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Abstract

To exploit the plethora of information provided by Next Generation Sequencing, the identifi-
cation of the genetic mutations responsible for disease in general or cancer in particular,
among the thousands of neutral germline or somatic variations is a crucial task. Genome-
wide association studies for the detection of disease-associated genes or cancer drivers can
only identify common variations or driver genes in a cohort of patients. Thus, they cannot dis-
cover unique disease-associated mutations or cancer driver genes on a personal basis.
Moreover, even when there are such common variations, their significance is unknown.
Here, we extend the machine learning based approach ENTPRISE developed for predicting
the disease association of missense mutations to frameshift and nonsense mutations. The
new approach, ENTPRISE-X, is shown to outperform the state-of-the-art methods VEST-
indel and DDIG-in for predicting the disease association of germline frameshift mutations in
terms of balanced measure Matthew’s correlation coefficient, MCC, with a MCC of 0.586 for
ENTPRISE-X, versus 0.412 by VEST-indel and 0.321 by DDIG-in, respectively. Large scale
testing on the EXAC dataset shows ENTPRISE-X has a much lower fraction of 16% of varia-
tions classified as disease causing, as compared to VEST-indel’'s 26% and DDIG-in’s 65%
of predictions as being disease-associated. A web server for ENTPRISE-X is freely available
for academic users at http://cssb2.biology.gatech.edu/entprise-x.

Introduction

Identifying the causative genetic variations of a disease or cancer is a key step towards diagnosis
and cure. A typical patient has thousands of genetic variations involving thousands of genes. It
is thus a nontrivial task to pinpoint the single variation or group of variations responsible for
the given disease. Traditionally, genome wide association studies (GWAS) are employed for
detecting common variations among a cohort of same disease patients [1, 2]. Due to the hetero-
geneity of human disease [3], GWAS can only cover a small fraction of patients. Thus, for the
majority of patients, new approaches for personalized detection of disease-associated variations
are needed. Since disease is a complex system phenomenon that is often caused by the syner-
getic effects of many factors including genetic, environmental, and life style effects, one can
only infer that a specific mutation is associated with a disease, which means it could contribute
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to the onset of a disease. Even so, it might not be the only cause of the disease. A mutation, in
particular frameshift and nonsense ones, could result in a loss or gain of function of the protein.
If the function of the normal protein is essential for life, the mutated protein with functional
consequences could result in disease subject to extrinsic factors. Because of their importance,
many methods have been developed to predict disease-associated mutations [4-12]. Some can
also help annotate somatic mutations in cancer [13]. Approaches specific for cancer driver
mutations have also been developed [14-17]. More generally, our recently developed machine
learning based method ENTPRISE outperforms previous methods in terms of the ability to dis-
tinguish neutral from disease-associated missense mutations in the same protein, false positive
rate, and performance in cancer driver prediction [18].

Although ENTPRISE has outstanding performance for both Mendelian and cancer driver
mutations and requires only single patient exome information, like many other methods, it
can only handle missense amino acid substitutions. In practice, based on the v76 version of
the COSMIC database [19], while 64.4% of the mutations are missense amino acid substitu-
tions, 21.7% are silent, 8.4% are nonsense and frameshift mutations, 1.4% are in-frame indels
(insertions/deletions), and the remaining 4.1% are uncharacterized. Furthermore, since both
nonsense and frameshift mutations disrupt protein structure more severely than missense
mutations and in-frame indels, they are more likely to have pathogenic consequences. In that
regard, there are a number of methods dedicated to assessing the disease association of frame-
shift and/or nonsense mutations [17, 20-22]. However, as in the case of missense variations,
these approaches often have quite high false positive rates, which limit their practical applica-
tion when applied to entire exomes.

