacle #3 was moving toward the participants. Finally, the participants (5) completed the post-

survey.

https://doi.org/10.1371/journal.pone.0197050.g005

Fig 6. Snapshots of the Smombie Guardian field test: (Left) Overall view of the 30-meter track and the locations of

obstacles. (Right) A participant using the Smombie Guardian encounters a moving obstacle approaching (Note that

the individual in this manuscript has given written informed consent (as outlined in PLOS consent form) to publish

these case details).

https://doi.org/10.1371/journal.pone.0197050.g006

Smombie Guardian

PLOS ONE | https://doi.org/10.1371/journal.pone.0197050 June 26, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0197050.g005
https://doi.org/10.1371/journal.pone.0197050.g006
https://doi.org/10.1371/journal.pone.0197050


participant. However, the overall distance when using Smombie Guardian was always longer

(106.22 cm on average) than that without it.

It is worth noting that the participants both with and without Smombie Guardian exhibited

similar behaviors in response to obstacles. It appears that participants avoided the first obstacle

both with and without alerts. Then, the participants unconsciously anticipated the second

Fig 7. Collision avoidance distance: With and without Smombie Guardian, as a function of the obstacle.

https://doi.org/10.1371/journal.pone.0197050.g007

Fig 8. Users’ reaction delays as a function of the obstacle.

https://doi.org/10.1371/journal.pone.0197050.g008
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obstacle earlier, as they saw it while avoiding the first one. Regarding the third moving obsta-

cle, the participants appeared to be more cautious, and hence avoided it sooner than the other

obstacles. For the fourth, it appeared that they were still influenced by this caution. However,

they avoided the last obstacle later than the previous one (#4). They may be because they felt

safer after having repeatedly avoided prior fixed obstacles.

As shown in Fig 8, we further analyzed the wider error bars with the use of Smombie

Guardian in Fig 7, and found that participants had different reaction time gaps (ranging from

0.31 seconds to 0.58 seconds for the moving obstacle #3), where time ticks were measured

between timestamps of warning notifications issued and actions performed (i.e., distinct accel-

erometer changes along the x-, y-, and z-axes at the same time). In Fig 7, the granularity of the

time unit was 1 millisecond. Hence, we obtained a microscopic view for each obstacle. It is

worth noting that the maximum of 0.58 seconds might not be the sole cause of the error bar of

approximately 1 meter in Fig 7, considering that participants step sizes were between 0.6 and

0.8 meters. One reason for this was the granularity of alerts. Smombie Guardian checked alert-

triggering conditions whether or not a participant entered the threshold distance (3 meters in

our default setting) relative to an obstacle. Thus, one participant could trigger the condition

very close to the threshold while another would trigger it far from this. We also noticed that

some participants ignored the notifications, as they may have believed that they had occurred

earlier than necessary to avoid the obstacles. This might have contributed to the wider error

bar with Smombie Guardian than without it in Fig 7.

User groups (collision experience). We further analyzed the differences in collision dis-

tance by user group. In the pre-survey, we asked the participants whether they had experienced

(or almost been involved in) collisions while preoccupied by their smartphones. Based on their

answers, we clustered them into two groups (40.5% were in the collision group). We then cal-

culated the distances between each obstacle and participant when they reacted. Fig 9 shows the

ratio of the distance when the app was turned on compared to that when it was turned off. A

higher positive ratio implies a greater reduction in the distance when the app was turned on.

In Fig 7, it is shown that the participants tended to react more quickly when the app was

turned on. When we considered this with respect to group differences, the group with prior

experience of collisions recorded a higher ratio. This indicates that while Smombie Guardian

significantly increased the distance at which a reaction occurred in general, it exhibited a

greater influence on such changes in reaction times for the group with collision experience. In

other words, Smombie Guardian helped participants who had prior collision experience to

react to obstacles both earlier and more quickly (because the ratio of the distance with the app

turned on to that without the app was greater for the collision group than for the non-collision

group), which could potentially prevent them from experiencing a collision. In other words,

Smombie Guardian appeared to work more effectively for people who had previous collision

experience. For the inferential statistics, we observed a marginally significant difference at

obstacles #1 and #5 (F(1,124) = 1.75, p< 0.10). However, when we compared the difference

between the two groups without considering the obstacle numbers, we observed a significant

difference (F(1,124) = 4.12, p< 0.02).

Fig 10 shows the ratio of the distance for the participants who had not experienced prior

collisions (namely non-the collision group) to that of the participants who had (the collision

group). Because the y-axis represents the distance ratio, a value closer to 1.0 indicates that the

distance between the two groups is smaller. Therefore, the difference in the distances between

the two groups was smaller when Smombie Guardian was used than when it was not used.

