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Abstract

Drug-drug interaction (DDI) is a change in the effect of a drug when patient takes another

drug. Characterizing DDIs is extremely important to avoid potential adverse drug reactions.

We represent DDIs as a complex network in which nodes refer to drugs and links refer to

their potential interactions. Recently, the problem of link prediction has attracted much con-

sideration in scientific community. We represent the process of link prediction as a binary

classification task on networks of potential DDIs. We use link prediction techniques for pre-

dicting unknown interactions between drugs in five arbitrary chosen large-scale DDI data-

bases, namely DrugBank, KEGG, NDF-RT, SemMedDB, and Twosides. We estimated the

performance of link prediction using a series of experiments on DDI networks. We per-

formed link prediction using unsupervised and supervised approach including classification

tree, k-nearest neighbors, support vector machine, random forest, and gradient boosting

machine classifiers based on topological and semantic similarity features. Supervised

approach clearly outperforms unsupervised approach. The Twosides network gained the

best prediction performance regarding the area under the precision-recall curve (0.93 for

both random forests and gradient boosting machine). The applied methodology can be

used as a tool to help researchers to identify potential DDIs. The supervised link prediction

approach proved to be promising for potential DDIs prediction and may facilitate the identifi-

cation of potential DDIs in clinical research.

Introduction

Combined use of multiple drugs at the same time (i.e., polypharmacy) is common in modern

pharmacotherapy [1], particularly in older population who has required continuous treatment

for one or more chronic diseases [2]. Empirical evidence reported that the percentage of the

U.S. population taking three or more drugs increased for 12% in years 1988–1994 to 21% in

years 2007–2010 [3]. In such settings drugs may interact; they are not independent from one

another. Drug-drug interaction (DDI) is an event in which one drug influences the
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pharmacologic effect of another drug when both are administered together [4, 5]. Identifying

DDIs is a critical process in drug industry and clinical patient care, especially in drug adminis-

tration [6].

Adverse drug reactions (ADRs) are harmful reactions that are caused by intake of medica-

tions [7]. Many ADRs are not identified during clinical studies (i.e., before a drug is approved

by a government). Liu [8] recently demonstrated that about 10% of all possible drug pairs may

probably induce ADRs through DDIs. Therefore, one of the fundamental aspects in pharma-

covigilance—a research field related to the detection and prevention of ADRs [9]—is to gener-

ate new knowledge about DDIs. Despite several resources for DDIs [10] (e.g., DrugBank,

Drugs.com), a study has demonstrated that none of the actual public databases provide a toler-

able coverage of all the known DDIs; these databases are either incomplete or they record a

large number of irrelevant interactions [11]. Additionally, the great majority of DDIs is hidden

in a crowd of unstructured textual data which is expanding at a large scale [12]. For example,

as of date of this writing simple PubMed search returns about 150000 bibliographic citations

which include MeSH term ‘Drug Interaction’. Hence, the main motivation behind this study is

consideration of computerized approach to identify potential DDIs.

DDIs may be naturally represented as a network in which nodes refer to different drugs

and relationships between them designate their interactions [13, 14]. Complex networks fasci-

nate many researchers after the small-world [15] and scale-free [16] features were recognized

in numerous real-life networks, such as the Web and large social networks that capture rela-

tionships between actors. The network induced can be employed to elucidate the architecture

and dynamics of a complex system and assist us in identification of relevant topological prop-

erties, interesting patterns, and predicting future trends. Various studies have already been

performed in pharmacology with interesting applications of complex networks, including

DDIs prediction (e.g., [17, 18]). There are three main benefits of processing DDIs with net-

work analysis approach [19]: (i) researcher can predict potential, previously unknown, DDIs;

(ii) certain (insignificant) DDIs will be avoided in such knowledge representation; and (iii)

relationships which link pharmacodynamic and pharmacokinetic drug characteristics to DDIs

can be explored.

A plethora of statistical methods were employed and developed to predict DDIs. An exten-

sive overview of recent approaches is presented separately in the next section. Existing meth-

ods may be categorized into three main approaches to DDI prediction: (i) a similarity-based

approach, (ii) classification-based approach, and (iii) text mining approach. A similarity-based

methods are based on the assumption that similar drugs may interact with the same drug. For

instance, two drugs may interact if they have similar molecular profile. Classification-based

techniques mimic the DDI prediction task as a binary classification problem. For example,

drug-drug pairs are represented as feature vectors, while target variable is represented by pres-

ence or absence of interactions. A particular instance of classification-based methods is link

prediction, which aim is to assess the probability that a relation exists between pair of nodes in

a network, based on observation of topology of existing nodes and their attributes [20, 21].

Finally, text-mining methods employ natural language processing techniques to extract plausi-

ble relations among drugs from unstructured data sources (e.g., from MEDLINE citations).

However, Abdelaziz et al. [22] identified several issues that are overlooked by a great majority

of DDI prediction studies: (i) inability to predict newly developed drugs, (ii) failure to handle

extreme data skewness of DDI pairs, (iii) relying the analysis only on selected data sources

(mainly DrugBank), and (iv) careless evaluation techniques which is reflected by employing

area under the ROC curve as the main evaluation metric to assess the quality of prediction. All

these limitations encourage us to perform a new, improved experiment.

Link prediction for drug-drug interaction mining
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In this study we examine link prediction from the viewpoint of predicting potential DDIs.

The main objectives of this work are: (i) to represent the process of discovering potential DDIs

as a binary classification task in which features are represented as topological and semantic

measures between drugs, and (ii) to evaluate performance of unsupervised and supervised

machine learning methods for predicting potential DDIs. This study is different from other

related studies in the following facets: (i) we use broader set of databases for DDIs prediction

including DrugBank, KEGG, NDF-RT, SemMedDB, and Twosides; (ii) besides network-based

features we also include semantic-based features, for instance chemical information of a drug

and assigned Medical Subject Headings (MeSH); (iii) regarding methodological considerations

we assume balanced distribution of DDI pairs; (iv) in addition to unsupervised approach we

also include supervised statistical learning methods; and (v) last but not least, the study relies

on comprehensive statistical evaluation and on manual evaluation performed by trained

pharmacist.

Related work

A recent comprehensive review of DDI detection utilizing clinical resources, scientific litera-

ture, and social media is given by Vilar et al. [23]. In previous section we defined three

approaches to DDIs prediction, namely similarity-based approach, classification-based

approach, and text mining approach. We review the most recent literature for each of the

approaches in the next paragraphs.