In this work, we extend the ENTPRISE approach [18] that successfully classifies the disease
association of missense mutations to include nonsense and frameshift mutations. Since both
nonsense and frameshift mutations disrupt protein structure at a given location within a pro-
tein’s sequence, we will treat them identically. ENTPRISE uses a set of features derived from
the protein’s sequence and predicted tertiary structure in a boosted tree regression method
[23] to learn a model from the training dataset. Here, we shall use similar features derived
from predicted protein structures and include additional features related to the global func-
tionality of the protein. The extended approach which is called ENTPRISE-X will be bench-
marked against the best current state-of-the-art DDIG-in [20] and VEST-indel [21] methods
for frameshift and nonsense mutations. DDIG-in is a SVM-based machine-learning method
[24] that uses both DNA and protein sequence information as well as predicted accessible sur-
face area and can address both frameshift and nonsense variations. VEST-indel deals with
frameshift and in-frame variations and uses Random Forest classifiers [25] to train a model
using 24 features including a “PubMed” feature for disease relevance. In addition to comparing
to these established approaches, we also perform a large scale test on the ExAC dataset of
60,706 exomes from unrelated individuals [3]. While EXAC is not necessarily completely neu-
tral (i.e. all variations are not disease associated), the number of variations classified by a
method to be disease-associated should be strongly correlated with the false positive rate of the
method. The method developed in this work is useful for personalized Mendelian disease and
protein target identification and is freely available for academic users at http://cssb2.biology.
gatech.edu/entprise-x.

Materials and method
Datasets

Training set. Pathogenic data (ClinVar) were downloaded from the NCBI site ftp://ftp.
ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/. Two neutral data sets are used. One is EPS6500
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from http://evs.gs.washington.edu/EVS/ [26], and the other is from the 1000 Genomes Project
phase 3 data [27]. The mutations employed for training exclude mutations in proteins having
sequence identity > 35% to any proteins in the test data set described below.

Testing set. To compare ENTPRISE with VEST-indel and DDIG-in, we use the same
frameshift testing set as employed in the VEST-indel [21]. It consists of 184 pathogenic muta-
tions from the ClinVar database and 1,340 neutral ones from the SIFT-indel method con-
structed from inter-species multiple sequence alignment [22]. After mapping the protein
sequences to structures in our predicted human exome protein structure database [18], we
obtain 82 pathogenic and 1,025 neutral frameshift mutations. Since there are no independent
data for comparing methods on nonsense mutations, we adopt a similar 10 fold cross-valida-
tion approach as was employed in the DDIG-in method [20] to benchmark ENTPRISE-X for
nonsense mutations.

ExAC set. For large scale testing of our method in comparison to existing algorithms, we
downloaded the ExAC dataset [28] that excludes the Cancer Genome Atlas (TCGA) data
(http://cancergenome.nih.gov/). The goal of ExAC is to provide a global “reference set” for
filtering out harmless genetic variants observed in patients with some disease. However,
since the data only excluded childhood diseases, it could still contain variations causing dis-
ease in adults. The ExAC variations excluding the Cancer Genome Atlas (TCGA) data are
considered to be mostly, but not completely, neutral [28]. A method with a larger false posi-
tive rate will result in a larger fraction of data as being classified as disease causing. Thus, to a
rough first approximation, this large-scale test can be used to estimate the false positive rate
of a method. After mapping proteins to our predicted protein structure database and exclud-
ing mutations in proteins having a sequence identity > 35% to any protein in the training
set, we obtained 56,917 putative neutral frameshift and 45,131 putative neutral nonsense
mutations.

A brief summary of training and testing datasets on frameshift and nonsense used for
ENTPRISE-X mutations are given in Table 1.

Table 1. Summary of variations in the ENTPRISE-X training and testing data sets.

Data Set

Training set

Usage

1. For training a model in future applications.
2. For feature reduction.

Frameshift Nonsense
- - 3. For large scale, ten-fold cross-validation test on nonsense mutations in comparison to DDIG-in, and
Pathogenic Neutral Pathogenic Neutral on frameshift mutations in comparison to DDIG-in & SIFT-indel (see Table 3).
ClinVar: ESP6500: 1,604 ClinVar: ESP6500:
6,513 5,023 181
1000 GP: 366 1000 GP:
3,171
Total numbers (sum of each column)
6,513 1,970 5,023 32,51
Independent testing sets (not used in training) Usage
VEST-indel set For test on frameshift variations in comparison to VEST-indel & DDIG-in methods (see Table 2).
Frameshift Nonsense
Pathogenic Neutral Pathogenic Neutral
ClinVar: 82 | Inter-species: — —
1,025
ExAC set For large scale false positive rate test on frameshift & nonsense variations in comparison to the VEST-
_ ExAC: 56.917 _ ExAC: indel & DDIG-in methods

https://doi.org/10.1371/journal.pone.0196849.t001

45,131
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Features and machine learning

