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Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its incidence is increas-

ing worldwide. One method used to restore sinus rhythm is direct current cardioversion

(DCCV). Despite the high success rate of DCCV, AF typically recurs within the first 2

weeks. However, our understanding of the pathophysiology of AF recurrence, incidence,

and progression are highly limited. Lipidomic profiling was applied to identify altered lipids

in plasma from patients with AF using ultra-performance liquid chromatography/quadru-

pole time-of-flight mass spectrometry coupled with multivariate statistical analysis. Partial

least-squares discriminant analysis revealed a clear separation between AF patients and

healthy controls. The levels of several lipid species, including fatty acids and phospholip-

ids, were different between AF patients and healthy controls, indicating that oxidative

stress and inflammation are associated with the pathogenesis of AF. Similar patterns

were also detected between recurrent and non-recurrent AF patients. These results sug-

gest that the elevated saturated fatty acid and reduced polyunsaturated fatty acid levels

in AF patients may be associated with enhanced inflammation and that free fatty acid lev-

els may play a crucial role in the development and progression of AF.

Introduction

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It is associated

with a high risk of stroke, hospitalization, and reduced quality of life [1]. Although it can

develop from a complex interaction between various factors, its pathophysiology has not yet

been elucidated [2, 3]. Direct current cardioversion (DCCV) is a method used to restore sinus

rhythm by electrical shock [4, 5]. Although the acute success rate of DCCV is greater than

90%, AF recurrence is common, particularly within the first 2 weeks, reaching 40% recurrence
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in the first month, despite treatment with anti-arrhythmic agents [6]. A long duration of AF, a

large left atrium (LA), old age, underlying comorbidities, and increased heart rate variability

are related to AF recurrence after DCCV [7–9]. However, the predictive values of these clinical

factors are relatively low. In addition, a better understanding of the pathophysiology of AF is

essential for the discovery of new therapeutic targets. As our understanding of the mechanism

of AF has improved considerably, many studies have indicated that oxidative stress and

inflammation play an important role in the incidence, perpetuation, and recurrence of AF [1,

10–12].

Lipids play important roles as signaling molecules, energy sources, and structural compo-

nents of biological membranes [13]. Accordingly, changes in lipids due to genetic or environ-

mental changes can greatly influence cell function, the immune system, and inflammatory

responses [14]. A lipidomics approach that identifies global changes in lipid metabolites has

been effectively applied in various dysregulation-related diseases, such as obesity [13, 15] and

coronary artery disease [14].

To date, only a limited number of metabolic profiling studies on AF have been conducted.

These reports have described the aqueous metabolite profiles of atrial tissues from AF patients

[16] or animal models [17] and serum samples from AF patients [18]. And lipid profiles

including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), and triglycerides have been provided from patients with AF

to present the association with incidence of AF [19,20]. However, to the best of our knowledge,

no detailed plasma lipidome as well as free fatty acid profiling have been reported in AF

patients. In the present study, global lipid profiling was conducted to identify altered lipid

metabolites in plasma from AF patients using ultra-performance liquid chromatography/

quadrupole time-of-flight mass spectrometry (Q-TOF MS). We also investigated the impact of

lipid profiles in plasma on recurrence after successful DCCV to understand the pathophysiol-

ogy of AF and to present preventive and therapeutic strategies for the occurrence and recur-

rence of AF.

Methods

Study population

Patients who underwent elective DCCV for persistent AF between August 2010 and June 2013

at Seoul National University Hospital were evaluated. This study was approved by the Institu-

tional Review Board of Seoul National University Hospital. All patients provided informed

written consent. Persistent AF was confirmed by a 12-lead electrocardiogram (ECG) and 24 h

Holter monitoring. Patients who had significant mitral valvular disease, had a very large LA

(>60 mm), underwent emergent cardioversion, those with end-stage renal disease, or declined

to consent to the study were excluded. In total, 182 patients were eligible for this study, and 52

patients who underwent electrophysiological analysis due to suspicion of paroxysmal supra-

ventricular tachycardia without any history of AF were prospectively enrolled as healthy con-

trols. A total of 34 patients matched by age, sex, and body mass index (BMI) were analyzed to

compare the metabolomic profiles between the AF and control groups. Metabolomics profiles

were also compared between AF patients who maintained sinus rhythm and who experienced

AF recurrence within 1 month after electrical cardioversion, also after matching by age, sex,

BMI, and LA size.