The similarity-based approach exploits the idea of biological profiles which are used to

compare drugs and infer new molecular properties [24]. Gottlieb et al. [25] performed statisti-

cal validation by considering various types of drug-drug similarities, including chemical-based

and side-effect-based similarity. Vilar et al. [26] developed new approach appropriate for large

scale data that detects DDIs based on similarity of molecular structural properties. Li et al. [27]

presented a Bayesian network model which was combined with a similarity algorithm to pre-

dict the drug pairs from drug molecular and pharmacological features. Zhang et al. [28] devel-

oped an integrative label propagation framework to model DDIs by integration of ADRs and

chemical structures. Sridhar et al. [29] developed a probabilistic approach for predicting DDIs.

They used probabilistic soft logic framework which is highly scalable. The evaluation demon-

strated of more than 50% improvement over baselines. Ferdousi et al. [30] reported on a meth-

odology for DDIs modeling based on comparison of functional profiles of drugs, where drug

profiles were constructed using carriers, transporters, enzymes, and targets information. They

predicted over 250000 potential interactions. Takeda et al. [31] predicted DDIs based on struc-

tural similarities and the interaction networks that consist of pharmacokinetics and pharmaco-

dynamics properties.

Classification-based approaches mimic the prediction of DDIs as a two-class classification

task. Cami et al. [32] defined DDIs as combinations of feature vectors and then employ logistic

regression model to predict future interactions. Their model achieves a sensitivity of 48% with

a specificity of 90%. Cheng and Zhao [33] used four DDI similarity measures and applied vari-

ous statistical learning methods (naive Bayes, classification tree, k-nearest neighbors, logistic

regression, and support vector machine) to learn interactions between pairs of drugs. Jamal

et al. [34] studied neurological ADRs. They use various properties of drugs including biologi-

cal, chemical, phenotypic, and their combinations. They used feature selection based on relief

to detect most important variables and then employed advanced statistical techniques to pre-

dict side effects. Abdelaziz et al. [22] developed a large-scale similarity-based framework that

predicts DDIs using link prediction. The system can predict both novel DDIs among existing

drugs as well as newly developed drugs. Similarly, Lu et al. [35] studied whether classical

Link prediction for drug-drug interaction mining
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similarity measures provide plausible approach to drug-target interaction prediction, when

only information from network topology is available. They compare their method against

restricted Boltzmann machines and demonstrated higher precision of the proposed approach.

Zhang et al. [18] collected a variety of information sources (i.e., data about substructures, tar-

gets, enzymes, transporters, pathways) and build prediction models using neighbor recom-

mender, random walk, and matrix perturbation method. They demonstrated that the methods

based on ensemble learning could derive higher prediction performance than individual algo-

rithms. Hameed et al. [36] developed a methodology for DDI prediction that is especially use-

able in situations when true negative instances for training are inadequate.

Information about DDIs in the research literature is increasing rapidly. Third line of

research thus utilizes text mining methods to infer novel DDIs. Duke et al. [37] perform litera-

ture discovery approach on large health information exchange data repository to predict and

evaluate new DDIs. Their method could identify new clinically significant DDIs and also sup-

ports mining for their potential biological roots. Huang et al. [38] presented a method that esti-

mates the strength of network connection between drug targets to predict pharmacodynamic

DDIs with 82% accuracy. Tari et al. [39] proposed a novel approach that integrates automated

reasoning techniques and text mining do derive new enzyme-based DDIs from MEDLINE

abstracts. Manual evaluation revealed about 81% accuracy of their approach. Gottlieb at al.

[25] introduced an interaction prediction framework that allows the inference of both pharma-

cokinetic and pharmacodynamic DDIs. They reported high sensitivity and specificity rates

of the proposed approach. Lu et al. [17] recently described an automatic approach for the

description of the mechanism of interactions using MEDLINE MeSH descriptors. Authors

reported high accuracy for identification of appropriate MeSH headings, including drugs and

proteins. Besides scientific literature, social media also provides promising approach that can

be useful in detection of DDIs [23]. For example, Hamed et al. [40] presented computational

framework that detects DDI patterns from Twitter hashtag-based networks.

Materials and methods

Drug-drug interaction networks

We compiled knowledge networks by using DDI data from five public drug databases, includ-

ing DrugBank, KEGG, NDF-RT, SemMedDB, and Twosides. We formed a pair of drugs if

both are involved in one adverse DDI. DDIs are typically represented as directed connections.

In this work the direction of the interaction was ignored.

DrugBank. DrugBank is an encyclopedic Web repository containing complete biochemi-

cal and pharmacological data about drugs, including biological mechanisms and targets

information [41]. Most of the information in DrugBank is throughly curated from research lit-

erature. Currently, DrugBank lists 10376 drug entries and 577712 directed interactions among

them. In this study we used version 5.0 of the DrugBank which was obtained from the Drug-

Bank Web page (https://www.drugbank.ca) on August 1, 2017. We parsed the DDI informa-

tion from the provided XML file and compiled an edgelist of drug identifiers combinations.

KEGG. KEGG (Kyoto Encyclopedia of Genes and Genomes) is one of the most complete

biomedical sources consisting of metabolic pathways from various species. KEGG DRUG is an

exhaustive compilation of approved drugs in Europe, USA and Japan unified based on chemi-

cal structures [42]. It contains rich information about chemical structures and additional data

such as DDIs, target molecules and therapeutic categories. KEGG DRUG provides graphical

representation of the groups of chemical structural patterns, therapeutic categories, their rela-

tionships, and the history of drug development. The version used in this study was down-

loaded from the KEGG FTP server (ftp://ftp.genome.jp/pub/kegg/medicus/drug/) on August
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1, 2017. The KEGG DRUG database contains 10340 drug entries and 500254 directed interac-

tions. Mapping to DrugBank identifiers results in 1194 unique compounds and 52609 directed

interactions.

NDF-RT. The National Drug File Reference Terminology (NDF-RT) is a collection of

drug interactions previously provided by the US Veteran’s Administration (VA) for use in VA

care [43]. First we prepared list of NDF-RT raw interactions by utilizing National Center for

Biomedical Ontology SPARQL service (http://sparql.bioontology.org/sparql). Query was exe-

cuted on August 1, 2017. Raw database contains 10530 directed interactions among com-

pounds. Next we mapped these interactions to DrugBank identifiers employing UMLS

Metathesaurus and using the rxcui field as a mapping key. Postprocessed database finally

contains 701 mapped DrugBank identifiers and 8044 interactions among them.

SemMedDB. SemMedDB is a database of semantic predications (i.e., subject-relation-

object triples) parsed from MEDLINE bibliographic database abstracts by the SemRep tool

[44]. Subject and object arguments of each predication correspond to concepts from the

Unified Medical Language System (UMLS) Metathesaurus while relations coincide with

links from the UMLS Semantic Network. SemMedDB contains information from about 91

million predications from all of the MEDLINE citations (approximately 27 million biblio-

graphic records as of this writing). We used the version v.30 of the SemMedDB database

in this study that processed the MEDLINE up to end of June 2017. In this study, all

‘INTERACTS_WITH’ relationships between pairs of drugs were used as potential DDIs. Pre-

processed database contains 1447792 directed interactions among UMLS concepts that refer

to drugs. Next we use MRCONSO table from UMLS Metathesaurus to map UMLS concepts to

DrugBank identifiers. Final database of interactions contains 1688 compounds and 37287

interactions.