Owing to the success of the features in the ENTPRISE method [18] for missense mutations, we
tested the same features for frameshift and nonsense mutations. These are derived from the
protein’s sequence and predicted protein three-dimensional (3D) structural information.
However, since for nonsense mutations the mutated protein has no amino acids after the
mutation, the features describing the amino acid types of the mutated protein in ENTPRISE
are not needed for nonsense mutations, whereas the features describing the amino acid type
before the mutation are kept. For frameshift mutations, since the major result is similar to
nonsense mutations (dysfunction of the part after mutation point), we also neglect the amino
acid type right after the mutation. A detailed description of these features is found in Ref. [18].
Here, we give a brief summary and describe the newly introduced features specific for frame-
shift and nonsense mutations:

(a). The reference amino acid type of the mutated protein position. This requires 20 variables
to represent the 20 types of amino acids. For a given residue type, the specific variable is
set to the value of 1 and the rest of the variables are set to 0. This feature reflects the fact
that mutations of certain types of amino acids are more likely to cause disease than others
[29]. The wild type amino acid as well as the following contact composition and entropy
information encode the functional importance of the mutated position when the protein
functions normally.

(b). 20 variables for the amino acid composition of the residues in contact with the mutated
protein position. This reflects the protein’s local structural environment at the mutated
position and is defined as the amino acid composition of all residues whose C, atom is
within 12 A from the mutated position’s C,, atom assuming that the structure of the pro-
tein is in the same native conformation. The consideration of this feature is that ifa
mutation is at or close to a protein-protein interface or protein-ligand binding pocket,
the mutation is more likely to be disease associated [29]. Since certain residues are usually
conserved in interface and binding sites, the amino acid composition around the
mutated position encodes information if the mutation is close to an interface or binding
pocket. Since for the majority of human proteins, experimental structures are not avail-
able, this work uses predicted protein structures from TASSERY™” [30] as in ENTPRISE
[18]. The composition is calculated by

q(a) = N(a)/ZN(b), (1)

where N(a) is the number of residues of type a contacting the mutated position, and XN
(b) sums over all 20 types of residues.

(c). 20 variables for the composition of the domain that contains the mutated protein posi-
tion. The reason for considering this feature is that certain domains/proteins are more
likely to be disease associated than others [7]. Proteins/domains are distinguishable by
their amino acid composition. This feature encodes the characteristics of the domain at
the mutated position. The domains of the mutated proteins are predicted by threading
the sequence using the fast HHpred threading algorithm [31] against the SCOP domain
database [32] in which domains are manually defined. The computation of domain com-
position is the same as Eq (1) with N(x) being replaced by the number of residues of type
x in the whole domain.

(d). Sequence entropy of the mutated protein position. This characterizes the evolutionary
conservation at the mutated position. Our assumption is that evolutionarily conserved
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(e).
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(g)-

(h).

().

residues are either functionally and/or structurally important. The sequence entropy is
given by

S, =8— <S>, (2)

20

where $ = — Y f/In(f)) is the sequence entropy of the given position, f; is the normalized
=1

amino acid frequency profile generated by sequence search method PSI-BLAST [33].

<> stands for averaging over the entire protein sequence.

The above 61 features are the same as in the ENTPRISE method and describe the features
of the mutated position. We next introduce five additional new features that describe
partial or whole protein functionality. The newly introduced features specific for frame-
shift & nonsense mutations are:

Fraction of the affected protein structure defined as (N, — k)/N, where N, is the total
number of residues of the protein, k is the sequential position of the mutation from the
N-terminus. This feature describes how much of the protein is affected by the mutation
that disrupts the structure. Our assumption is that the greater the fraction of the protein
that is affected, the more likely it is that the mutation is disease associated.

Essentiality of mutated protein. If the protein is homologous (defined as having protein
sequence identity > 35%) to an essential protein in the database of essential genes [34], a
feature with a value of one is set; otherwise, it is set to zero. The consideration of this fea-
ture is based on the idea that if the protein is essential, its functional change is more likely
to be associated with disease.

