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Abstract

Avian embryos are among the most convenient and the primary representatives for the

study of classical embryology. It is well-known that the hatching time of duck embryos is

approximately one week longer than that of chicken embryos. However, the key features

associated with the slower embryonic development in ducks have not been adequately

described. This study aimed to characterize the pattern and the speed of early embryogene-

sis in Brown Tsaiya Ducks (BTD) compared with those in Taiwan Country Chicken (TCC) by

using growth parameters including embryonic crown-tail length (ECTL), primitive streak for-

mation, somitogenesis, and other development-related parameters, during the first 72 h of

incubation. Three hundred and sixty eggs from BTD and TCC, respectively, were incubated

at 37.2˚C, and were then dissected hourly to evaluate their developmental stages. We found

that morphological changes of TCC embryos shared a major similarity with that of the Ham-

burger and Hamilton staging system during early chick embryogenesis. The initial primitive

streak in TCC emerged between 6 and 7 h post-incubation, but its emergence was delayed

until 10 to 13 h post-incubation in BTD. Similarly, the limb primordia (wing and limb buds)

were observed at 51 h post-incubation in TCC embryos compared to 64 h post-incubation in

BTD embryos. The allantois first appeared around 65 to 68 h in TCC embryos, but it was not

observed in BTD embryos. At the 72 h post-incubation, 40 somites were clearly formed in

TCC embryos while only 32 somites in BTD embryos. Overall, the BTD embryos developed

approximately 16 h slower than the chicken embryo during the first 72 h of development. To

our best knowledge, this is the first study to describe two distinct developmental time

courses between TCC and BTD, which would facilitate future embryogenesis-related stud-

ies of the two important avian species in Taiwan.
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Introduction

Advantages of using avian embryos for the study of embryology lie in its ease of availability,

manipulation and observation, as well as the relatively low cost of the eggs. It has been popular

to use avian eggs for the study of embryogenesis including organogenesis and morphogenesis,

and hence the developmental stages are established in several avian species, such as chickens

[1], quails [2], emus [3] and geese [4]. Although these species share some major features of

early embryogenesis, they certainly possess species-specific characteristics of embryonic stages

during the course of development. Hamburger and Hamilton [1] have described a series of

characterized embryonic stages in chicken, in which a clearly defined 46-stage series is estab-

lished. Ainsworth et al. [2] also described a whole set of definitive developmental stages in Jap-

anese quail embryos, in which little differences can be tell from chicken embryogenesis during

the early development. In contrast, Nagai et al. [3] have reported that emu embryos require

approximately a 2- to 3-time longer incubation to reach the equivalent stages of chicken

embryos.

It is generally accepted that differences in developmental time course, such as hatching

time, hatched size and chick maturity among avian species are attributed to various genetics

and/or environmental factors during development [5, 6]. Recently, studies on early embryonic

stages have been reported in the Pekin duck [7–10] and mallard [11], but the precise timeline

and the stages of embryonic development relative to chicken embryos have not been clearly

described. Although duck embryos are known to take longer incubation time to reach their

full-term development than do chicken embryos [12], the detailed embryonic features have

not been characterized side-by-side. To advance our understanding in avian embryogenesis,

therefore, it is necessary to closely examine and determine the precise timing of the develop-

mental events between the two species.

In the present study, we aimed to characterize and standardize the pattern of early embryo-

genesis in the Brown Tsaiya Duck (BTD) in comparison with that of the Taiwan Country

Chicken (TCC) and the HH staging system by using several representative growth parameters,

such as primitive streak formation, notochord development, embryonic crown-tail length

(ECTL), somite numbers, and other development-associated phenomena during the first 72 h

of development.

Materials and methods

Eggs used and conditions of incubation

A total of 720 fertilized eggs were used in this study, in which 360 eggs were collected from

BTDs and another 360 eggs were from TCCs (NCHU B line match × NCHU S line). To accu-

mulate enough number of fertilized eggs, all these eggs were collected and stored at 15 to 18˚C

(with 65% relative humidity) less than 3 days before use, based on the recommended storage

condition by previous studies [13–16]. During this short period of storage, these eggs ceased

embryonic development. To start development, adequate numbers of eggs were transferred

from storage condition to an incubator set at 37.2˚C. The whole study was carried out in strict

accordance with the guideline recommended and approved by the Institutional Animal Care

and Use Committee (IACUC) of the National Chung Hsing University (Permit number: 100–

02).

Preparation of embryos

The blastoderm of incubated embryos was isolated according to the method described by

Chapman et al. [17]. Briefly, the eggshell was opened to separate the yolk from the albumen.
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The thick albumen covering the embryo was removed using a piece of folded filter paper. A fil-

ter paper ring with an inner diameter of one cm and an outer diameter of three cm was placed

onto the yolk to set the embryo at the center hole of the filter paper, and to absorb liquid from

the surface of the yolk. The perivitelline layer was then cut along the perimeter of the outer

edge of the filter paper. The filter paper with the embryo was then carefully pulled off by a pair

of forceps, and transferred to a petri dish containing saline to separate the germ layer from the

yolk. All yolk remnants were gently washed off with saline, and the attached embryos with fil-

ter paper were finally placed on a glass slide for assessing embryonic stages under a trinocular

stereomicroscope (SMZ-2T, Nikon, Japan).

To observe the emergence of somites, embryos were stained with a minimal amount of

0.5% neutral red (Sigma-Aldrich, USA; N-4638) in Hank’s balanced salt solution (HBSS) to

facilitate subsequent visualization.