This further indicates that Smombie Guardian could be effective for people who have previous

collision experience (or people who may be less aware of their surroundings when using their

smartphone or focus too much on their smartphone while walking). Because the final results
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of Fig 10 were based on the average ratio between the collision and non-collision groups, there

were no inferential statistics.

Overall, both Figs 9 and 10 demonstrate the results for the two user groups regarding the

use of Smombie Guardian, as well as the effectiveness of the app on the participants with prior

collision experience.

Fig 9. Ratio of the distance when the app was turned on compared to that when it was turned off.

https://doi.org/10.1371/journal.pone.0197050.g009

Fig 10. Ratio of the distance from the participants who did not experience collision (no exp group) to the distance

from the participants who did (yes exp group).

https://doi.org/10.1371/journal.pone.0197050.g010

Smombie Guardian

PLOS ONE | https://doi.org/10.1371/journal.pone.0197050 June 26, 2018 14 / 21

https://doi.org/10.1371/journal.pone.0197050.g009
https://doi.org/10.1371/journal.pone.0197050.g010
https://doi.org/10.1371/journal.pone.0197050


In addition, note that we can observe considerable corrections in both Figs 9 and 10 in

cases involving fixed obstacles, #1, #2, #4, and #5, but this is not the case for the moving obsta-

cle #3. We again recruited participants from both groups to understand the differences, and

found that they easily noticed the moving obstacle beforehand, as it had been approaching

with a recognizable sound (the sound of a cart being drawn). This led to identical obstacle

avoidance behavior in both groups.

User experience

We measured the efficiency, usefulness, and obtrusiveness of the app in order to understand

the user experience. The following questions were used to understand each case.

• Efficiency: To what extent do you find the alert efficient (1: Not efficient at all, 5: Very

efficient)?

• Usefulness: To what extent do you find the alert useful (1: Not useful at all, 5: Very useful)?

• Border: I found the border notification obtrusive while using the app (1: Strongly disagree, 5:

Strongly agree).

• Vibration: I found the vibration notification obtrusive while using the app (1: Strongly dis-

agree, 5: Strongly agree).

As shown in Fig 11 (second left), the participants’ evaluations of the efficiency and useful-

ness of the app were high, with 37% rating it at 5 (very efficient) on efficiency and 36% at 5

(very useful) on usefulness. The average efficiency and usefulness values were 4.35 and 4.27,

respectively. There were two types of obtrusiveness, namely the border and vibration alerts. As

shown in Fig 11 (second right), for the border 74% of the participants thought this was unob-

trusive (the sum of strongly disagreeing and disagreeing responses), and 67% thought that the

vibrations were unobtrusive. While it appears that two-thirds of the participants did not find

the alert feedback to be obtrusive, some had had the opposite experience (9% for the border

and 7% for the vibration). Overall, the participants’ ratings regarding the effectiveness and use-

fulness of Smombie Guardian were high, and they were low concerning its obtrusiveness. We

received many positive responses. Most participants opined that smartphones should provide

systematic support of the kind offered by Smombie Guardian, as they encountered many

smombies in everyday life, and sometimes had unintentionally tended to act in a similar

manner.

Experience and design feedback

In the post-survey, we asked two open-ended questions. The first asked about the participants’

general experiences of the proposed app, and for their feedback relating to it. In line with the

high ratings regarding the efficiency and usefulness of Smombie Guardian, almost half of the

participants (38) opined that the app provides a useful feature for smartphone users. Of these,

11 mentioned that they liked the app because it generated alert messages early enough for

them to act. I was able to easily notice obstacles, as I received the messages two-three steps ahead
compared to the case where I had not used the app (P27). I was impressed that the app captured
objects far from me and generated alarms (P34). Four participants said that they had been in

similar situations, and found the app to be very useful. I use my smartphone while walking, and
it seems useful to avoid obstacles (P15). I have been seeing a growing number of people, including
myself, preoccupied with their smartphones while walking; in this sense, the app seems useful.
(P43).
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At the same time, 13 participants shared some problems they had encountered while using

the app. Eight felt that the app provided alerts much earlier than they had expected. This relates

to a design implication: the app should allow users to customize the type and frequency of

alerts. Two participants mentioned that having only one notification type (either border or

vibration but not both) would suffice.