Pathogenicity of the affected part of the protein. This feature is derived from the
ENTPRISE calculation on the whole protein sequence. It reflects the average effects of
the disrupted structure if all the positions have a missense mutation in turn, one position
a time. The assumption is that if the probability of a missense mutation being disease
associated in the missing dysfunctional part of a protein is larger, a frameshift or non-
sense mutation that disrupts this region will be more likely to be disease associated. For
any position in the reference protein sequence, there are 19 possible missense mutations.
The pathogenicity of a position is defined as the ratio of the number of mutations having
an ENTPRISE score > 0.45 divided by 19. (Note that an ENTPRISE score > 0.45 is con-
sidered to be pathogenic). The pathogenicity of the affected part of the protein is the
average pathogenicity of all positions after the nonsense/frameshift position in the
sequence.

Disease involvement of the protein. This feature provides the information that a protein
is associated with disease when its function is altered. It is obvious a consideration for a
mutation on the protein to be disease associated or not when it is mutated. If the protein
is related to any disease as defined by the GeneCards database [35], this feature receives a
value of one. In addition, we have collected gene-disease associations from other two
sources [36, 37] that were used in our recent work [38] for predicting gene-disease asso-
ciation. If a protein is associated with any disease in this additional dataset, this feature
receives another value of one. In all other cases, this feature is set to zero.

Number of protein-protein interactions inferred from the HIPPIE protein-protein inter-
action database [39]. This feature reflects how many other proteins that it might affect if
the protein’s function changes because of the mutation. Its consideration for disease
association is that a protein with more interactions will likely affect more biological
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processes when its function is altered, and thus this increases the possibility of a mutation
being disease associated.

We shall employ the machine learning boosted tree regression method that has been
employed in many other applications [23, 40]. It generates a sequence of decision trees;
each grows on the basis of the residuals of all previous trees [23, 41]. Here, a decision tree
regression is implemented with a maximal depth of eight. The scoring function is repre-
sented as a boosted decision tree [23]:

Niree

flx) =) eT,. (3)

m=1

Where T,, is a decision tree, € is the shrinkage factor or learning rate, and N, is the
number of trees. Two objective function values are adopted: 1 for disease-associated
mutations, and 0 for neutral mutations. The learning rate € is set to 0.005 and the num-
ber of trees, N, is set to 2000. These values are purely empirical and were not opti-
mized. As mentioned above, we treat frameshift and nonsense mutations exactly the
same. Since in the training sets, the total number of disease-associated mutations
(11,536) is roughly twice the total number of neutral mutations (5,222), to train the
model on balanced datasets, we shall train two models: one with a randomly selected half
of the disease-associated mutations and all neutral ones, the other with the remaining
half of the disease-associated mutations and all neutral ones. This way, both models are
trained on balanced datasets. In prediction/testing, a prediction will be given by the aver-
age score from the two models. In case of a jackknife or cross-validation test, the same
training/testing protocol was applied to the training/testing subsets.

Feature reduction

Opverall, we have tested the 66 features described above. However, not all types of features are
useful. We shall employ a feature reduction procedure to eliminate features that have negative
impact on performance. To this end, we cluster the whole training proteins into 10 clusters
with a 35% protein sequence identity cutoff and employ a leave one cluster out cross validation
(LOOCYV) test (also see ten-fold cross-validation subsection). Then, for each cluster, we use
nine clusters for training and the one that is left out for testing. To eliminate features, for each
type of feature, we remove it from training and perform a LOOCYV test; if the feature’s removal
results in a better Matthew’s Correlation Coefficient (MCC) with a default cutoff of 0.5, then
the feature is discarded. As a result of this procedure, the 20 features of domain composition
(type (c) above) were eliminated, leaving us with total of 46 final features including all five
newly introduced features.

Results
Comparison to other methods

We next tested ENTPRISE-X using the 46 final features for frameshift mutations on the
VEST-indel test set [21] and compared the results with the VEST-indel and DDIG-in methods
[20, 21] which according to Ref [21] are the two most accurate methods for frameshift varia-
tions. The results are presented in Table 2. Comparison of different approaches is made on the
consensus subset (all three methods have predictions) of the full test set. The full set has 82
pathogenic and 1025 neutral mutations, whereas the consensus has 70 pathogenic and 914
neutral mutations. The difference in numbers of cases is due to the fact that some methods like
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Table 2. Performance on the VEST-indel test set for frameshift variations.