Staging and sampling of embryos

The age of embryos was defined chronologically from the onset of incubation up to the end

point of observation. Due to the first 72 h of embryogenesis being a critical stage to observe

early embryo differentiation in avian species, in the present study, embryos were first analyzed

or staged hourly up to 72 h post-incubation within 1 h after removing from the incubator.

Three fertilized eggs of each species, i.e., TCC and BTD, were used for the assessment on each

time point during the first 24 h of incubation. For the determination of somite numbers and

other embryonic traits, six fertilized eggs were used for each time point after the 24 h of incu-

bation due to the increased growth rate and variations. For embryonic development, the Ham-

burger and Hamilton (HH) staging system was used as a parallel comparison with BTD and

TCC embryos.

Embryo stages were defined and distinguished based on the emergence of embryonic struc-

tures including headfold, neural fold, primary optic vesicles, paired heart primordia, the ner-

vous system (three primary brains and five neuromeres), the limb primordia (wing and leg

buds) and the allantois.

Measurement of growth parameters

Various growth parameters including the primitive streak, the notochord, numbers of somites,

and the ECTL were recorded hourly during the first 72 h of development. The ECTL was mea-

sured from top of the crown to the tail-bud along the dorsal midline of the embryo. The length

of primitive streak was measured from the sickle-shaped region at the interface between the

area opaca and area pellucida; such structure can extend to the posterior midline region of the

embryo. The length of the notochord was measured from the anterior of Hensen’s node to the

prosencephalon. The numbers of somite pairs located in the middle of embryonic axis were

counted hourly during the entire period of incubation.

The whole mount embryos were photographed using an eyepiece C-mount camera (5 MP

linux, Tucsen, China) attached to a trinocular stereomicroscope (SMZ-2T, Nikon, Japan) and

processed by the software package Tsview 7 (Bioimager, Canada). Micrographs of embryos

were prepared and repositioned with enhanced lighting by using a graphic editing program

(Adobe Photoshop, USA).

Statistical analyses

Comparisons of growth parameters between TCC and BTD embryos were made by using anal-

ysis of variance with ANOVA procedure of SAS Enterprise Guide Software V. 9.4 (SAS Insti-

tute, Cary, NC, USA). Least square means were compared by using Tukey’s test. Orthogonal
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polynomial contrast (linear and quadratic) was used to detect the hourly effect of incubation

on variables by t-test with IBM SPSS Statistics V. 20 software for windows (SPSS Inc., Chi-

cago). A probability level of P< 0.05 was considered as statistically significant.

Results

Gross parameters of BTDs and TCCs at the 72 h post-incubation

In general, the average size of the BTD eggs was proportionally larger than that of the TCC

eggs. The average weights of BTD and TCC eggs used in this study were 66.1 ± 4.2 g and

52.9 ± 3.8 g, respectively. The fertilization rates at 72 h of incubation were 90.3% in TCCs and

85.7% in BTDs, with 2% abnormal embryos in TCC embryos and 0.67% in BTD embryos. The

average hatching days of BTD and TCC embryos were 28 and 21 days, respectively, post-

incubation.

Embryonic features related to gastrulation of BTD and TCC embryos

Embryonic development in BTDs and TCCs were observed hourly during the incubation in

comparison with the defined developmental phases of the HH staging system (Table 1). Dur-

ing gastrulation, we found that formation of the primitive streak in TCC embryos was approxi-

mately one stage earlier than that of BTD embryos. The primitive streak in both TCC and HH

embryos first appeared at 6–7 h post-incubation, but it was still not discernible until 10–13 h

in BTD embryos. The length of primitive streak was fully extended around 18 h post-incuba-

tion in TCC and HH embryos, but the time for reaching its full length was delayed until 25 h

post-incubation in BTD embryos. Regression of the primitive streak in TCCs and BTDs started

at 23 h and 28 h post-incubation, respectively. Representative embryos at various phases of

Table 1. The emerging time of embryonic structures in Taiwan Country Chicken (TCC) and Brown Tsaiya Ducks

(BTD) during the first 72 h of incubation in comparison with the HH� staging system.

Hour post-incubation

Embryonic structures HH� TCC BTD

Two-layered blastoderm (HH1; D13) �� 0–5 0–5 1–12

Primitive streak (HH2; D14) 6–7 6–7 10–13

Intermediate primitive streak (HH3; D15) 12–13 12–13 19–24

Full-length primitive streak (HH4; D16) 18–19 18–19 25–27

Regressing primitive streak N/A 23–39 28–42

Headfold formation (HH6; D19) 23–25 22–25 31–36

First somite pair (HH7; D20) 23–26 24–26 32–34

Neural fold (HH7; D21) 23–26 24–26 32–34

Primary optic vesicles (HH9; D22) 29–33 27–32 36–42

Paired heart primordia (HH9; D22) 29–33 26–32 36–42

Nervous system

Three primary brains (HH10; D23) 33–38 33–39 43–46

Five neuromeres (HH11; D24) 40–45 40–45 46–52

Limb primordia; wing and leg buds (HH17; D30) 51–64 51–64 64–72

Allantois (HH19; D32) 65–72 68–72 N/A

�Hamburger-Hamilton staging system

�� The embryonic structures refer to the stages from Hamburger and Hamilton (1915) and Dupuy et al. (2002),

designated as D-staging or D.