Electrical cardioversion protocol

All patients received more than 4 weeks of adequate anticoagulation therapy (with a target

International Normalized Ratio of 2.0–3.0) before elective DCCV. Before electrical DCVC,
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anti-arrhythmic agents were prescribed in most patients according to guidelines described

previously [21]. To exclude an intra-cardiac thrombus, transesophageal echocardiography

was performed on the day of cardioversion. A light sedative was administered intravenously

(midazolam, 0.05–0.2 mg/kg or etomidate, 0.1 mg/kg). A biphasic R-wave synchronized

shock (ZOLL M series1 ACLS Defibrillator, ZOLL Medical Corporation, Chelmsford, MA,

USA) was applied via paddles on the right side of the upper sternum and the left side of the

left nipple. The initial cardioversion energy was 100 J and was increased to 150 and 200 J. If

AF was not terminated, self-adhesive skin electrodes (ZOLL Stat-padz1, ZOLL Medical

Corporation) were applied in anterior–posterior position, using a 200 J energy shock. After

successful cardioversion, all patients were monitored for at least 3–4 h before discharge.

After discharge, all patients received anticoagulation therapy for more than 3 months with-

out interruption.

Then, 1 month after successful cardioversion, patients visited the outpatient clinic for evalu-

ation with the 12-lead ECG. AF recurrence was confirmed following 12-lead ECG and physical

examination. The recurrent AF group was defined as those with documented AF on the

12-lead ECG, and the sinus rhythm group (non-recurrent AF group) was defined as those on

sinus rhythm at the 1-month follow-up.

Blood sampling

Venipuncture was performed before electrical cardioversion in AF patients. Blood samples

were extracted in the documented sinus rhythm prior to electrophysiological analysis in the

control group. Anticoagulated whole blood samples were centrifuged at 2500rpm/700g (Her-

aeus Megafuge 40R, Thermo Fisher Scientific) for 15 minutes at 4˚C, and plasma sample ali-

quots were stored at -80˚C for the subsequent analysis.

Lipid metabolite profiling using UPLC/Q-TOF MS

Plasma samples (50 μL) were extracted using a 500 μL chloroform:methanol (2:1, v/v) solution

and dried under nitrogen gas. Lipid extracts were reconstituted into a 250 μL isopropanol:ace-

tonitrile:water (2:1:1, v/v/v) solution. Finally, 5 μL solution was injected into the UPLC/

Q-TOF MS system.

Lipid metabolite profiling was performed using the Waters ACQUITY UPLC system

(Waters, Milford, MA, USA) with a triple TOF 5600 Mass Spectrometer (SCIEX, Framing-

ham, MA, USA). Separation was performed on an Acquity UPLC BEH C18 (2.1 × 100 mm)

with 1.7 μm particles (Waters). Mobile phases A and B involved 10 mM ammonium acetate

in an acetonitrile:water (4:6, v/v) solution and 10 mM ammonium acetate in an acetonitrile:

isopropanol (1:9, v/v) solution, respectively. Samples were eluted at 0.35 mL/min for 19

min. The mass spectrometer was analyzed in the electrospray ionization positive and nega-

tive ion modes, and the mass range was set at m/z 100–1500. Accurate mass measurements

for each peak were obtained with an automated calibrant delivery system (CDS) using 0.2

mL/min of positive and negative calibration solution (SCIEX) containing internal reference

compounds.