Twosides. Twosides is a comprehensive source of polypharmacy ADRs for combinations

of drugs [45]. The version used in this study was obtained from the Twosides Web page on

August 1, 2017. Interactions in Twosides database are restricted to only those that cannot be

unambiguously ascribed to either drug alone. We parsed the interaction information from the

downloaded text file (http://tatonettilab.org/) and build a database of drug identifier pairs for

the interacting compounds. We use PubChem (https://pubchem.ncbi.nlm.nih.gov/) identifiers

to map Twosides identifiers to DrugBank identifiers. Final database of interactions contains

340 unique compounds and 19020 interactions.

Data representation

Consider an undirected and unweighted network which is depicted as a simple graph G(V, E)

that consists of a set of nodes V referring to drugs and a set of edges E representing interactions

between drugs. Let |.| represent the cardinality of the set. Let us first introduce some notation

which is essential to understand the basics of the link prediction; for a comprehensive intro-

duction to the technical details of link prediction we refer the reader to excellent reviews by

Liben-Nowell and Kleinberg [20] or Lü and Zhou [21].

Let U be the universal set containing (|V| � |V| − 1)/2 possible edges. By U − E we denote a

set of non-existing links (or links that will appear later in time). The problem of link prediction

is to predict these missing links. To test prediction algorithms we split the set of observed links

E into two partitions: the training partition ET and test partition EP. It follows that ET [ EP = E
and ET \ EP =⌀. In this study, we split each data set E into 66% training and 33% test data.

For all pairs of nodes in the training data we calculate similarity measure, which reflects the

chance that a pair of nodes will interact in the test data set. In terms of machine learning, each

pair of nodes serve as a positive or negative example, depending on whether those node pairs

Link prediction for drug-drug interaction mining
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form a link in the test network. We organize the whole network as a list of relations

U ¼ fhu1; u2i; hu1; u3i; . . . ; hui; uji; . . . ; hun� 1; unig;

where n is the number of nodes in the network. Each term of the list comprises a feature vector

and a relationship (i.e., class) label. The label is 1 when ui following uj and 0 otherwise. A fea-

ture vector is composed by the two feature subsets, as described in the next section.

Our basic assumption is that similar nodes more probably form a potential DDI. For

each non-existent pair (x, y) in a test data, a link prediction algorithm provides a score

s(x, y) 2 U − ET that is an estimate of the existence of link between nodes x and y.

Feature extraction

Extracting a relevant set of features is one of the most critical part of any statistical learning

algorithm. Traditional link prediction research considers mostly the topological features. In

this study we augment the set of topological features with four semantic features.

Topological features. Common neighbor (CN). Due to its simplicity this is one of the

most commonly used measure in link prediction [46]. For a node x, let Γ(x) denotes a set of

neighbors of x. For nodes x and y the CN is defined as the number of nodes that x and y have

in common. CN gives the relative similarity between a pair of nodes. CN is formally defined

as

sCN
x;y ¼ jLx;yj ¼ jGðxÞ \ GðyÞj:

Jaccard’s coefficient (JC). It is a normalized version of CN. JC assumes higher values of node

pairs (x, y), which have many common neighbors proportionate to the total number of neigh-

bors they have [47]. JC is formally defined as

sJC
x;y ¼

jGðxÞ \ GðyÞj
jGðxÞ [ GðyÞj

:

Adamic/Adar index (AAI). This index was first proposed for measuring similarity between

two Web pages [48]. AAI definition is related to JC, with a correction that lower-connected

neighbors are weighted more heavily. AAI is formally defined as

sAAI
x;y ¼

X

z2GðxÞ\GðyÞ

1

logjGðzÞj
:

Preferential attachment (PA). This is simply the product of the degrees of nodes x and y.

This measure rest on an assumption that new edges more probably connect to higher-degree

nodes than to lower-degree ones [49]. PA is defined as

sPA
x;y ¼ jGðxÞ � GðyÞj:

Resource allocation (RAI). It is similar to AAI but it penalizes the common neighbors with

higher degree more rigorously. RAI is formally defined as

sRAI
x;y ¼

X

z2GðxÞ\GðyÞ

1

jGðzÞj
:

Common neighbors 1 (CCN). This measure begins with the base score given by |Λx,y| and

then for every neighbor i shared by x and y, CCN receives an additional point for every
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community that x, b, and i are all in. Formally, CCN is calculated as

sCCN
x;y ¼ jLx;yj þ

X

i2Gðx;yÞ

jCðiÞ \ CðxÞ \ CðyÞj;

where C(n) is the set of node communities to which node n belongs.

Resource allocation 1 (CRA). It is similar to the original resource allocation definition, but it

gives extra weight to shared neighbors i that are in at least one community with both x and y,

and weight i’s contribution toward the total score by the number of communities that i shares

with x and y. CRA is formally defined as

sCRA
x;y ¼

X

i2Gðx;yÞ

1þ jCðiÞ \ CðxÞ \ CðyÞj
dðiÞ

;

where d(i) is degree of node i.
Within-inter cluster (WIC). WIC predicts link between a pair of nodes using information

from within-cluster (W) and inter-cluster (IC) common neighbors of these nodes. A commu-

nity detection must be performed on the network before applying this metric. Each vertex

belongs to only one community. WIC is formally defined as

sWIC
x;y ¼

jL
W
x;yj

jL
IC
x;yj þ d

;

where δ� 0 is a small constant to prevent division by zero when L
W
x;y ¼ Lx;y causing L

IC
x;y ¼ ⌀.

Semantic features. Drug therapeutic-based similarity (ATC). This type of similarity was

evaluated through ATC codes. ATC coding system partitions compounds into different clus-

ters according to the biological system or organ on which they act. The first level of the code

which was used in this study indicates the anatomical main group. There are 14 main clusters

(e.g., A—alimentary tract and metabolism, B—blood and blood forming organs). The ATC

codes for all compounds were extracted from the main DrugBank file. There are 3322 unique

ATC codes as of this writing in the DrugBank database. Each compound was represented by a

binary vector in which elements refer to the presence or absence of the ATC codes. We used

inverse document frequency (IDF) to discount ‘popular’ ATC codes following the formula

IDFðt;DÞ ¼ log
jDj
nt
;

where D is the set of compounds and nt is the number of compounds where the ATC code t
appears. Drug therapeutic similarity of a pair of drugs is the cosine similarity of the corre-

sponding IDF-weighted vectors.