N/A: data not available.

https://doi.org/10.1371/journal.pone.0196973.t001
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primitive streak formation are shown in Fig 1. The neural fold and the first pair of somites of

chick embryos normally occurred during 23–26 h (HH system) and 24–26 h (TCC embryos)

post-incubation, which were not formed until 32–34 h post-incubation in BTD embryos.

At the early phase of organogenesis, the first indication of heart formation was defined by a

paired primordia along with the primary optic vesicles, which arose at 36 h post-incubation in

BTD embryos, but it was 9–11 h earlier in chicken embryos of TCC (26–32 h) and the HH

staging system (29–33 h, Table 1). In the development of the nervous system, the appearance

of three primary brain vesicles occurred around the same time (33–39 h) in both embryos of

TCC and the HH system, but its occurrence delayed by 10 h in BTD embryos (43–46 h,

Table 1). A similar delay was also observed in the sprouting of limb primordia (wing and leg

buds), where the emergence was observed at 51 h post-incubation in TCC embryos compared

to 64 h post-incubation in BTD embryos. On the third day of incubation (65–68 h), the allan-

tois was first emerged in chicken embryos but not in BTD embryos. A summary of major

embryonic features at various developing stages is shown in Fig 2.

Growth of BTD and TCC embryos

The length of primary primitive streak, intermediate (elongating) streak, the full length at 18–

19 h and the regressed length at 28–42 h were significantly different (P< 0.05) between TCC

and BTD embryos (Table 2). Except for its full length at 25–27 h and regressed length at 23–39

h, significant differences were observed in the primitive streak measurements between these

two species. For somitogenesis, the TCC embryo formed circa 40 pairs of somites but only 32

pairs were observed in BTD embryos (P< 0.0001) after 72 h post-incubation.

During the first 72 h post-incubation, there was a significant difference in the ECTL

between TCC and BTD embryos (P = 0.0014). As shown in Fig 3, the ECTL ranged from 1.74

to 8.93 mm in TCC embryos and from 0.91 to 6.23 mm in BTD embryos during the first 72 h

post-incubation. The increase of ECTL showed a strong positive correlation with the time of

incubation in both TCC (R2 = 0.81) and BTD (R2 = 0.79) embryos (P< 0.0001). The BTD

embryos showed a slower growth of ECTL than that of TCC as determined by a lower slope

(R2 = 0.93 vs. 0.95, P< 0.05) in regression lines.

Fig 4 shows quadratic relationship between the development of primitive streak and time of

incubation in BTD and TCC embryos. Increasing lengths of the primitive streak of TCC vs.
BTD embryos were observed initially from 0.64 vs. 0.44 mm to its full length over 1.36 vs. 0.93

mm, and the primitive streak then became shortest at 0.66 vs. 0.67 mm by the end of the

regression phase, respectively. Development and regression rates of the primitive streak at any

given time points were generally slower in BTD embryos than those in TCC embryos as indi-

cated by tangents of the two quadratic regression lines (R2: 0.87 vs.0.73).

As shown in Fig 5, the notochord of BTD embryos also shows a slower development than

that of TCC embryos as determined by the slope (R2 = 0.90 vs. 0.95) of the regression lines and

the relative lengths at each parallel time points. The length of notochord ranged from 0.5 to

3.49 mm in TCC embryos and from 0.57 to 1.86 mm in BTD embryos during the first 42 h of

incubation.

Early developmental stages in BTD and TCC embryos

The established developmental stages of BTD are shown in Table 3. Two distinct anatomical

zones, the area opaca and the area pellucida, for primitive streak formation were observed dur-

ing the first 12 h of incubation before the occurrence of the streak. After reaching its maximal

length, the streak length of BTD embryos was then gradually shortening when the headfold

was form by 31–36 h post-incubation. Cardiogenesis was initiated by the appearance of a
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Fig 1. Development and regression of the primitive streak in Brown Tsaiya Duck during the first 72 h of

incubation. Representative figures show the primitive streak of Brown Tsaiya Duck (BTD) embryos. Black arrowheads

indicate the beginning of the primitive steak and black arrows indicate the growing or regressing end of the streak. (A)

The initial streak can be observed by 10–13 h post-incubation or earlier; (B) the initial primitive streak elongates into

the intermediate streak by 19–24 h post-incubation; (C) a full-length streak can be observed, with a clearly formed

neural groove (thin black arrow) by 25–27 h post-incubation; (D-F) after reaching its full length (D), the streak starts to

regress by 28–42 h post-incubation, along with the formation of 3–4 somite pairs, pharyngeal endoderm (thin black

arrow) (E) and heart primordia (red arrowhead) with more than 6 somite pairs (F). Bright field, scale bar = 0.5 mm.

https://doi.org/10.1371/journal.pone.0196973.g001
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paired primordial heart at 36 h post-incubation. The five neuromere segments emerged during

46–52 h of incubation, and the optic cups were completely formed around 62–65 h post-incu-

bation. During 32–72 h post-incubation, the progression of somite number was observed

Fig 2. Developmental structures and rudiments of embryonic features during the first 72 h of incubation.