Spectral data were analyzed with MarkerView software (SCIEX), which was used to identify

peaks, perform the alignment, and generate peak tables of m/z and retention times. Lipid

metabolites were identified using Lipid Maps (www.lipidmaps.org), the Human Metabolome

Database (www.hmdb.ca), and Metlin (metlin.scrips.edu). Data were confirmed using stan-

dard samples (Avanti Polar Lipids, Alabaster, AL, USA and Sigma-Aldrich, St. Louis, MO,

USA) based on retention times and MS/MS spectra.
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RT-qPCR analysis

Additional plasma samples were collected from 6 healthy controls and 6 patients with AF to

measure the mRNA cytokine. Total RNA was extracted from human plasma using a miRNeasy

Serum/Plasma Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol.

RNA concentration and quality were immediately determined using a Nanodrop 2000

(Thermo Fisher Scientific, Waltham, MA, USA). Human plasma RNA served as a template for

synthesizing cDNA using the GoTaq1 1-Step RT-qPCR System according to the manufactur-

er’s instructions (Promega, Madison, WI, USA). Reactions were carried out using SYBR Green

for 40 cycles of denaturation at 95˚C for 10 s, annealing at 60˚C for 30 s, and extension at 72˚C

for 30 s using the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA,

USA). qPCR was performed using the following primers: IL-1β sense (50-TGG GAT AAC
GAG GCT TAT GTG-30) and antisense (50-ATG GAG AAC ACC ACT TGT TGC-30),
tumor necrosis factor alpha (TNF-α) sense (50-CTC CTA CCA GAC CAA GGT CAA C-30)
and antisense (50-AGA CTC GGC AAA GTC GAG ATA G-30), and β-actin sense (50-CCA
CGA AAC TAC CTT CAA CTC C-30) and antisense (50-GGA GCA ATG ATC TTG ATC
TTC A-30). The experiment was performed on three independent biological replicates. Gene

expression was normalized to the mRNA expression level of β-actin (endogenous control). For

control samples, fold changes were calculated using relative quantification.

Statistical analysis

Multivariate analyses were conducted using SIMCA-P+ software version 12.0 (Umetrics,

Umeå, Sweden). Principle component analysis (PCA) was applied to determine the intrinsic

variation in the data set, and partial least squares discriminant analysis (PLS-DA) was used as a

classification method. Lipid metabolites with a variable importance in the projection (VIP)

score > 1 were considered to be the metabolites responsible for the differences between

healthy controls and AF patients.

SPSS 15.0 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses. Mann–Whitney

U, chi-square tests, and Fisher’s exact test were used to detect differences in the clinical charac-

teristics and lipid metabolites between healthy controls and patients (p< 0.05). Spearman’s

correlation coefficient was used to determine the relationships between clinical parameters

and levels of free fatty acids (FFAs).

Results

Patient characteristics

Baseline clinical characteristics of age-, sex-, and BMI-matched AF patients and controls are

shown in Table 1. There were no significant differences in the presence of comorbidities such

as hypertension and diabetes mellitus, between the AF and control groups. The size of the LA

measured by echocardiography was significantly larger in the AF group (AF vs. control:

47.6 ± 7.0 vs. 36.7 ± 5.9, p< 0.001). Anticoagulant and anti-arrhythmic agents were more fre-

quently prescribed in patients with AF than healthy controls. The proportion of patients taking

a statin or an anti-diabetic agent did not differ between groups.

Lipid profiling of AF patients

Total ion chromatograms of lipid extracts were obtained by UPLC/Q-TOF MS in positive and

negative ion modes (S1 Fig). Phosphatidylcholine (PC), phosphatidylethanolamine (PE),

sphingomyelin (SM), and triglyceride (TG) were detected in the positive ion mode, and FFAs,

phosphatidylinositol (PI), and phosphatidic acid (PA) were detected in the negative ion mode.
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Lipid species were identified by the accurate mass, isotope patterns, MS/MS fragmentation

data, and relative retention time of the same species.