Chemical structure-based drug similarity (CHEM). First we represent a given set of com-

pounds as SMILES (simplified molecular-input line-entry system) strings which were

extracted from DrugBank. The SMILES strings were then converted into molecular extended

fingerprints (1024 bits) using the R’s rcdk package. Finally, we converted a set of fingerprints

into a Tanimoto similarity matrix using the fp.sim.matrix() function from rcdk pack-

age. The Tanimoto similarity coefficient [50] between compounds x and y is computed using

the formula

sx;y ¼
c

aþ b � c
;

where for bit-strings of length n, we suppose that a bits are set in the string for a compound x,
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b bits are set for a comparison compound y, and c bits are common to both strings. Values

contained in the matrix represent the chemical structure similarity between each possible pair

of compounds.

MeSH-based similarity (MESH). MeSH is a controlled vocabulary which is used to index

MEDLINE database. MeSH-based similarity is based on MeSH terms that are associated with

DrugBank entries. There are 2072 different MeSH terms in the DrugBank database. As in the

case of drug therapeutic-based similarity, each compound was represented by a binary vector

whose elements represent the presence of the MeSH terms. The MeSH-based similarity is

defined as the cosine similarity between the IDF-weighted MeSH vectors of the two corre-

sponding compounds.

Adverse drug effect-based similarity (ADE). For this type of similarity we use information

provided by SIDER side effects database of drugs. SIDER provides data on marketed drugs

and their known ADRs. The version used in this study (4.1) was obtained from the SIDER

Web page [51]. There are 1430 drugs and 5868 side effects in the database. Each compound

was represented by a vector with binary values in which elements represent the presence of the

side effect terms. The side effect similarity of two compounds is defined as a cosine similarity

between the IDF-weighted side effect vectors of the two compounds.

Statistical learning

In this study we used unsupervised and supervised learning. Later was performed by using five

state-of-the-art classifiers, namely classification tree (DT), k-nearest neighbors (kNN), support

vector machine (SVM), random forest (RF) and stochastic gradient boosting also known as

gradient boosting machine (GBM). These classifiers have become mainstream in modern sta-

tistical learning. A comprehensive overview of all learning methods is not in scope of this

paper. However, in the following lines we will shortly introduce the basic background. For

more deep insight please see Friedman et al. [52].

Unsupervised classification. For unsupervised classification we use combined similarity

measure which is derived from standardized similarity scores for pairs of nodes based on topo-

logical and semantic properties of the networks. More formally, we define combined similarity

measure as

sComb
x;y ¼ AvgðsCN

x;y ; s
JC
x;y; . . . ; sADE

x;y Þ;

where Avg is arithmetic mean. A pair of drugs is predicted to have a link if its score is over a

certain threshold t. Clearly, a lower threshold predicts more pairs to be links. In our settings

we use t = 90th percentile as a threshold. For example, value of combined similarity above cho-

sen threshold therefore predicts a link between selected nodes. We use class information as

described previously in ‘Data representation’ section.

Classification tree. DT is built by partitioning instances into local subsets using a series of

recursive splits. Each node of a tree is constructed by a logical rule, where instances below a

certain threshold fall into one of the two child nodes, and instances above fall into the other

child node. Partitioning continues until a terminal node, where data instances are assigned a

class label [52]. The prediction for an instance is obtained by a majority vote of the instances

reaching the same terminal node. Classifier was constructed using the rpart package in R.

k-nearest neighbors. kNN classifier defines the class of a test instance according on the

majority vote of its k nearest neighbors from training data [52]. We set the value of k using

internal 5-fold cross-validation. We used the Euclidean metric for calculating distances

between data points. kNN classifier was implemented using the class package in R.
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Support vector machine. SVM classifier maps the input data set into a high-dimensional

feature space and then constructs a hyperplane to separate classes based on a maximum mar-

gin principle. We can choose various kernel functions including linear or nonlinear [52]. SVM

classifier was implemented using the e1071 package in R. The penalty parameter was deter-

mined by an internal 5-fold cross-validation. Our implementation uses the linear kernel.

Random forest. RF is a statistical learning methodology that perform ensemble learning

for classification. Ensemble consists of multiple classification trees [53]. We used bootstrap

sampling on training data to grow each tree. We split each node using the best among a ran-

domly selected subset of given features. Next, we combined class labels predicted by each tree

in the forest. Majority vote is finally used to create final prediction. RF classifier was imple-

mented using the ranger package in R.

Gradient boosting machine. GBM also provides ensemble learning, but the base learners

in a GBM are weak learners [54]. The trees in GBM are not grown to the maximum possible

extent as in RF. The GBM starts with an imperfect model (i.e., the base learner that is not

grown maximally) and generates a new model by successively fitting the residuals of the cur-

rent model, using the same class of base learners as the initial imperfect model. GBM classifier

was implemented using the gbm package in R.

Evaluation metrics

To estimate the quality of the proposed methodology, we performed two types of analyses: we

performed statistical validation on selected DDI data sets as well as qualitative validation on a

small subset of DDIs.

The performance of algorithms was evaluated by employing train-test schema. First we

used ovun.sample() function from the ROSE package in R to create a representative sam-

ple of DDI pairs for each network. Models were trained and tuned using the caret package

in R utilizing doMC package for parallel processing. We used createDataPartition()
function to split the entire data set into training subset containing 66% of examples and a test

subset containing 33% of examples. Model selection was carried out using 10-fold cross-valida-

tion on training subset, which is known to give the lowest bias and variance [52]. The model

with the highest accuracy was selected as the candidate model and used to predict interactions

in the testing dataset.

To benchmark the performance of our algorithms we used standard evaluation measures

from statistical learning including precision, recall, F1 measure, area under the receiver operat-

ing characteristic (ROC) curve (AUROC), and area under the precision-recall curve (AUPR).

Precision refers to the proportion of instances classified as positive that are actually positives,

while recall refers to the proportion of true positive instances correctly classified as positives.

F1 measure is used to integrate precision and recall into a single measure. ROC curve is a plot

of true positive rate (sensitivity) vs. false positive rate (1—specificity). Despite its popularity,

the ROC curve has some drawbacks including the inappropriateness for imbalanced data [55].

For this reason we also used the AUPR.

To evaluate statistically significant differences between classifiers across different networks,

we followed the methodology proposed by Demšar [56] as implemented in scmamp package.

We used Friedman test, which is a non-parametric alternative of repeated ANOVA design.