Method mccP Sensitivity Specificity F-score® False positive rate False discovery rate
Evaluation on the consensus subset®
ENTPRISE-X 0.626 0.943 0.916 0.620 8.4% 54%
(0.749) (0.767)
VEST-indel 0.440 0914 0.814 0.421 18.6% 73%
(0.585) (0.615)
DDIG-in 0.321 0.943 0.663 0.297 33.7% 82%
(0.441) (0.439)
Evaluation on the full test set
ENTPRISE-X 0.586 0.878 0.912 0.590 8.8% 55%
Baseline? 0.323 0.988 0.621 0.294 37.9% 83%
Baseline® 0.224 0.598 0.775 0.271 22.5% 83%
ENTPRISE-X_1f 0.570 0.878 0.905 0.574 9.5% 57%
ENTPRISE-X_2f 0.555 0.854 0.905 0.562 9.5% 58%
ENTPRISE-X_10altf 0.587+0.006 0.887+0.006 0.910+0.003 0.590+0.006 9.0%+0.3% 55.8%+0.7%
ENTPRISE-X-nolocal 0.481 0.707 0.914 0.509 8.6% 60%
ENTPRISE-X-nonew 0.099 0.793 0.390 0.168 61.0% 90%
ENTPRISE-X-noratio 0.513 0.890 0.871 0.509 12.9% 64%
ENTPRISE-X-noessential 0.574 0.890 0.903 0.575 9.7% 58%
ENTPRISE-X-nopathogen 0.543 0.866 0.896 0.546 10.4% 60%
ENTPRISE-X-nodisease 0.368 0.683 0.859 0.396 14.1% 72%
ENTPRISE-X-nointeract 0.586 0.890 0.909 0.588 9.1% 56%

* To be fair to all methods, only the consensus mutations of three methods are evaluated in comparison to the other methods.

® Matthew’s Correlation Coefficient. The numbers in parentheses are the maximal possible values.

© 2(precisionxrecall)/(precision+recall), where precision = (true positive)/(true positive + false positive), recall = (true positive)/(true positive + false negative). Numbers
in parentheses are the maximal possible values.

4 When only the feature representing if the gene is disease-associated or not is used.

¢ When only the feature representing if the gene is essential or not is used.

fWhen using one of the 2 models trained on each half of the pathogenic data and training ENTPRISE-X for 10 different random partitions of the pathogenic part of the

training set were used.

https://doi.org/10.1371/journal.pone.0196849.t002

DDIG-in cannot interpret all of the input data. Results for VEST-indel (http://www.cravat.us/
CRAVAT) and DDIG-in (http://sparks-lab.org/ddig/) are obtained from their respective web-
servers. Table 2 clearly shows that ENTPRISE-X with a default cutoft score 0.5 has the best
overall performance in terms of its Matthew’s Correlation Coefficient and F-score defined as 2
(precisionxrecall)/(precision+recall), where precision = (true positive)/(true positive + false
positive), recall = (true positive)/(true positive + false negative). It also has the lowest false posi-
tive rate defined as (the number of neutral variations classified as disease-associated)/(the total
number of neutral variations) and is related to specificity by 1-specificity. DDIG-in has the
worst MCC and F-score. It tends to over-predict disease association and thus has the largest
false positive rate. VEST-indel performs in the middle for all measures. In Fig 1, we compare
the Receiver Operating Characteristic (ROC) of ENTPRISE-X, VEST-indel and DDIG-in. Fig
1 shows that ENTPRISE-X performs significantly better than VEST-indel and DDIG-in, espe-
cially in the low false positive regime that is the most important for practical application. For
example, at a false positive rate of 2%, ENTPRISE-X has a true positive rate of 66%, whereas
VEST-indel only has a 33% true positive rate.