Multivariate pattern recognition methods were applied to identify lipidomic changes in

patients with AF. Principle component analysis (PCA) score plots showed better separation in

the negative ion mode between patients and healthy controls than in the positive ion mode

(Fig 1A and 1B). The reproducibility of metabolite signals was confirmed by quality control

samples injected repeatedly between samples in the PCA score plots. According to partial least

squares discriminant analysis (PLS-DA), the two groups were clearly separated in both polarity

modes (positive ion mode: R2X = 0.387, R2Y = 0.967, Q2 = 0.863; negative ion mode:

R2X = 0.477, R2Y = 0.934, Q2 = 0.846) (Fig 1C and 1D).

Lipid metabolites with VIP scores>1 in the PLS-DA and a p value< 0.05 were considered

significant lipid species; a total of 33 lipids were identified (Table 2). The levels of all identified

FFAs were lower in AF patients than in the controls. LysoPC, LysoPE, and PC levels were

greater in AF patients than in controls when they had a relatively low degree of unsaturation;

by contrast, these species were decreased in AF patients when they had a relatively high degree

of unsaturation. Regarding the other lipid classes (i.e., PE, SM, TG, PA, and PI), only one lipid

per class was significantly upregulated in AF patients relative to controls.

Altered FFAs in AF patients

Although all FFAs examined were downregulated in AF patients relative to controls, other

lipid species showed opposite patterns according to the degree of unsaturation. Therefore, all

Table 1. Clinical characteristics of healthy controls and patients with AF.

Healthy controls

(n = 34)

AF patients

(n = 34)

P value

Age (years) 54.1 ± 8.67 56.2 ± 9.70 0.354

Male/Female 13 / 21 13 / 21 1.000

BMI (kg/m2) 24.1 ± 3.59 24.6 ± 2.90 0.497

Hypertension 8 (23.5) 11 (32.4) 0.417

Diabetes 4 (11.8) 3 (8.8) 1.000

Hypercholesterolemia 4 (11.8) 4 (11.8) 1.000

Coronary artery disease 0 (0.0) 0 (0.0) -

Congestive heart failure 0 (0.0) 0 (0.0) -

Cerebrovascular accident 0 (0.0) 0 (0.0) -

LA size, mm 36.7 ± 5.9 47.6 ± 7.0 <0.001

LA volume, mL 36.4 ± 9.0 97.0 ± 32.7 <0.001

Medication

Anticoagulant agent 0 (0.0) 33 (97.1) <0.001

Antiplatelet agent 0 (0.0) 1 (2.9) 1.000

Anti-arrhythmic drug 0 (0.0) 33 (97.1) <0.001

ACE inhibitor or ARB 7 (20.6) 12 (35.3) 0.177

Beta-blocker 1 (2.9) 3 (8.8) 0.614

Calcium channel blocker 4 (11.8) 4 (11.8) 1.000

Statin 3 (8.8) 4 (11.8) 1.000

Anti-diabetic drugs 2 (5.9) 1 (2.9) 1.000

Data are presented as means ± standard deviations. P values were calculated using the Mann–Whitney U, chi-square tests, and Fisher’s exact test with significance set at

p< 0.05. Abbreviations: AF, atrial fibrillation; BMI, body mass index; LA, left atrium; ACE inhibitor, angiotensin-converting enzyme inhibitor; ARB, angiotensin

receptor blocker.

https://doi.org/10.1371/journal.pone.0196709.t001
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detectable FFAs in plasma samples were examined. The intensities and compositions of the 18

FFAs are presented in Table 3. While the intensities of C14:0 and C16:0 saturated fatty acids

(SFAs) were significantly lower in AF patients, the intensities of longer SFAs, such as C18:0, C20:0,

and C22:0, were significantly higher in AF patients. The levels of all monounsaturated FFAs

(MUFAs) and polyunsaturated FFAs (PUFAs) were significantly lower in AF patients. The FFA

composition (% of total FFAs) indicated a higher percentage of SFAs (43.7% ± 6.2% vs. 32.9% ±
3.1%, p< 0.001) and a lower percentage of MUFAs (33.7% ± 4.4% vs. 36.7% ± 2.6%, p = 0.003)

and PUFAs (22.6% ± 3.9% vs. 30.5% ± 3.3%, p< 0.001) in AF patients than in controls.