Representative figures show the structures of Taiwan Country Chicken (TCC) embryos. (A) The area opaca (arrow)

and the area pellucida (arrowhead) are distinct at 5 h post-incubation; (B) the primitive streak (arrow) appears at 12 h

in TCC post-incubation; (C) the headfold (arrow) becomes visible at 25 h post-incubation; (D) the initial pair of

somites (arrow) and neural plate (arrowhead) first appear at 26 h post-incubation; (E) the primary optic vesicles

(arrow) and the paired heart primordia (arrowhead) start to form at 30 h post-incubation; (F) the three primary brain

rudiments (arrows) are visible at 33 h post-incubation along with the developing heart primordia (arrowhead) at the

13-somite stage; (G) the five neuromeres (arrows) are distinguishable at 42 h post-incubation with a relatively

developed heart (arrowhead); (H) the wing (arrow) and leg buds (arrowhead) develop at 57 h post-incubation and the

allantois is barely visible (thin arrow); (I) a prominently enlarged allantois (arrow) can be identified at 72 h post-

incubation. Bright field, scale bar = 0.5 mm.

https://doi.org/10.1371/journal.pone.0196973.g002

Table 2. Comparison of major developmental parameters between Taiwan Country Chicken (TCC) and Brown

Tsaiya Duck (BTD) embryos during the first 72 h post-incubation.

Species

Morphological measurements or embryonic structures by hours of incubation TCC BTD P value

Crown-to-tail length (ECTL) at first 72 h, mm 8.93a 6.23b 0.0014

Primitive streak length�

6–7 h post-incubation1 1.17a 0.00b <0.0001

10–13 h post-incubation2 1.56a 0.68b <0.0001

Intermediate primitive streak length�

12–13 h post-incubation1 1.72a 0.76b 0.0009

19–24 h post-incubation2 2.64a 1.07b <0.0001

Full-length primitive streak�

18–19 h post-incubation1 2.55a 0.92b <0.0001

25–27 h post-incubation2 1.66 1.46 0.2874

Regressing primitive streak�

23–39 h post-incubation1 1.15 0.99 0.1834

28–42 h post-incubation2 1.00a 0.55b <0.0001

No. of somites formed during the first 72 h 40a 32b 0.0001

� Values of the measurements are adjusted proportionally by the egg weight of embryos.
1 Hours of incubation are based on the emerging time of embryonic structures in TCC embryos.
2 Hours of incubation are based on the emerging time of embryonic structures in BTD embryos.
a, b Within the row, means without the same superscript differed (P < 0.05).

https://doi.org/10.1371/journal.pone.0196973.t002
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reaching 16–17 somite pairs, i.e., 32–34 somites, which is comparable to earlier embryonic

stages HH7-HH17 in chicken. Representative anatomical structures at early developmental

stages of BTD embryos are also shown in Fig 6.

Table 4 shows the staging of TCC and BTD embryos during the first 72 h of incubation,

which are presented in parallel to the HH staging system in hourly basis post-incubation.

Compared to the HH staging system, Stages 14–16 of BTD embryos were largely equivalent to

the Stage 19 of TCC embryos.

Fig 3. Establishment of linear regression lines between incubation time and embryonic crown-tail length (ECTL).

The rates of embryo growth in Brown Tsaiya Ducks (blue dot line; y = 0.107x - 2.2185, R2 = 0.9522) and Taiwan

Country Chicken (red dot line; y = 0.1486x - 2.8836, R2 = 0.9269) can be accurately predicted by each own regression

line. Values are presented as mean ± SD in both species.

https://doi.org/10.1371/journal.pone.0196973.g003

Fig 4. Quadratic regression lines between incubation time and development of the primitive streak in Taiwan

Country Chicken (TCC) and Brown Tsaiya Ducks (BTD). The developing primitive streak of embryos in BTD (blue

dot line; y = -0.002x2 + 0.1079x - 0.6786 R2 = 0.8716) and TCC (red dot line; y = -0.0026x2 + 0.0985x + 0.1585 R2 =

0.7266) can be well-represented with each quadratic regression line. Values are presented as mean ± SD in both

species.

https://doi.org/10.1371/journal.pone.0196973.g004
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Discussion

Brown Tsaiya Duck (Anas platyrhynchos) is a native breed of major egg layer ducks in Taiwan,

and the female BTD is bred with the male Muscovy duck to produce the Mule duck for meat

production [18–19]. Taiwan Country Chicken is also one of the native avian breeds in Taiwan,

bred and preserved in Genetics and Breeding Resource Center of Country Chicken, National

Chung Hsing University, as one of the valuable resources among native poultry species. The

TCC used in this study were bred by using the NCHU B line with the NCHU S line; both lines

are important meat type chickens that share more than 60% local poultry market in Taiwan.

In theory, the egg weight might affect the measurements in some growth parameters such

as hatchability or chick hatch-weight of the developing chick embryo [20–22], but their final

hatching day, being around 21 days post-incubation, remains the same within avian species [6,

12, 23]. However, to avoid individual variations, only eggs of a similar size were selected for

the present study.

In previous studies, Liu et al. [24] have shown that the fertilization rate of BTDs ranges

from 79.1% to 86.1% and Rouvier et al. [25] have shown that of Kaiya ducks (Pekin × White

Tsaiya) being 63%-83%. In the present study the fertilization rate of BTDs (85.7%) was also

within the normal range as abovementioned; even with a slightly lower incubation tempera-

ture (37.2˚C) the hatching time (28 d) of BTDs was similar to that of Pekin ducks and Muscovy

ducks which ranged from 28 to 30 d after the onset of incubation. In TCC embryos, the aver-

age fertilization rate was also close to that of the broiler chicken (TCC: 90.3% vs. broiler: 90.9–

92.4%) [25]. In contrast, it appears that the fertilization rates of TCC were slightly lower than

those of Leghorn layers (94.7%) [26] but higher than those of guinea fowls (33.9 g) [15]. It is

most likely due to the differences between the types of chicken breeds [18].