Since we have used the feature representing whether the given gene is disease-associated or
not as learned from literature (similar to the “PubMed” feature in VEST-indel [21]), it is of
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Fig 1. Receiver operating characteristic curves of ENTPRISE-X, VEST-indel and DDIG-in.
https://doi.org/10.1371/journal.pone.0196849.9001

interest to establish how well it performs when this is the only feature used for prediction. We
call this scenario the baseline method, with the results also given in Table 2. Clearly, it has a too
large false positive rate and the overall performance is much worse than ENTPRISE-X. It is
also interesting to use the essentiality of protein as another baseline approach. It has much
lower sensitivity and specificity than those of ENTPRISE-X. We tested another version of
ENTPRISE-X that removes all the features encoding local information of the mutated position
((a)-(d)) used in ENTPRISE. This scenario is called ENTPRISE-X-nolocal and is shown in
Table 2. It too has worse sensitivity and overall performance than full ENTPRISE-X. It is also
important to examine the significance of the five new features by removing them from the 46
features and the resulting variant is called “ENTPRISE-X-nonew”, its performance is much
worse than that of ENTPRISE-X (see Table 2). This indicates that the newly introduced fea-
tures provide the major contribution to performance of ENTPRISE-X. It is also interesting to
see how different the individually trained models are from the default (average of two models)
prediction. The results are shown in Table 2 with names ENTPRISE-X_1 and ENTPRISE-X_2.
They differ slightly from each other and are slightly worse than the default prediction.

To see the importance of new features, we performed five separate tests by removing each
of the five new features, one at a time:

ENTPRISE-X-noratio—removing the fraction of affected protein part;
ENTPRISE-X-noessential—removing the essentiality of protein;
ENTPRISE-X-nopathogen—removing the pathogenicity score predicted by ENTPRISE;
ENTPRISE-X-nodisease—removing the disease involvement of the protein;
ENTPRISE-X-nointeract—removing number of protein-protein interactions.

Table 2 shows that the order of the effect from strongest to weakest as ranked by their MCC
& F-score are: (1) disease involvement of the protein; (2) fraction of the affected protein struc-
ture part; (3) pathogenicity of the affected part of the protein as predicted by ENTPRISE; (4)
essentiality of mutated protein; and (5) number of protein-protein interactions. The effect of
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Fig 2. False discovery rate by the ENTPRISE-X and VEST-indel methods at various cutoffs on the VEST-indel test
set.

https://doi.org/10.1371/journal.pone.0196849.9002

the number of protein-protein interactions has no visible effect on the MCC but has a small
effect on the F-score and false positive rate.

In practice, due to the fact that neutral variations always dominate over true disease-associ-
ated variations, even a small false positive rate will result in large number of false positive pre-
dictions. We employ the “false discovery rate” (FDR) defined as (number of false positive
predictions)/(total number of predictions). This rate depends not only on the false positive
rate, but also on the relative abundance of true positives and true negatives in the evaluated
data set. Fig 2 compares the false discovery rate by ENTPRISE-X and VEST-indel methods at
various cutoffs on the VEST-indel test set. At the default cutoff score 0.5, both methods are
dominated by false positive predictions with ENTPRISE-X having 56%, VEST-indel having
74% false predictions. Even at a cutoff of 0.9, ENTPRISE-X has 22% and VEST-indel has 36%
false predictions for this particular data set. The high FDR for this set at the default cutoff
value is mainly due to the overwhelmingly number of neutral variations (true positive/true
neutral ~ 0.08). Even if all true positives are recalled, with 9% of neutral variations falsely clas-
sified as being disease-associated, the number of false predictions will be larger than that of
correct positive predictions.

Ten-fold cross-validation

In order to benchmark ENTPRISE-X for nonsense as well as frameshift mutations, we per-
formed a ten-fold cross-validation of ENTPRISE-X using the complete training dataset. Pro-
teins in the whole training set are clustered into clusters with a 35% sequence identity cutoff.
We then randomly partitioned these clusters into ten sets. To test frameshift and nonsense
mutations in each set, we use the mutations in the remaining nine sets for training. The test

is done in three scenarios: (a) evaluating the test set on frameshift and nonsense mutations
together; (b) evaluating the test set only on frameshift mutations, and (c) evaluating the test set
only on nonsense mutations. The results are compiled in Table 3 which shows that perfor-
mance of ENTPRISE-X for frameshift and nonsense variations are very similar. Overall, the
false positive rate of ENTPRISE-X in cross-validation is 18%, much more than that of the
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Table 3. Ten-fold cross-validation of ENTPRISE-X on the whole training set®.