Fig 1. Principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) score plots derived from the ultra-performance liquid

chromatography/quadrupole time-of-flight mass spectrometry spectra of plasma samples from healthy controls and patients with AF. PCA score plots in positive

(A; R2X = 0.680, Q2 = 0.456) and negative (B; R2X = 0.699, Q2 = 0.521) ion mode, and PLS-DA score plots in positive (C; R2X = 0.387, R2Y = 0.967, Q2 = 0.863) and

negative (D; R2X = 0.477, R2Y = 0.934, Q2 = 0.846) ion mode. Each ellipse was given by Hotelling’s T2 (0.95).

https://doi.org/10.1371/journal.pone.0196709.g001
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Predicting the recurrence of AF after DCCV

To investigate the metabolic differences based on the recurrence of AF, the analyses described

above were repeated on age-, sex-, and BMI-matched AF patients who experienced AF recur-

rence within 1 month after DCCV (recurrent AF group, n = 57) versus those who maintained

sinus rhythm (non-recurrent AF group, n = 57). All baseline clinical characteristics were simi-

lar between the two groups (S1 Table).

Table 2. Lipids responsible for the differences between healthy controls and patients with AF.

Class Identification Healthy controls

(n = 34)

AF patients (n = 34) VIP value Fold change (AF/Con) P value

SFA FA 14:0 360 ± 91.1 216 ± 47.5 1.32 0.601 <0.001

FA 16:0 4780 ± 515 3550 ± 452 1.38 0.743 <0.001

MUFA FA 16:1 1180 ± 367 621 ± 372 1.10 0.528 <0.001

FA 18:1 6890 ± 807 4240 ± 1160 1.39 0.616 <0.001

PUFA FA 16:2 23.9 ± 7.61 9.37 ± 4.05 1.34 0.393 <0.001

FA 18:2 4650 ± 636 2320 ± 815 1.51 0.498 <0.001

FA 18:3 826 ± 311 328 ± 174 1.27 0.398 <0.001

FA 20:2 89.8 ± 21.7 47.4 ± 12.9 1.33 0.527 <0.001

FA 20:3 117 ± 44.9 49.3 ± 14.1 1.26 0.420 <0.001

FA 20:4 246 ± 109 132 ± 37.4 1.00 0.539 <0.001

FA 22:4 48.0 ± 18.0 21.9 ± 6.43 1.21 0.455 <0.001

FA 22:5 198 ± 102 74.3 ± 32.0 1.10 0.376 <0.001

LysoPC LysoPC 14:0 19.4 ± 4.29 26.7 ± 7.07 1.79 1.376 <0.001

LysoPC 16:0 1720 ± 264 2210 ± 349 2.09 1.286 <0.001

LysoPC 18:0 753 ± 157 893 ± 193 1.24 1.186 0.003

LysoPC 18:1 331 ± 70.7 403 ± 103 1.29 1.218 0.005

LysoPC 20:1 6.78 ± 1.86 8.09 ±1.79 1.19 1.193 0.003

LysoPC 20:3 52.3 ± 23.9 38.3 ± 9.63 1.33 0.731 0.003

LysoPC 22:4 2.76 ± 1.34 1.85 ± 0.597 1.45 0.670 0.001

LysoPC 22:5 15.0 ± 9.36 11.2 ± 3.58 1.02 0.749 0.013

LysoPC 22:6 108 ± 77.2 71.1 ± 23.6 1.13 0.658 <0.001

PC PC 30:0 109 ± 44.6 137 ± 48.9 1.12 1.249 0.007

PC 32:0 562 ± 112 653 ± 114 1.30 1.162 <0.001

PC 38:3 1000 ± 291 848 ± 186 1.19 0.845 0.044

PC 40:7 22.4 ± 5.87 19.8 ± 4.11 1.13 0.885 0.048

LysoPE LysoPE 16:0 9.74 ± 2.03 13.0 ± 2.93 1.82 1.337 <0.001