The test is based on rank comparison that identify an overall effect of the choice of classifier on

performance across multiple experiments. The null hypothesis is that all classifiers are equiva-

lent. When the null hypothesis of the Friedman test is rejected (p< 0.05), we proceed with the

Nemeny post-hoc test, which compares classifiers to each other across datasets and finds the

statistical significance of differences between their average performance ranks. Lower ranks
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indicate superior performance but only differences over a certain critical difference are consid-

ered statistically significant.

Software

We used custom AWK and Python scripts for data preprocessing. Similarity measures were

implemented using NetworkX package in Python. Other numerical computations, includ-

ing statistical learning were performed using R programming language for statistical comput-

ing and graphics. Complete programming code to reproduce the results of this study is

accessible in GitHub repository at URL https://github.com/akastrin/ddi-prediction.

Results

Network characteristics

We first examine elementary statistical characteristics of the included DDI networks. The sum-

mary of the topological properties is presented in Table 1. The networks exhibit short average

path length; in other words there are only about L = 2.47 hops on average from the node x to

node y in the network. The average clustering coefficient of the networks is C = 0.46. Median

diameter across the networks is six hops. On average, the giant component comprises practi-

cally all nodes.

Next, we summarized the number of common edges between pairs of networks (Table 2).

The proportion of intersections is defined as the number of overlapping edges divided by the

smaller number of edges in each of the networks in pair. Results demonstrate that, though

some duplicated drug-drug pairs exist, most of the pairs have low overlap proportions. This

indicates that presented DDI networks are complementary to each other.

Table 1. Basic characteristics of DDI networks.

Network |V| |E| c D L C GC
DrugBank 2551 577712 452.93 6 2.27 0.52 1.00

KEGG 1194 52609 88.12 7 2.51 0.37 1.00

NDF-RT 701 8044 22.95 8 3.30 0.16 0.99

SemMedDB 1688 37287 44.18 6 2.58 0.44 1.00

Twosides 340 19020 111.88 3 1.68 0.83 1.00

Legend: |V|—number of nodes, |E|—number of edges, c—average degree, D—diameter, L—average path length, C—clustering coefficient, GC—size of giant component.

https://doi.org/10.1371/journal.pone.0196865.t001

Table 2. Overlaps between data sources.

Network DrugBank KEGG NDF-RT SemMedDB Twosides

DrugBank 296656 0.36 0.45 0.30 0.43

KEGG 11961 33474 0.14 0.04 0.04

NDF-RT 1790 576 4010 0.10 0.05

SemMedDB 8603 1077 390 28924 0.08

Twosides 7411 691 199 1396 17219

Note: The diagonal values represent the number of undirected edges in each network. The values in the lower triangle show the number of overlap between two

networks. The values in the upper triangle refer to the proportions of overlap between the two networks. The proportion is defined as the number of intersections

divided by the minimum number of the two networks.

https://doi.org/10.1371/journal.pone.0196865.t002
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Performance evaluation

In this subsection we first delve into the results of unsupervised classification, and then we

present performance evaluation of supervised classification.

The results of unsupervised classification are summarized in Table 3. Among all data

sources Twosides network has the highest precision, but also the lowest recall. Overall, with

the exception of DrugBank and Twosides, unsupervised classification shows low precision and

high recall pattern. This results in high probability of false positives and a lower probability of

misses. However, with the class imbalance data, recall of the positive class is often very low,

which is not the case here. As suggested by the reviewer, we also report four other performance

metrics (i.e., false negative rate, false positive rate, true negative rate, and true positive rate)

that measure the classification efficiency on positive and negative classes independently

(S1 Table).

Prediction performances for supervised learning are summarized in Tables 4 and 5, sepa-

rately for training and test datasets. For training data, the Twosides network achieves the best

performance (averaged across different classifiers) in terms of AUPR, followed by DrugBank,

KEGG, SemMedDB, and NDF-RT. DrugBank and Twosides achieve high scores on both pre-

cision and recall, while other networks score much higher on precision than on recall. Other

classification rates are presented separately in ‘Supplementary information’ (S2 Table).

To better understand the performance of classifiers, we evaluated the significance of their

differences in AUPR. We applied Friedman test to compare the classifiers over multiple data-

sets. For training data the null hypothesis is rejected (χ2(4) = 18.4, p = 0.001). Therefore, signif-

icant differences exist in AUPR measure of the included classifiers.

After determining that an overall effect of classifier choice exists, we examined the pairwise

differences among the classifiers using Nemenyi’s test, which is a post-hoc test based on stu-

dentized range distribution with a correction for multiple comparisons. Statistically significant

differences exist for classifiers RF—DT (p = 0.001) and RF—SVM (p = 0.009). Fig 1 shows a

critical difference (CD) diagram that depicts the average ranks of the classifiers for AUPR. We

observe that RF, kNN, and GBM perform better than SVM and DT. When we also include

unsupervised classifier into comparison as a baseline, the differences between Unsupervised—

RF (p = 0.001) and Unsupervised–kNN (p = 0.034) emerge as statistically significant.

For test data (Table 5), the Twosides network achieves the best performance (averaged

across different classifiers) in terms of AUPR, followed by DrugBank, KEGG, SemMedDB,

and NDF-RT. In terms of precision and recall the pattern of values is similar to training regime

Table 3. Unsupervised classification performances for link prediction on training and test data.

Network Subset Prec Rec F1 AUC AUPR

DrugBank train 0.63 0.68 0.65 0.93 0.70

test 0.63 0.68 0.65 0.93 0.70

KEGG train 0.28 0.63 0.38 0.91 0.32

test 0.28 0.64 0.39 0.91 0.35

NDF-RF train 0.09 0.58 0.15 0.83 0.10

test 0.08 0.56 0.14 0.84 0.11

SemMedDB train 0.16 0.80 0.27 0.93 0.45

test 0.17 0.83 0.28 0.95 0.48

Twosides train 0.96 0.30 0.46 0.90 0.83

test 0.96 0.30 0.45 0.89 0.82

Legend: Prec—precision, Rec—recall, F1—F1 measure, AUC—area under the ROC curve, AUPR—area under the precision-recall curve.

https://doi.org/10.1371/journal.pone.0196865.t003
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in Table 4; DrugBank and Twosides score high on both precision and recall, while other net-

works exhibit much higher precision than recall. Other classification rates are presented sepa-

rately in ‘Supplementary information’ (S3 Table).

For test data the Friedman test rejects the null hypothesis that all classifiers perform simi-

larly (χ2(4) = 17.72, p = 0.001). Hence, we applied a post-hoc Nemenyi test to evaluate the sig-

nificance of the differences in the ranks. Statistically significant differences exist between

classifiers RF—DT (p< 0.001), RF–kNN (p = 0.033), and GBM—DT (0.010). We observe sim-

ilar ranking in Fig 2 as with training data; ranks of RF, GBM, SVM, and kNN do not present a

significant difference. DT classifier performs worse than the others. Finally, we included unsu-

pervised classifier into comparison as a baseline classifier. The differences between Unsuper-

vised—RF (p = 0.001) and Unsupervised—GBM (p = 0.010) show as statistically significant.