During the first 72 h of development, the major structural milestone of gastrulation in

avian embryos is the formation of the primitive streak, which defines the anterior-posterior

axis of the embryo and gives rises to the majority of endodermal and mesodermal tissues dur-

ing later development [27]. It first appears as a regional thickening of epiblast cells posterior to

the embryo and then elongates toward the future head region, extending 60–75% longitudinal

length of the area pellucida. After reaching its full length, the streak starts to regress by shifting

Fig 5. Linear regression lines between incubation time and development of the notochord in Taiwan Country

Chicken (TCC) and Brown Tsaiya Duck (BTD). Values are presented as mean ± SD in Brown Tsaiya Ducks (blue dot

line; y = 0.1008x - 2.4389 R2 = 0.8994) and Taiwan Country Chicken (red dot line; y = 0.1543x - 3.0259 R2 = 0.9539).

https://doi.org/10.1371/journal.pone.0196973.g005
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Table 3. Staging with key developmental features of Brown Tsaiya Duck embryos during the first 72 h of

incubation.

Stage Hour (h) post-

incubation

Stage description (relative to HH staging system)

1 (HH1) 1–12 The area pellucida was easily distinguished from the area opaca; small clusters of

cells emerged and formed a reticular structure; hypoblasts formed; the marginal

zone, the thick area at posterior zone, became prominant between the two-

layered germinal discs.

2 (HH2) 10–14 Initial streak formation: the primitive streak initiated as a short conical

condensation in the area pellucida (0.34–0.61 mm in length); margins of the

marginal zone and the primitive streak were not clearly separated yet.

3 (HH3) 13–24 Elongation of the intermediate or growing streak: the primitive streak extended

to the center of area pellucida and became a dense bulge 19 h post-incubation.

The primitive streak was separated from the margin of the marginal zone and

became a rostral-caudal mid-line within the margin of the blastoderm, where the

primitive groove was still not clearly visible (0.39–1.07 mm in length).

4 (HH4) 25–32 Formation of the definite or full-length streak: the primitive streak reached its

maximal length (0.73–1.25 mm, average length = 0.93 mm). The primitive pit,

primitive groove, and Hensen’s node were prominent with no head process

visible yet. The primitive streak ultimately extended about 2 to 3 times of its

initial length. The area pellucida became somewhat V-shaped by 28 h post-

incubation.

5 (HH5) 25–35 The head process became visible but no headfolds formed yet by 34 h post-

incubation. The notochord extended from the head position caudally to Hensen’s

node. The area pellucida became elongated along the anterio-posterial axis. The

initial neurulation; the neural plate became clearly visible by the end of this

period.

6 (HH6) 31–36 Headfolds appeared by 31 h of incubation, but no somite formation was

identified yet. Hensen’s node shifted to the central area of the embryo between

the notochord and the primitive streak.

7 (HH7) 32–34 Initiation of somitogenesis; one to 3 pairs of somites were formed by 33 h of

incubation and neural folds appeared on both sides of the neural plate in the

cephalic region. The notochord prolonged and the Hensen’s node started to

migrate caudally accompanied with the shortening of the primitive streak.

8 (HH8) 32–36 The 4th to 5th pair somite stage; the neural folds curved dorsally and met around

the midbrain. The subcephalic pocket became visible 36 h post-incubation.

9 (HH9) 36–42 The 6th to 9th pair somite stage; the primary optical vesicles were first recognized

by 42 h of incubation, and paired heart primordia started to fuse. The neural

groove closed and formed the neural tube accompanied by the increasing size of

the subcephalic pocket 41 h after incubation.

10

(HH10)

43–46 The 10th to 11th pair somite stage; the heart loop slightly bent to the left and the

three primary brain vesicles were first visible by 43 h after incubation. The

omphalomesenteric veins began to grow from the caudal end of the heart by 46 h

of incubation.

11

(HH11)

46–52 The 12th to 14th pair somite stage; five neuromeres of the hindbrain were visible

and the neuropore was not closed yet. The optic vesicles constricted at the base

by 48 h of incubation and the heart was fully bent toward the left by 52 h of

incubation.

12

(HH12)

52–58 The 16th to 17th pair somite stage; the neuropore was closed and the enlargement

of proencephalon (the anterior part of the head) occurred; the primary optic

vesicles and optic stalks were formed. The auditory pit was wide open by 57 h; the

heart developed into slightly S-shaped by 58 h, and the head fold partially covered

the forebrain.

13

(HH13)

54–60 The 18th to 19th pair somite stage; the head was turning to the left and the

telencephalon was distinctly enlarged; the head fold from the amnion gradually

covered the forebrain, midbrain and the anterior part of hindbrain.

14

(HH14)

59–63 The 21th to 23th pair somite stage; cranial and trunk flexures of embryos

developed; By 63 h post incubation, opening of the auditory pit was defined; the

amnion was extending close to somites 7 to 10.

(Continued)
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from the area pellucida to a more posterior position while the head process becomes visible. In

the present study, we found that the formation of the primitive streak in TCCs differed in their

timing compared to BTDs. The earliest difference between TCC and BTD embryo develop-

ment laid prior to the HH2 stage, i.e., the formation of the Koller’s sickle and the hypoblast.