LysoPE 18:0 14.0 ± 2.05 17.4 ± 3.02 1.81 1.238 <0.001

LysoPE 20:4 18.2 ± 4.60 15.1 ± 4.02 1.23 0.834 <0.001

LysoPE 22:6 30.2 ± 11.1 23.3 ± 12.8 1.12 0.772 <0.001

PE PE 36:4 1.88 ± 0.407 2.21 ± 0.529 1.11 1.173 0.016

SM SM d34:2 442 ± 79.6 506 ± 89.0 1.21 1.146 0.002

PA PA 34:2 4.08 ± 0.909 5.48 ± 1.20 1.04 1.341 <0.001

PI PI 36:1 10.5 ± 3.24 16.6 ± 6.81 1.08 1.582 <0.001

PI 38:5 6.77 ± 2.40 8.60 ± 2.94 1.09 1.269 0.005

Data are presented as means ± standard deviations. Intensity was divided by 104. P values were calculated using the Mann–Whitney U test, with significance set at

p< 0.05. Abbreviations: AF, atrial fibrillation; VIP, variable importance in the projection; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA,

polyunsaturated fatty acid; LysoPC, lysophosphatidylcholine; PC, phosphatidylcholine; LysoPE, lysophosphatidylethanolamine; PE, phosphatidylethanolamine; SM,

sphingomyelin; PA, phosphatidic acid; PI, phosphatidylinositol.

https://doi.org/10.1371/journal.pone.0196709.t002
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Multivariate analyses on lipidomics did not indicate a definite separation according to AF

recurrence (S2 Fig). The intensities and compositions of 18 FFAs were also identified, and the

intensities of FA 16:2, 18:3, 18:4, and C22:5 were significantly lower in the recurrent AF group

(S2 Table). Although the intensities of other FFAs were not significantly different between

recurrent and non-recurrent AF patients, the pattern of changes was similar to that between

the AF and control groups (Fig 2). A comparison of FFA composition (SFA, MUFA, and

PUFA) also revealed a similar pattern of change (increased SFAs, and decreased MUFAs and

PUFAs in recurrent AF patients), although the differences were not statistically significant

(Fig 3).

Relative mRNA levels of inflammatory cytokines

Relative mRNA expression levels of inflammatory cytokines such as interleukin (IL)-1β and

tumor necrosis factor (TNF)-α were measured to confirm the inflammation condition in

plasma samples of patients with AF. The expression in IL-1β and TNF-α were significantly

increased in AF patients (Fig 4).

Discussion

Lipids have a wide range of biological functions, including energy storage, membrane struc-

ture, and cell signaling, with various lipid compositions and distributions [22, 23]. Changes in

lipid metabolism are closely related to disease states, and thus a comprehensive lipid analysis

Table 3. Intensities and compositions of free fatty acids (% of total free fatty acids) in plasma samples obtained from healthy controls and AF patients.