Feature importance

In addition to performance comparison, we analyzed the most important features that contrib-

ute to the statistical learning models. One of the nice features about RF and GB is that they

provide indication of which features are most important in the classification. We quantified

relative importance by assigning a score (0–100) for each feature as shown in Fig 3. The

variable with the larger variable importance will have a value of 100 corresponding to the

Table 4. Classification performances for link prediction on training data.

Network Classifier Prec Rec F1 AUC AUPR

DrugBank DT 0.84 0.56 0.67 0.84 0.64

kNN 0.86 0.70 0.77 0.98 0.89

SVM 0.83 0.59 0.69 0.93 0.78

RF 0.84 0.56 0.67 1.00 1.00

GBM 0.83 0.65 0.73 0.96 0.82

KEGG DT 0.68 0.34 0.46 0.78 0.42

kNN 0.76 0.40 0.53 0.98 0.67

SVM 0.70 0.21 0.33 0.79 0.45

RF 0.68 0.34 0.46 1.00 1.00

GBM 0.71 0.42 0.53 0.95 0.60

NDF-RF DT 0.77 0.17 0.28 0.72 0.25

kNN 0.59 0.05 0.10 0.98 0.37

SVM 0.58 0.09 0.15 0.83 0.20

RF 0.77 0.17 0.28 0.99 0.91

GBM 0.91 0.28 0.43 0.94 0.53

SemMedDB DT 0.76 0.24 0.36 0.75 0.36

kNN 0.74 0.31 0.43 0.98 0.59

SVM 0.70 0.27 0.39 0.87 0.48

RF 0.76 0.24 0.36 0.99 0.97

GBM 0.76 0.32 0.46 0.95 0.54

Twosides DT 0.88 0.84 0.86 0.93 0.86

kNN 0.91 0.81 0.86 0.97 0.95

SVM 0.90 0.81 0.85 0.96 0.94

RF 0.88 0.84 0.86 1.00 1.00

GBM 0.92 0.87 0.89 0.98 0.96

Legend: Prec—precision, Rec—recall, F1—F1 measure, AUC—area under the ROC curve, AUPR—area under the precision-recall curve.

https://doi.org/10.1371/journal.pone.0196865.t004

Link prediction for drug-drug interaction mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0196865 May 8, 2018 12 / 23

https://doi.org/10.1371/journal.pone.0196865.t004
https://doi.org/10.1371/journal.pone.0196865


maximum variable importance and 0 will correspond to the lowest variable importance. We

used MeanDecreaseGini measure which is based on Gini impurity index [52] as a metric

for feature importance. However, it is beyond the scope of this paper to provide extensive

details about the derivation of variable importance for both models. The interested reader can

Table 5. Classification performances for link prediction on test data.

Network Classifier Prec Rec F1 AUC AUPR

DrugBank DT 0.83 0.55 0.66 0.84 0.63

kNN 0.83 0.66 0.74 0.94 0.81

SVM 0.83 0.58 0.69 0.93 0.78

RF 0.83 0.55 0.66 0.98 0.92

GBM 0.83 0.65 0.73 0.96 0.82

KEGG DT 0.66 0.32 0.43 0.79 0.42

kNN 0.68 0.35 0.46 0.88 0.51

SVM 0.72 0.21 0.33 0.80 0.47

RF 0.66 0.32 0.43 0.96 0.69

GBM 0.67 0.37 0.48 0.95 0.55

NDF-RT DT 0.60 0.12 0.20 0.70 0.20

kNN 0.25 0.03 0.06 0.79 0.17

SVM 0.56 0.07 0.13 0.87 0.21

RF 0.60 0.12 0.20 0.91 0.36

GBM 0.63 0.15 0.24 0.90 0.27

SemMedDB DT 0.73 0.25 0.38 0.75 0.36

kNN 0.68 0.30 0.42 0.86 0.45

SVM 0.69 0.29 0.41 0.89 0.50

RF 0.73 0.25 0.38 0.96 0.55

GBM 0.68 0.31 0.43 0.96 0.53

Twosides DT 0.83 0.82 0.82 0.90 0.80

kNN 0.85 0.77 0.81 0.93 0.90

SVM 0.86 0.80 0.83 0.95 0.92

RF 0.83 0.82 0.82 0.96 0.93

GBM 0.86 0.83 0.85 0.95 0.93

Legend: Prec—precision, Rec—recall, F1—F1 measure, AUC—area under the ROC curve, AUPR—area under the precision-recall curve.

https://doi.org/10.1371/journal.pone.0196865.t005

Fig 1. Critical difference (CD) plot for training data. Plot shows the pairwise differences in performance among

classifiers. The horizontal scale shows the average rank of each classifier, with smaller ranks indicating better

performance. Classifiers connected by a dark line had statistically identical performance at the p = 0.05 level.

https://doi.org/10.1371/journal.pone.0196865.g001
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find details about this topic in appropriate literature [52]. Absolute importance scores for both

classifiers are included in ‘Supplementary information’ file (S4 Table).

To summarize results in Fig 3, for RF pa is most important feature overall (M = 0.79), fol-

lowing by aai (M = 0.70). On the other side of scale are wic (M = 0.10) and atc (M = 0.00)

with the lowest importance score. Among semantic features, the MeSH-based similarity

Fig 2. Critical difference (CD) plot for test data. Plot shows the pairwise differences in performance among

classifiers. The horizontal scale shows the average rank of each classifier, with smaller ranks indicating better

performance. Classifiers connected by a dark line had statistically identical performance at the p = 0.05 level.

https://doi.org/10.1371/journal.pone.0196865.g002

Fig 3. Relative feature importance. Normalized average relative feature importance for both learning methods (RF and GBM) for all included

networks. For each model we quantified relative importance by a weight between 0 and 1 for each feature.

https://doi.org/10.1371/journal.pone.0196865.g003
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feature has the best score (M = 0.33). The pattern is similar for GBM classifier with pa as most

important feature (M = 0.58) and atcwith the lowest importance (M = 0.00). MeSH-based

similarity is again scored as the best semantic feature (M = 0.06). Results clearly show that

topological information is more important than semantic information.

Moreover, using the approach suggested in [33] we found that average similarity of positive

DDI pairs is statistically significantly higher than those of negative drug pairs and random

drug pairs for all five networks. Statistical significances were calculated using Kruskal-Wallis

rank sum test; all values were p< 0.001. Differences between positive, negative, and random

drug pairs are graphically depicted in Fig 4. This finding confirm our main hypothesis that

similar compounds (i.e., measured by topological and semantic features) tend to have high

potential of DDIs.