The Koller’s sickle is the embryonic structure inducing the primitive streak and Hensen’s node

[28– 29], and was not observed in the duck embryo by 0–12 h post-incubation; it is normally

observed in the chicken embryo at 0–5 h post-incubation. Dupuy et al. [10] reported that the

sign of hypoblast formation is not as evident in duck embryos as in both chicken and turkey

embryos. In most duck embryos, polyingressing cells derived from the epiblast that incorpo-

rate into the hypoblast are evenly distributed over the ventral area pellucida. At this stage the

duck embryo was nearly symmetrical prior to achieving a more polarized appearance during

later development. Therefore, formation of the primitive streak was apparently delayed (4–6 h)

in BTD embryos compared to that in TCC embryos. In contrast, the profile and timing of the

primitive streak development in BTD embryos are consistent across duck species reported.

For example, the growing or intermediate primitive streak extended to the center of area pellu-

cida after 19–24 h post-incubation which was similar to that in Penkin ducks observed by Kol-

tofen [9] and Dupuy et al. [10]. However, chicken embryos only spent 12–13 h post-

incubation to reach the same stage of development in TCC and HH embryos.

Due to its relatively slower development of the primitive streak compared to TCC embryos,

the early organogenesis, including development of somites, the nervous system, the cardiovas-

cular system, and limb buds of BTD embryos would conceivably require a longer time to reach

the same developmental stages as in TCC embryos.

The allantois, an extraembryonic membrane and a precursor of the primitive vasculature

derived from the mesoderm [30], began to take shape on day 3 of incubation in TCC embryos,

but it was still not found in BTD embryos. It is known when the allantois vesicle enlarges, the

mesodermal layer of the allantois fuses with the adjacent mesodermal layer of the chorion to

form the chorioallantoic membranes (CAM), which can rapidly expand and generate a rich

vascular network to form an efficient interface for gas and waste exchanges [31]. Any unde-

sired endogenous and exogenous factors would conceivably alter or retard the development of

the CAM. Therefore, this unique extraembryonic structure has been used for screening drug

toxicity by monitoring its hemorrhage state or dynamic wax-and-wane of angiogenesis due to

its drug sensitivity [32]. Similarly, the CAM of duck embryos could also be used for the same

purpose; however, only BTD embryos beyond day 3 of incubation would be most suitable

when the CAM becomes fully vascularized.

The ECTL has been considered to be an immediate indicator for monitoring embryonic

growth, and the number of somites has also been a major parameter for staging embryos. In

Table 3. (Continued)

Stage Hour (h) post-

incubation

Stage description (relative to HH staging system)

15

(HH15)

62–65 The 24th to 25th pair somite stage; the head flexure was progressively evident; the

optic cup was completely formed and the amnion extended from somites 7 to 15.

16

(HH16)

64–72 The 26th to 32th pair somite stage; the amnion grew and extended to somites 10 to

18; the primordia wing bud formed as a fine crest, whereas the leg bud was still

invisible; tail bud appeared as a short straight cone; epiphysis was not formed yet.

17

(HH17)

71–72 The 32th to 34th pair somite stage; the head and body flexures were pronounced;

the leg buds is lifted off and appeared as fine crest; tail bud appeared as a small

bulge and bent somewhat ventrally. The amnion appeared but the allantois was

not yet formed.

https://doi.org/10.1371/journal.pone.0196973.t003
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the present study, two regression lines, were established to predict the size of embryos during

the first 72 h of development. Apparently, the significantly high R-square values (0.95 and 0.93

for BTDs and TCCs, respectively) of these regression models could provide accurate predic-

tions for the length of ECTL and somite numbers in both TCCs and BTDs. Based on these lin-

ear regression lines, the average ECTL per hour in TCC or BTD embryos appeared steadily

increased (Fig 3), and the predicted lengths were 7.82 mm in TCC embryos which was longer

than that of TCC embryos (cf. 5.49 mm) at 72 h post-incubation. In fact, based on our observa-

tion the ECTL of TCC and BTD embryos were 8.93 mm and 6.23 mm, respectively. During

the first 72 h of development, the length of the BTD embryos (6.23 mm) were found close to

that of other ducks, i.e., Khaki Campbell and White Indian Runner (6.2 mm) [11] but smaller

than that of Penkin ducks (8–9.5 mm) [9]. The sizes of TCC and BTD embryos can be com-

pared side by side using the ECTL of both species at the same age during the early stage of

embryogenesis.

Fig 6. Anatomical structures of developing Brown Tsaiya Duck embryos during the first 72 h of incubation. (A)

The area opaca (arrowhead) and pellucida (arrow) are clearly distinguishable at 7 h post-incubation; no other

prominent embryonic structures can be observed at this stage. (B) The primitive streak (arrow) starts budding out and

becomes visible at 14 h post-incubation; (C) an intermediate or growing streak (arrow) stems from the marginal zone

(arrowhead), extending out at 19 h post-incubation; (D) the streak becomes longer (arrow) and the area pellucida

forms a V-shape or an ice-cream cone shape (arrowhead) at 28 h post-incubation; (E) the head process emerges

(arrow) at 34 h post-incubation while the notochord extended posteriorly from the head position (thin arrow) to the