FFA FFA intensity FFA composition

Con (n = 35) AF (n = 35) P value Con (n = 35) AF (n = 35) P value

C14:0 360 ± 91.1 216 ± 47.5 <0.001 1.61 ± 0.380 1.52 ± 0.244 0.397

C16:0 4780 ± 515 3550 ± 452 <0.001 21.5 ± 1.84 25.1 ± 2.51 <0.001

C18:0 2120 ± 275 2340 ± 341 0.004 9.63 ± 1.67 16.8 ± 3.83 <0.001

C20:0 14.7 ± 4.02 20.4 ± 7.16 <0.001 0.0671 ± 0.0216 0.149 ± 0.0653 <0.001

C22:0 11.7 ± 3.11 14.1 ± 2.54 <0.001 0.0534 ± 0.0179 0.103 ± 0.0292 <0.001

C16:1 1180 ± 367 621 ± 372 <0.001 5.22 ± 1.35 4.11 ± 1.75 0.002

C18:1 6890 ± 807 4240 ± 1160 <0.001 30.9 ± 1.94 29.1 ± 3.00 0.007

C20:1 120 ± 61.0 68.7 ± 27.9 <0.001 0.536 ± 0.262 0.471 ± 0.155 0.326

C16:2 23.9 ± 7.61 9.37 ± 4.05 <0.001 0.106 ± 0.0274 0.0634 ± 0.0179 <0.001

C18:2 4650 ± 636 2320 ± 815 <0.001 20.9 ± 2.09 15.8 ± 3.24 <0.001

C18:3 826 ± 311 328 ± 174 <0.001 3.68 ± 1.26 2.28 ± 1.25 <0.001

C18:4 26.1 ± 22.6 8.56 ± 4.01 <0.001 0.116 ± 0.0982 0.0601 ± 0.0281 <0.001

C20:2 89.8 ± 21.7 47.4 ± 12.9 <0.001 0.399 ± 0.0713 0.326 ± 0.0481 <0.001

C20:3 117 ± 44.9 49.3 ± 14.1 <0.001 0.517 ± 0.164 0.341 ± 0.0520 <0.001

C20:4 246 ± 109 132 ± 37.4 <0.001 1.08 ± 0.376 0.928 ± 0.216 0.027

C22:4 48.0 ± 18.0 21.9 ± 6.43 <0.001 0.212 ± 0.0657 0.151 ± 0.0224 <0.001

C22:5 198 ± 102 74.3 ± 32.0 <0.001 0.867 ± 0.378 0.506 ± 0.148 <0.001

C22:6 602 ± 412 307 ± 127 <0.001 2.64 ± 1.56 2.132 ± 0.827 0.198

SFA 7290 ± 689 6140 ± 637 <0.001 32.9 ± 3.12 43.7 ± 6.19 <0.001

MUFA 8190 ± 1080 4930 ± 1500 <0.001 36.7 ± 2.58 33.7 ± 4.38 0.003

PUFA 6830 ± 1200 3290 ± 1070 <0.001 30.5 ± 3.28 22.6 ± 3.90 <0.001

Data are presented as means ± standard deviations. Intensity was divided by 104. P values were calculated using the Mann–Whitney U test. Abbreviations: AF, atrial

fibrillation; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.

https://doi.org/10.1371/journal.pone.0196709.t003
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in biological systems can provide a better understanding of the pathogenesis of diseases and

disease biomarkers for the diagnosis and prognosis of diseases, pharmaceutical discovery, and

therapeutic effects [22].

We performed global lipid profiling to understand the lipid changes in AF patients. In PCA

score plots, AF patients were clearly distinguished from healthy controls, and certain lipid

metabolites that were altered in AF patients (i.e., FFAs, LysoPC, LysoPE, and PC) were con-

firmed to be responsible for this separation. In particular, we found that a characteristic change

depends on the degree of unsaturation of fatty acids in the specific lipid classes, including

FFAs and phospholipids. To better understand this association, we investigated all FFAs in

plasma samples. In total, 18 FFAs detected in AF patients exhibited distinct differences,

depending on the degree of unsaturation: SFAs were upregulated, and MUFAs and PUFAs

were downregulated in AF patients relative to controls.

Fig 2. Intensities of free fatty acids in plasma samples obtained from healthy controls and AF patients and (A) and

non-recurrent and recurrent AF patients (B). P values were calculated using the Mann–Whitney U test. �p< 0.05,
��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0196709.g002