Regarding the design feedback for the app, Table 2 summarizes the five main categories

(including others) of user responses. First, a total of 18 participants expressed a desire to be

able to customize the alert features. For example, choosing an alert type (either border or

vibration); setting the color, brightness, or duration of the border alert; and setting the strength

Fig 11. Efficiency (top-left) and usefulness (top-right) of the app; obtrusiveness of the app (bottom-left: border;

bottom-right: vibration). Note that for obtrusiveness, a greater disagreement implies less obtrusiveness.

https://doi.org/10.1371/journal.pone.0197050.g011
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of the vibration. One participant who seemed to prefer vibrations wanted the strength of the

vibration to vary automatically depending on the distance between the user and an obstacle. It
might be useful to have a stronger vibration for incoming objects (P53). Second, 13 participants

mentioned a desire for the system to be able to identify more objects, so that it might reflect

more realistic scenarios. The current version of Smombie Guardian can capture multiple

objects, but when generating alerts the location of an object should be aligned with the direc-

tion in which the user is walking. As one participant said, I am a bit worried about receiving so
many alarms if I use this feature while I am in a busy, crowded area (P46). Multiple design con-

siderations are involved in handling multiple objects to generate alerts, and we discuss these

below. Third, related to the second category, four participants mentioned that they found our

study environment to be simple. They wanted the app to be tested in more complex (more

realistic) environments, with more people standing, walking in the same direction, and passing

by. I wonder how the app would work if it captures multiple objects or people at the same time.

Will it constantly generate alarms? (P45). Fourth, two participants mentioned user interface-

related aspects of the app. For example, one participant wanted to see the distance between the

object and the user, and another participant provided a general comment on the interface ask-

ing for the option to change the width of the border.

Discussion

In this paper, we proposed the design of Smombie Guardian, which leverages a user’s walking

pattern and computer vision technology (allowing us to run the app directly on commercial

smartphones without adding extra hardware). We described how it helps smombies immersed

in smartphone-related activities (e.g., texting, web browsing, watching videos, and gaming) to

safely avoid impending collisions with other pedestrians or obstacles (e.g., lamp posts, benches,

and signboards), by notifying them using timely and unobtrusive alerts. In the user field study,

we received highly positive feedback from the participants, many of who want the app to be

embedded on off-the-shelf smartphones in the near future.

Study implications

The following are the insights gained from our experience of developing Smombie Guardian

and the user field study.

Effectiveness versus obtrusiveness. To inform users of impending danger, we used four

types of alerts (border, pop-up, vibration, and sound) that can be easily supported and trig-

gered by commercial smartphones. Through our pre-design survey, we determined the effec-

tiveness and obstructiveness of each alert type. We also noticed that higher obtrusiveness

increases user irritation, and can lead to users disabling the app. We found that people gener-

ally felt that the border and vibration alert types were effective and unobtrusive. However,

users’ preferences for receiving alerts appeared to be quite diverse in terms of the color and

size of the border, and the strength and duration of the vibration. Some users may prefer more

Table 2. Summary of design feedback.

Category Count

Customization 19

Camera angle 13

Various environments 4

User interface 2

Others 2

https://doi.org/10.1371/journal.pone.0197050.t002
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obtrusive alerts (e.g., pop-up messages), because these can be more effective for interruption.

Thus, offering user customization of alert types and the details of each alert type would be nec-

essary for the success and long-term adoption of this service.

Technological capabilities versus user expectations. Accuracy is the most crucial factor

affecting the success of the system. In the context of our work here, accurately estimating

obstacle sizes and distances from the user are important system performance parameters,

because the misdetection of obstacle sizes and distances leads to false positives (i.e., false alerts

and early alerts) or false negatives (i.e., warning failures). To this end, we continue tracking the

ratio of the user’s displacement compared to the image size variation in order to accurately

estimate obstacle sizes and distances from the user. This allows us to accurately and swiftly

compute obstacle sizes and distances in real time.

An early alert may give the user an impression of a false-positive warning, while a later alert

might not be very helpful. However, according to the results of the study, this also varies by

person. Some users may want to receive alerts early, while others may want to receive them

when the object is detected in the critical zone. To satisfy these varied demands, systems can

be designed to allow users to choose the preferred distance to objects at which alarms are trig-

gered, users’ walking patterns (e.g., step size and distance), times, geo-locations (e.g., obtaining

a level of crowdedness), or demographics (e.g., gender and age) can be collected and stored in

a central server (i.e., cloud). While these types of data are continuously collected and stored,

we can use state-of-the-art machine learning and deep learning techniques to train the col-

lected data, build robust models, and generate the preferred settings (e.g., distance, alert fre-

quency, and strength) for each smartphone user and improve the models as more data are

collected.