Hensen’s node, and the area pellucida becomes elongated along the anterio-posterial axis (arrowhead); (F) the

headfold (arrow) becomes visible and Hensen’s node repositions around the center of the embryo (arrowhead) by 31 h

post-incubation; (G) the first 3 pairs of somites (arrow) and the neural fold (arrowhead) appear by 33 h post-

incubation; with the lengthening of the notochord, the Hensen’s node starts to migrate caudally accompanied with the

shortening of the primitive streak; (H) around 4–5 somite pairs (arrow) and the subcephalic pocket of the embryo are

visible (arrowhead) at 36 h post-incubation; (I) the optical vesicles (arrowhead) and the paired heart primordia (thin

arrow) are formed at 42 h post-incubation; (J) the forebrain region of three primary brains (arrow) and the

omphalomesenteric veins (arrowhead) become distinguishable by 46 h post-incubation; (K) the heart loop is bent to

the left (arrow) and the neuropore is not yet closed (arrowhead) 52 h post-incubation; (L) the optical vesicles (arrow)

and proencephalon (arrowhead) are forming by 58 h post-incubation; (M) the head is turning to the left (arrow) and

the telencephalon (arrowhead) enlarge by 60 h post-incubation; (N) the head completely turns to the left (arrow) and

the auditory pit (arrowhead) is prominent 63 h post-incubation; (O) By 65 h, the optic cup was completely formed

(arrow) and the amnion extended to somites 14–15 (arrowhead), while the crown-tail axis further curling up; (P) with

increasing body size, the primordia wing buds first appeared as a tiny scratch (arrow) and tail bud formed a short

cone-shaped structure (arrowhead) by 70 h; (Q) The body size further increased and peripheral vessels gradually filling

in with blood cells (fine arrows); the leg buds are lifted off and appeared as fine crest (arrow) and tail bud appeared as a

small bulge and slightly bent ventrally (arrowhead) by the end of 72 h. Numerical numbers 1–17 and HH1-HH17

represent different developmental stages in BTD and HH staging system, respectively. Bright field, scale bar = 0.5 mm.

https://doi.org/10.1371/journal.pone.0196973.g006
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For somitogenesis, during the first 72 h post-incubation, the progression of somitogenesis

of the BTD described in the present study was found to be similar to that of the Pekin duck

observed by Dupuy [9] and Khaki Campbell and White Indian Runners observed by Koecke

[11]; the appearance of the first somite in BTD was by 32–34 h vs. 33–36 h in Pekin ducks by

and 32–36 h in Khaki Campbell and White Indian Runner ducks. By the same period of devel-

opmental stage, the numbers of somite pairs in BTD (32–34) were not much different from

other duck species mentioned (29–31). In contrast, the somite numbers of BTD embryos dif-

fered from that of the TCC embryos. The delayed somitogenesis in BTD embryos was likely

due to the slowed development in the vascularization of the CAM as mentioned above. The

previous study has indicated that a pair of somites are formed every 90 min, and the comple-

tion of 52 somite pairs can last for 5 days during the early development of chicken embryos

[33]. However, the above-mentioned events have not been well described in duck embryos

particularly in BTDs. A longer incubation time may be necessary to investigate into the precise

developmental time course and the cyclic clock of somitogenesis of duck embryos as in

chicken embryos [34].

The trends of developing primitive streaks in TCC and BTD embryos that were presented

with quadratic regression lines (Fig 4). In the beginning of primitive streak formation, TCC

embryos exhibited a faster development than that in BTD embryos. The primitive streak in

TCC embryos disappeared after 42 h of incubation, but it remained in BTD embryos. Based

on the R2 values of the established regression lines, it appeared that the quadratic regression

model was of a better prediction on the primitive streak length in BTD embryos than in TCCs

(cf. 0.87 vs. 0.73). When the length of primitive streaks was predicted using the quadratic equa-

tions, maximal lengths of the primitive streak occurred at 18.94 h and 26.98 h in TCC and

Table 4. Staging Taiwan Country Chicken (TCC) and Brown Tsaiya Duck (BTD) embryos by the incubation time

(h) relative to Hamburger and Hamilton (HH) and Dupuy (D-) staging system during the first 72 h of incubation.

Hour (h) post-incubation

The HH stage D-staging HH TCC BTD

1 13–14 0–5 0–5 0–12

2 15 6–7 6–7 10–14

3 16 12–13 12–13 13–24

4 17 18–19 18–19 25–29

5 18 19–22 19–22 25–31

6 19 23–25 22–25 31–35

7 20 23–26 24–26 33–34

8 21 26–29 26–29 32–36

9 22 29–33 29–33 36–42

10 23 33–38 33–39 43–46

11 24 40–45 40–45 45–48

12 25 45–49 45–49 50–52

13 26 48–52 48–52 54–56

14 27 50–53 50–53 60–64

15 28 50–55 50–55 64–68

16 29 51–56 52–56 69–72

17 30 52–64 52–64 71–72

18 31 65–69 65–69 N/A

19 32 68–72 68–72 N/A

N/A: data not available.

https://doi.org/10.1371/journal.pone.0196973.t004
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BTD embryos, respectively. According to our observation, maximum length of the primitive

streak appeared by 18–19 h and 25–27 h in TCC and BTD embryos (Table 2), respectively.

Furthermore, we found that patterns of notochord development in TCC and BTD embryos

could be predicted by two linear regression lines as well (Fig 5). When extrapolated with the

established regression equations, the notochord length of BTD embryos approximately took

14.9 h more incubation time to be equivalent to that of the TCC embryo. For instance, to

reach 3 mm of the notochord length, 39.05 and 53.95 h of incubation were required for TCC

and BTD embryos, respectively.

Our observation showed that the regression of the primitive streak occurred after 22 h and

28 h post-incubator in TCC and BTD embryos, respectively; in the meanwhile, the notochord

became clearly visible and gradually elongating. Therefore, the growth of the notochord paral-

lels to the regression of the primitive streak as previously reported [35].