Next, we also performed hierarchical clustering of data (i.e., we combined training and test

data), to get insight into relationships between features which were used in statistical learning

procedure. Clustering results are presented as series of dendrograms in Fig 5. The number of

clusters across networks is constant; each data set could be partitioned into two clusters. First

cluster is composed of features that reflect topological similarity between nodes: aai, ccn,

cn, cra, jc, pa, and rai. Semantic similarity features (i.e., ade, atc, chem, and mesh) are

grouped into the second cluster. The wic is somehow attached to the second cluster, although

it may form separate cluster.

Fig 4. Distribution of average similarity in positive, negative, and random drug-drug pairs. Topological and semantic similarity measures

were averaged across drug-drug pairs. All similarities were scaled before averaging.

https://doi.org/10.1371/journal.pone.0196865.g004
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Case study

In this subsection we study a list of top 15 predicted interactions between compounds based

on DrugBank database (Table 6). We offer a reader a concise description of each compound as

provided by the PubChem service and a possible explanation of an interaction. We also list a

frequency of PubMed documents that contain both compound names in the title or abstract

field. (Co-occurrence frequency was obtained through PubMed service using the query

‘compound_name_1[TW] AND compound_name_2[TW]’). This frequency could serve

as an indicator of novelty for our discoveries. A trained pharmacist (PF) reviewed all interac-

tions and suggests a most plausible interpretation for the cause of interaction. Below we pres-

ent a subset of four interactions, which seem most interesting to us.

Fluindione (DB13136) is a vitamin K antagonist and is under investigation for the treat-

ment of venous thrombosis, pulmonary embolism, permanent atrial fibrillation, and anticoa-

gulation therapy. On the other hand, picosulfuric acid (DB09268) is a contact laxative used

for constipation treatment or to prepare the large bowel before colonoscopy or surgery. As of

this writing, there are no matching documents in PubMed which cite both fluindione and

picosulfuric acid. However, it is well known that contact laxatives might significantly reduce

absorption of orally administered drugs. Specifically, using fluindione and picosulfuric acid

concomitantly, the absorption of fluindione into the systemic circulation may be reduced,

lower concentrations of fluindione at its binding site may be expected and consequently, fluin-

dione (which acts systemically—not locally) would be less effective.

Fig 5. Hierarchical clustering of features. Hierarchical clustering was performed using Euclidean distance as a metric and using Ward method.

All features were scaled before applying clustering.

https://doi.org/10.1371/journal.pone.0196865.g005
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Mefloquine (DB00358) is a phospholipid-interacting antimalarial drug, very effective

against Plasmodium falciparum and with relatively few side effects. Orlistat (DB01083) on the

other hand is a drug designed to treat obesity. Its primary function is preventing the absorp-

tion of fats from the human diet by inhibiting pancreatic lipases, enzymes that break down

triglycerides in the intestine. There are no documents in the PubMed which match both meflo-

quine and orlistat. However, we may anticipate the pharmacokinetic interaction between both

the compounds at the level of absorption. Mefloquine is a rather fat-soluble molecule and its

absorption could be significantly decreased while taking orlistat concomitantly.

Phenobarbital (DB01174) is a barbituric acid derivative that acts as a nonselective central

nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid sub-

type receptors, and modulates chloride currents through receptor channels. Atomoxetine

(DB00289) on the other site is the first non-stimulant drug approved for the treatment of

attention-deficit hyperactivity disorder (ADHD). In PubMed database there are only two doc-

uments referring to both compounds. Phenobarbital is a strong inducer of the liver enzymes of

the cytochrome P450 system, through which many drugs are metabolized. Biotransformation

of atomoxetine in human is predominantly carried out with isoenzyme CYP2D6. The isoen-

zyme is induced by concomitant administration of phenobarbital. Atomoxetine is thus rapidly

metabolized to its inactive metabolites. Consequently, plasma concentrations of atomoxetine

are decreasing rapidly with time which could result in lower atomoxetine therapeutic effect.

Ouabain (DB01092) is a cardiotonic glycoside obtained from the seeds of Strophanthus gra-

tus and other plants and has a long history in the treatment of heart failure, angina pectoris

and myocardial infarction. The drug acts as an inhibitor of the Na+/K+-enhancing ATPase.

Digitoxin (DB01396) is also a cardiac glycoside, phytosteroid, similar in structure, mechanism

of action and effects to digoxin (Na+/K+-enhancing ATPase), although digitoxin effects

are longer-lasting. There are 391 documents in PubMed which cite both ouabain and digi-

toxin, although manual review of the abstracts reveals no paper in which both ouabain and

digitoxin are described as interacting compounds. If both compounds would be administered

Table 6. Top 15 most plausbile novel interactions extracted from DrugBank database.

Compound 1 Compound 2 Freq

ID Name ID Name

DB13136 Fluindione DB09268 Picosulfuric acid 0

DB12768 BCG vaccine DB09268 Picosulfuric acid 0

DB05440 SRP 299 DB05322 INGN 201 0

DB00358 Mefloquine DB01083 Orlistat 0

DB00657 Mecamylamine DB09214 Dexketoprofen 0

DB01418 Acenocoumarol DB12768 BCG vaccine 0

DB00358 Mefloquine DB06148 Mianserin 12

DB00498 Phenindione DB12768 BCG vaccine 0

DB01092 Ouabain DB01396 Digitoxin 391

DB01032 Probenecid DB12768 BCG vaccine 0

DB06148 Mianserin DB01083 Orlistat 0

DB00495 Zidovudine DB01223 Aminophylline 1

DB00196 Fluconazole DB00176 Fluvoxamine 13

DB01323 St. John’s Wort DB09280 Lumacaftor 0

DB01174 Phenobarbital DB00289 Atomoxetine 2

Legend: ID—DrugBank database identifier, Name—Drugbank compound name, Freq—number of PubMed documents citing both compound names.

https://doi.org/10.1371/journal.pone.0196865.t006
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concomitantly without adjustment of the dosing regimen, the pharmacological effects were

expected to be excessive (e.g., cardiac arrest, atrioventricular block), especially for the reason

that both drugs have a very narrow therapeutic window.

Discussion

In this study we performed a computational approach to potential DDIs identification using

computer-based link prediction techniques. We performed link prediction on the five arbi-

trary chosen large-scale DDI networks from bioinformatics domain. The main conclusion of

this research is that supervised link prediction demonstrated to be a plausible methodology for

DDIs prediction. The predicted power is very high for all major DDI databases. In addition,

results of this study clearly show that topological information is more important in predicting

novel DDIs than semantic information. Our approach is especially useful for large-scale DDI

networks for detection of potential associations among drugs whose biological roots are not

completely explained.