Variation type MCC
Frameshift & nonsense 0.655
Frameshift 0.616
Nonsense 0.619
Frameshift & nonsense 0.156
Frameshift 0.059
Nonsense 0.253
Frameshift 0.201

Sensitivity Specificity F-score False positive rate False discovery rate
ENTPRISE-X

0.851 0.815 0.871 18.5% 10.8%

0.871 0.815 0.909 18.5% 4.9%

0.806 0.815 0.789 18.5% 22.8%
DDIG-in

0.755 0.393 0.721 60.7% 31.0%

0.727 0.341 0.771 65.9% 17.8%

0.821 0.415 0.638 58.5% 47.9%
SIFT-indel

0.837 0.367 0.842 63.3% 15.3%

* To be fair to all methods, only the consensus mutations of the compared methods are evaluated.

https://doi.org/10.1371/journal.pone.0196849.t003

VEST-indel test set of 9.1%. This could be due to some contamination of true positives in the
neutral set. The false discovery rates are relatively smaller than those on the VEST-indel test
set due to the fact that the relative abundance of true positives is larger in the Ten-fold cross
validation set than in the VEST-indel test set. We also compare our method for this set to the
DDIG-in method (VEST-indel has used the same dataset for training, thus not compared) and
SIFT-indel [22]. The SIFT-indel result was obtained from the server at http://sift.jcvi.org/
www/SIFT_chr_coords_indels_submit.html. Clearly, due to its larger false positive rate,
DDIG-in has a much larger false discovery rate. SIFT-indel is better than DDIG-in and worse
than ENTPRISE-X in terms of its MCC, F-score and false positive rate.

Large scale test on the ExAC set

We next performed large scale testing of ENTPRISE-X, VEST-indel and DDIG-in on the
ExAC set. The results are compiled in Table 4. Again, results by VEST-indel and DDIG-in are
obtained from their respective webserver. Consistent with the test on the VEST-indel test set,
VEST-indel classifies around 10% more disease causing mutations than ENTPRISE-X for
frameshift mutations. ENTPRISE-X classifies around 16% of both frameshift and nonsense
mutations as disease causing. The fractions of disease causing mutations classified by DDIG-in
are around 65% for both frameshift and nonsense mutations and are far too high. These rates
are well correlated with the false positive rates in Table 2. The 16% rate of ENTPRISE-X is very
close to the false positive rate for ten-fold cross-validation; indicating that the ExAC set is simi-
lar to the neutral part of the training set in terms of the probability of being contaminated with

Table 4. Comparison of the percentage of disease causing variations in the ExAC set®.

Method Frameshift Nonsense
Evaluated #: 48123 Evaluated #: 40482
ENTPRISE-X 16.5%(0.73:6.0%) 15.7%(0.73:5.6%)
VEST-indel 26.2%(0.82:9.5%) -
DDIG-in 64.4%(0.81:33.3%) 65.4%(0.81:35.1%)

 To be fair to all methods, only the consensus mutations of three methods are reported. Numbers in parenthesis are

cutoff:false positive rate using the cutoff that maximizes the MCC in Table 2.

https://doi.org/10.1371/journal.pone.0196849.t1004
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some true positives because ENTPRISE-X has roughly the same ~16% false positive rate for
both sets.

Statistical significance of ENTPRISE-X predictions

In order to estimate the false positive rate at an arbitrary prediction score, a smooth fitting
function of the false positive rate distribution is needed. This is equivalent to finding the p-
value (the probability of falsely classifying a mutation being disease-associated when it is a true
neutral at a given cutoff score) given an arbitrary prediction score. To derive a p-value measur-
ing the statistical significance of ENTPRISE-X predictions, we utilize a total of 1,025 neutral
frameshift mutations from the VEST-indel test set. The distribution of ENTPRISE-X scores is
shown in Fig 3. The fitting function rapidly approaches zero at a score ~ 1. Based on the shape
of the distribution in Fig 3, we tried fitting the curve with Normal, Weibull, Extreme value,
Log-logistic and Burr distributions. We found that the extreme value distribution is the best
two-parameter fit with mean p = 0.0706 and variation o = 0.1331 using least root mean
squared deviation criterion. The p-value of score x by ENTPRISE-X can be obtained with

p(x) =1 — exp[—exp(*=*)]. The default cutoff score 0.5 has a p-value of 0.039 that is smaller
than the observed false positive rate 9% for the VEST-indel test set. This could be due to statis-
tical fluctuations of the test data. Fig 4 shows the p-value against cutoffs. Similar fitting for
VEST-indel score gives 1 = 0.1371 and variation ¢ = 0.1583 that results in a p-value of 0.096 at
the default cutoff 0.5.