During the first 72 h of incubation, most of the major organ rudiments had formed in avian

embryos. Among the chicken embryo no differences could be observed between TCC and

other chicken embryos reported by Sellier (2006) [12], as well as of the HH staging system

(HH 20). However, the TCC embryos developed slightly faster than those of Guinea fowl

embryos (HH 15). Although the BTD embryos developed approximately 15–17 h slower than

those of TCC embryos. In the present study, the early stages of BTD embryos were similar to

that of Pekin duck embryos (HH17) but slightly faster than those of Muscovy ducks and

Mulard ducks (HH17 vs. HH12 and HH14; approximately 18 h) [10, 12]. Unlike the TCC

embryos, BTD embryos required 33–36 h to enter the HH7 stage (cf. 24–26 h in TCC embryos)

and could only reach Stages HH14-HH16 after 72 h of incubation (cf. HH19 in TCC

embryos).

Although the pace of development was generally slower in BTD embryos, the basic phe-

nomena and the nature of the overall developmental phases remained similar to that of the

chicken embryos. To characterize the distinct changes, the course of development was also

mandatorily classified into 17 stages for BTD embryos (Table 3). More specifically, the BTD

embryos developed 10 h (2%) slower than those of TCC embryos by the first 24 h of incuba-

tion. After 72 h of incubation, BTD embryos showed approximately 15–17 h (3.3%) slower

than those of TCC embryos. It is known that BTD embryos take 7 days (33%) more to hatch

than chicken embryos by the end of embryogenesis. Given that a slightly delay at each develop-

mental stage can later add up to approximately one week delay over the whole incubation

period, it is still unclear whether each developmental event of BTD embryos is proportionally

setback throughout the entire hatching development, or some of the unique developmental

features specifically prolong the overall development in BTD embryos during the first 72 h of

incubation.

Embryonic stages of TCC and BTD embryos were compared based on the HH staging sys-

tem (Table 4). We found that BTD embryos, on average, was approximately 8 h slower than

TCC and HH embryos during Stages 1 to 10, but after Stages 11 to 13 (by neurulation), the

developmental time course of BTD became faster and approximately only 3–5 h slower than

that in TCC and HH embryos. Nevertheless, up to Stage 14 TCC and HH embryos speeded up

the rate of development and became approximately 15–17 h faster than BTD embryos.

For later development, the appearance of beaks and webbed feet of embryos are apparently

distinct between chicken and ducks (development beyond 72 h). These are also major parame-

ters for staging and those contribute to the differential time course of development till hatching

between chickens and waterfowls. For future work, it is of necessity to investigate the unique

features of developing BTD embryos by a longer (> 72 h) incubation time to characterize later

embryogenesis and development in BTDs.
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In conclusion, in spite that TCC and BTD embryos have shared some similarities with the

embryos staged by the HH system, the present study describes, for the first time, more precise

timings of the emerging embryonic features with a side-by-side comparison between the two

species during the first 72 h of embryogenesis. To our best knowledge, it is also the first report

that implements the established regression lines to depict early embryogenesis in Brown Tsaiya

ducks with several well-defined embryonic features, such as gastrulation, neurulation, somito-

genesis and organogenesis, along the developmental stages of this species.

Supporting information

S1 Table. Summary of key developmental features of Taiwan Country Chicken embryos

during the first 72 h of incubation.

(PDF)

S1 Fig. Anatomical structures of developing Taiwan Country chicken embryos during the

first 72 h of incubation. (A) The area pellucida (arrow) and the area opaca (arrowhead) are

distinct by 4 h post-incubation. (B) The primitive streak (arrow) first appear by 7 h post-incu-

bation. (C) The intermediate or growing streak (arrow) is visible around 12 h post-incubation.

(D) The definitive or full length streak (arrow) is visible by 19 h post-incubation, with a clear

primitive groove (thin arrow) and Hensen’s node centering the embryo (arrowhead). (E) The

head process (arrow) is taking shape by 22 h post-incubation; Hensen’s node and definitive

primitive streak are clearly visible. (F) The headfold (arrow) becomes visible 25 h post-incuba-

tion; (G) the first pair of somites (arrow) appear around 25 h post-incubation. (H) Four

somites (arrow) and neural fold (arrowhead) appear by 26 h post-incubation; (I) the optical

vesicles (arrow) and the paired primordia of the heart (arrowhead) formed 30 h post-incuba-

tion. (J) The heart loops slightly bend to the left (arrow) and the three primary brains (arrow-

head) are visible 33 h post-incubation; (K) the five neuromeres (arrow) are visible and optic

vesicles (arrowhead) are constricted around 42 h post-incubation; (L) the heart (arrow) is

forming into a slightly S-shaped and the neuropore (arrowhead) is closed by 45 h post-incuba-

tion. (M) The head (arrow) bends to the left and the telencephalon (arrowhead) is enlarged

around 48 h post-incubation; (N) the head completely bends to the left (arrow) and the margin

of amnion (arrowhead) is visible by 51 h post-incubation. (O) The optic cup (arrow) is

completely formed 54 h post-incubation. (P) The wing (arrow) and leg buds (arrowhead)

develop by 52 h post-incubation. (Q) The auditory pit (arrow) and the amnion (arrowhead)

are present by 55 h post-incubation. (R) The leg (arrow) and tail buds (arrowhead) are more

prominent by 65 h post-incubation. (S) The enlargement of the leg (arrow) and wing buds

(arrowhead) becomes prominent by 72 h post-incubation. Numerical numbers 1–19 and

HH1-HH19 represent different developmental stages in TCC and HH staging system, respec-

tively. Bright field, scale bar = 0.5 mm.

(TIF)
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