Another important consideration, which was also expressed by many participants, is the

app’s ability to capture multiple objects of different sizes, approaching from multiple direc-

tions, and notify users accordingly. The current version of Smombie Guardian can capture

multiple objects, but they must be within the field-of-view of a single-lens camera, which

determines the perspective and the area covered by the lens. As smartphone technology is

evolving over time, its ability to capture objects at a wider angle will become possible. As an

example, recent smartphones (e.g., Apple iPhone 7 Plus, LG G9, and Huawei P9) are equipped

with dual rear-facing cameras: one with a telephoto lens and the other with a wide-angle lens.

Using both lenses, smartphones can capture more content in a single photo. With improved

technological capabilities, it is important to set criteria (thresholds) to determine whether

objects approaching from different directions (i.e., from the left or right) are likely to collide

with users, as well as when alerts should be triggered.

System resource management. While policing user safety, continuous image processing

at 15 to 20 frames per second expends a considerable amount of energy of a smartphone,

which is problematic (and could lead to the user turning off the service). To this end, the app

needs to be able to carefully consider a user’s situation and be activated as needed. In the case

of Smombie Guardian, users can turn it on or off. However, system-level automated manage-

ment would also be desirable. Depending on the time and location of smartphone use and the

user’s walking pattern, the system could be designed to automatically switch on and off.

Limitations and future work

Although our study provided a number of important insights, it has a few limitations that will

be addressed in our future work.

First, the study conditions were fairly simple, as the sizes and shapes of the obstacles were

constant, and only five obstacles, placed in a row, were considered. This may not reflect more
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complex scenarios, where many people are using their smartphones at busy locations, such as

downtown and subway stations. Our next step will be to improve Smombie Guardian to more

accurately and reliably recognize multiple objects of different sizes and shapes, and determine

whether objects are approaching a user’s critical zone. We plan to further study the efficiency

of Smombie Guardian in a more complex environment, by considering a mix of multiple static

and moving objects of various sizes and shapes. Once we are satisfied with the performance of

the app, we will ask users to use it in a real environment.

Second, while we believe that humans and obstacles are important objects that should be

detected by Smombie Guardian, perhaps more critical are bikes and automobiles, which can

more likely lead to serious or fatal accidents. As these objects move considerably more quickly

than humans, Smombie Guardian should be designed to quickly recognize these and warn

smartphone users to avoid collisions. Adib et al. proposed WiTrack [34], which leverages a

technique called frequency modulated carrier wave (FMCW). This technique maps differences

in time to shifts in the carrier frequency (i.e., frequency sweeping), because such frequency

shifts are easy to measure in radio systems by looking at the spectrum of the received signal. It

has been reported that this technique can localize the center of a human body within a median

of 10 to 13 cm in the x and y dimensions and 21 cm in the z dimension. Smombie Guardian

could adopt this technique to localize approaching objects in all directions. However, this pres-

ents three challenges: 1) accurate and fast signal processing of the received radio wave in the

smartphone kernel; 2) a limited spectrum of the WiFi chipset on a smartphone compared to

the USRP frontend; and 3) the user’s mobility/displacement cancellation. These challenges will

be addressed in our future work. In addition, the alert mechanism used in our user study may

not be generalized. As we mentioned previously, allowing users to select the best alert type for

them would be more desirable.

Third, Google Project Tango, released in 2016, can compute an object’s size and the dis-

tance from an obstacle. However, this technology requires both depth- and motion-tracking

sensors, which are not commonly available in most commodity smartphones (they are only

available in the Phab 2 Pro and ZenFone AR to date). Owing to these pricey hardware require-

ments, the project recently shut down in March 2018 [35]. That project or later technology

would promise a better performance than Smombie Guardian. This remains a consideration

for our future work.

Finally, although we gave the participants a short 10-minute break after the first round of

the study (walking along the path with Smombie Guardian turned off), our within-subjects

study design might produce biased results, because the participants could have become famil-

iar with the obstacles. Randomizing the order of the obstacles for each round would be more

ideal. We will consider this for our future user studies.

Conclusions

In this study, in order to remedy the lack of situational awareness in smartphone users as they

walk outdoors, we introduced a smartphone app called Smombie Guardian, designed to redi-

rect users’ attention to their surroundings to prevent collisions. The results of our field test

study involving 74 human subjects demonstrated the feasibility of the app with respect to its

effectiveness, usefulness, and unobtrusiveness. We envision that such an alerting service will

be embedded in smartphones as a native feature in the near future, and that the guidelines of

our study will offer insights for such alert services.
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