Next, we apply the p-value that is equivalent to theoretical false positive rate at a given cutoff
score to real exome data to estimate the false discovery rate of ENTPRISE-X prediction along
with DDIG-in method. We obtained data from 13 individuals (private communication) and
annotated their frameshift and nonsense variations using ENTPRISE-X. Table 5 summarizes
the annotation results. The numbers of genes predicted to be disease-associated are around
30-70 when a default cutoff of 0.5 is used. Since the true neutral input variations are not
known, here, we estimate the false predictions at given cutoff by pN;,,;, where p is the p-value

10 T T T T T T T T T T T T

9_ —

Density of variations
»n
|

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
ENTPRISE-X score

Fig 3. Distribution of ENTPRISE-X scores for the neutral variations in the VEST-indel test set. The area under the
curve is normalized to one.

https://doi.org/10.1371/journal.pone.0196849.g003
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Fig 4. P-value derived from the VEST-indel test set by fitting to an extreme value distribution versus

ENTPRISE-X score cutoffs.

https://doi.org/10.1371/journal.pone.0196849.g004

at the cutoff, Ny, is the total number of genes evaluated as an approximation of the total num-
ber of neutral input genes. Then the false discovery rate can be estimated by pNiosa1 / Npyeas
where N,.q is number of predicted genes to be disease-associated. The average false discovery
rate over the 13 individuals is around 25% with the default cutoff 0.5. The dependence of the
average false discovery rate for 13 human exomes on the cutoff is shown in Fig 5. It has a mini-

mum at a cutoff score of 0.92 with a 10% false discovery rate and then it increases with
increased cutoff. This is due to the observation that N,,,.4 drops faster than the p-value does.
Obviously, the FDRs of DDIG-in is too high to be practically useful as its FDR ranges from

0.55 to 0.88.

Table 5. Summary of patient annotations using ENTPRISE-X".

patient # of annotated variations # of annotated genes # of disease associated genes false discovery rate
1 396/337 274/201 40/77 0.267/0.880
2 473/437 313/245 53/119 0.230/0.694
3 561/629 341/297 72/182 0.185/0.550
4 417/395 270/207 40/94 0.263/0.742
5 397/393 262/190 38/86 0.269/0.745
6 410/377 271/226 34/105 0.311/0.725
7 454/340 284/198 34/79 0.326/0.845
8 380/352 261/205 39/97 0.261/0.712
9 431/ 414 278/227 48/96 0.226/0.797
10 402/372 255/206 47/94 0.212/0.739
11 494/451 319/256 51/123 0.244/0.701
12 572/588 353/299 69/184 0.200/0.548
13 547/580 342/301 67/166 0.199/0.611

* In each cell, first number is from ENTPRISE-X, second number is from DDIG-in method.

https://doi.org/10.1371/journal.pone.0196849.t005
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Fig 5. Dependence of average false discovery rate of ENTPRISE-X for 13 human exomes on score cutoffs.
https://doi.org/10.1371/journal.pone.0196849.g005

Discussion

In this work, we have extended our machine learning approach ENTPRISE for predicting dis-
ease association of missense mutations to address frameshift and nonsense mutations in
ENTPRISE-X. We show that ENTPRISE-X’s performance is superior to the state-of-the-art
VEST-indel and DDIG-in methods. As with ENTPRISE, ENTPRISE-X has a much lower false
positive rate than its peers while maintaining comparable sensitivity. In practice, for an entire
exome, a large false positive rate will result in a method not useful because of the large number
of mutations incorrectly identified as being disease-associated. The better performance of
ENTPRISE-X demonstrates that selection of proper features and their integration yields better
results. For example, the protein structure based local features help ENTPRISE-X to increase
its sensitivity while maintaining specificity. As was shown for ENTPRISE [18], use of boosted
tree regression gives superior performance compared to training using SVM based training. A
natural extension of the current work is to place disease-causing genes in the content of a func-
tional network to establish whether they would be useful disease-associated drug targets arising
from missense mutations or if the protein is missing due to frameshift/nonsense mutations,
what is the best downstream protein to target to treat the disease.
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