There is a huge interest to understand and elucidate DDIs in contemporary science. As in

other life science issues, network-based pharmacology offers a convenient back-up to mecha-

nistic and molecular modeling [57]. Due to the high cost of experimental data and therefore

lack of empirical evidence, the use of computerized machinery to predict DDIs has been

highly encouraged [33]. Of course, analysis of potential interactions could lead to interesting

discoveries, but cannot substitute the actual pharmacological introspection. It would be nec-

essary in the future to include also genomic covariates and free-text data. We limit our analy-

sis only to selected, large-scale databases and do not include other, perhaps clinically more

relevant databases (e.g., Drugs.com, Medscape Multi-Drug Interaction Checker, RxList).

However, the main limitation of the aforementioned databases is that they do not offer a

public application programming interface (API) or downloadable database that would

greatly expand possibilities for massive data mining. Next, our analyis is based only on

potential interactions which represent the simplest way of relationships between drugs.

Potential interactions can be treated as pure co-occurrences and not as meaningful links

among drugs. This imperfection could be probably circumvented by the introduction of

semantic relations. Using semantic relations approach, the relationships between drugs can

be described with greater expressiveness and much more accurately. Finally, we do not con-

sider weights on links and treat all interactions as equal. We may expect that the weighting

scheme would greatly improve prediction preformance of the presented approach. Especially

in bio-inspired networks the confidence score (i.e., edge weight) is as important as presence

of relationship [58].

Despite the large number of approaches, link prediction in large-scale networks is still a

very challenging problem. There are also many possibilities for further work. First and most

important, we should dig into the problem of cleaning (i.e., filtering) interactions in the net-

work. A small portion of detected interactions in the analysed networks may be also exces-

sive. In this regard it is crucial to distinguish between potential and actual, clinically

confirmed interactions among drugs. Describing the practical importance of an interaction is

essential due to a myriad of potential, but clinically not significant, associations [59]. Cur-

rently, there are no special protocols for determining if particular interaction is clinically rele-

vant [60]. To address this issue, we will use UMLS filtering as we suggested elsewhere [61].

Using UMLS Metathesaurus each drug may be linked to a semantic type. Next, the UMLS

Semantic Network then provides a set of allowable links between these drugs. We strongly

believe that such filtering will greatly increase validity of the proposed methodology. Second,

our approach only considers static network snapshots. However, DDIs network is a dynamic
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system that could expand in terms of size and space over time. Hence, the classification task

could be augmented to incorporate dynamic aspects of an evolving network. In addition,

our intention is to develop a Web-based application that will exploit presented approach for

DDI network curation and make it available to broad community of researchers. Last but not

least, it is also straightforward to extent this work to drug-target, drug-disease or drug-food

interactions.

Conclusion

Link prediction is a promising methodological framework for studying complex systems in

different scientific disciplines, including pharmacology. We evaluate an approach to potential

DDIs prediction using link prediction methodology. We study the prediction performance of

unsupervised and supervised link prediction algorithms on several large-scale DDI networks.

Although there exist many different approaches and algorithms, reliable prediction of links in

a network is still a very challenging problem. Computational approach presented here can be

used as tool to help researchers to identify potential DDIs. Overall, our results demonstrated

favorable classification performance and suggest appropriateness of the presented methodol-

ogy for potential DDIs identification.
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59. Conde-Estévez D, Echeverrı́a-Esnal D, Tusquets I, Albanell J. Potential clinical relevant drug-drug

interactions: Comparison between different compendia, do we have a validated method? Annals of

Oncology. 2015; 26(6):1272. https://doi.org/10.1093/annonc/mdv151 PMID: 25791633

Link prediction for drug-drug interaction mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0196865 May 8, 2018 22 / 23

https://doi.org/10.1371/journal.pcbi.1002998
http://www.ncbi.nlm.nih.gov/pubmed/23555229
https://doi.org/10.1093/bioinformatics/btq382
https://doi.org/10.1093/bioinformatics/btq382
http://www.ncbi.nlm.nih.gov/pubmed/20823320
https://doi.org/10.1016/j.jbi.2015.05.015
https://doi.org/10.1016/j.jbi.2015.05.015
http://www.ncbi.nlm.nih.gov/pubmed/26065982
https://doi.org/10.1093/nar/gkt1068
https://doi.org/10.1093/nar/gkt1068
http://www.ncbi.nlm.nih.gov/pubmed/24203711
https://doi.org/10.1021/ci200367w
http://www.ncbi.nlm.nih.gov/pubmed/21942936
http://www.ncbi.nlm.nih.gov/pubmed/15360858
https://doi.org/10.1093/bioinformatics/bts591
https://doi.org/10.1093/bioinformatics/bts591
http://www.ncbi.nlm.nih.gov/pubmed/23044550
https://doi.org/10.1126/scitranslmed.3003377
https://doi.org/10.1126/scitranslmed.3003377
http://www.ncbi.nlm.nih.gov/pubmed/22422992
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1021/ci034001x
http://www.ncbi.nlm.nih.gov/pubmed/12767139
https://doi.org/10.1093/nar/gkv1075
http://www.ncbi.nlm.nih.gov/pubmed/26481350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1371/journal.pcbi.1003374
https://doi.org/10.1371/journal.pcbi.1003374
http://www.ncbi.nlm.nih.gov/pubmed/24339767
https://doi.org/10.1038/srep12261
http://www.ncbi.nlm.nih.gov/pubmed/26198206
https://doi.org/10.1093/annonc/mdv151
http://www.ncbi.nlm.nih.gov/pubmed/25791633
https://doi.org/10.1371/journal.pone.0196865


60. Scheife RT, Hines LE, Boyce RD, Chung SP, Momper JD, Sommer CD, et al. Consensus recommenda-

tions for systematic evaluation of drug-drug interaction evidence for clinical decision support. Drug

Safety. 2015; 38(2):197–206. https://doi.org/10.1007/s40264-014-0262-8 PMID: 25556085

61. Kastrin A, Rindflesch TC, Hristovski D. Link prediction on a network of co-occurring MeSH terms:

Towards literature-based discovery. Methods of Information in Medicine. 2016; 55(5):340–346. https://

doi.org/10.3414/ME15-01-0108 PMID: 27435341

Link prediction for drug-drug interaction mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0196865 May 8, 2018 23 / 23

https://doi.org/10.1007/s40264-014-0262-8
http://www.ncbi.nlm.nih.gov/pubmed/25556085
https://doi.org/10.3414/ME15-01-0108
https://doi.org/10.3414/ME15-01-0108
http://www.ncbi.nlm.nih.gov/pubmed/27435341
https://doi.org/10.1371/journal.pone.0196865