Fig 3. Compositions of SFAs, MUFAs, and PUFAs (% of total free fatty acids) in plasma samples obtained from

healthy controls and AF patients (A) and non-recurrent and recurrent AF patients (B). Data are presented as

means ± standard deviations. P values were calculated using the Mann–Whitney U test. ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0196709.g003
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Although electrical cardioversion is usually successful in restoring sinus rhythm in patients

with AF [4], maintaining sinus rhythm after successful cardioversion is often difficult. Old age,

a large LA, the presence of other cardiac problems, and a longer duration of AF are correlated

with AF recurrence [23, 24]. We investigated whether metabolic changes can predict AF recur-

rence after successful DCCV. For this purpose, we compared the lipidomic profiles between

recurrent and non-recurrent AF patients, after matching to adjust for other potential risk fac-

tors of AF recurrence. Although 12-lead ECG has limiter power to detect paroxysmal AF, most

of AF recurred after cardioversion were persistent type which 12-lead ECG could detect. The

lipidomic differences between the recurrent and non-recurrent AF patients were not signifi-

cant, nevertherless the intensities of FFAs showed a similar pattern to those from the compari-

son between AF and the control group: the SFA level in plasma was higher in the recurrent

AF group, while the levels of MUFAs and PUFAs were lower in the recurrent AF group. As

patients with progressed AF are more likely to experience AF recurrence after rhythm treat-

ment [25], these results support the lipidomic differences in AF patients compared to healthy

controls.

Although FFAs are a small proportion of the total fatty acids in plasma, they serve many

important functions in the body [26]. FFAs released from adipose tissue by lipolysis are an

important energy source and are tightly regulated in accordance with the energy needs of the

body [27, 28]. FFA oxidation requires more oxygen than glycolysis, and elevated FFAs are

related to cardiovascular diseases [27]. In particular, excess FFAs lead to plasma membrane

damage and contribute to myocardial dysfunction and ventricular fibrillation [27, 28]. In a

large prospective cohort study, the plasma concentration of total FFAs was shown to predict

the future risk of AF occurrence [29]. However, not all FFAs act similarly in cardiovascular dis-

eases: they are believed to function differently depending on their chemical structure [30–32].

Because chain length and saturation can affect the permeability, rigidity, and fluidity of the

phospholipid membrane, changes in the degree of unsaturation or chain length may cause dif-

ferent responses for oxidative damage by reactive oxygen species [30]. The increased levels of

SFAs in the AF patients may have been influenced by adipose-stimulated lipolysis [32] and thus

contributed to inflammation [31]. Conversely, the decrease in PUFAs may have resulted from

their degradation from reactive oxygen species [32]. PUFAs also exhibit anti-inflammatory

Fig 4. Relative mRNA levels of inflammatory cytokines in plasma samples obtained from healthy controls and AF

patients. A, IL-1β (healthy controls, n = 6; AF patients, n = 4); B, TNF-α (healthy controls, n = 6; AF patients, n = 6). P

values were calculated using the Mann–Whitney U test. �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0196709.g004
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effects by downregulating the release of pro-inflammatory cytokines [31, 33]. Moreover, the

present data are consistent with a previous study in which SFAs and PUFAs were shown to play

different pro- and anti-inflammatory roles with regard to inflammation [31]. This study dem-

onstrated that FFAs, including SFAs, MUFAs, and PUFAs, are elevated or reduced in plasma

samples of AF patients, supporting an important role for inflammation in the pathogenesis of

AF.

Several studies have reported an association between inflammation and AF and shown ele-

vated levels of inflammatory markers or mediators, such as C-reactive protein (CRP), TNF-α,

IL-2, IL-6, and IL-8 in patients with AF [12, 34–37]. It is known that PUFAs might regulate the

expression of genes related to promoting inflammation [38]. Actually, PUFA supplementation

reduced mRNA levels for inflammatory cytokines including IL-1β and TNF-α in the mononu-

clear cells isolated from human whole blood [39], human gastric tissues [40], bovine chondro-

cytes [41]. Furthermore, emerging evidence suggests that inflammation plays a major role in

the initiation and perpetuation of AF. In this study, CRP levels were not routinely measured in

the enrolled patients. Instead, relative mRNA expression levels of inflammatory cytokines,

such as IL-1β and TNF-α, which revealed that the expression of IL-1β and TNF-α was signifi-

cantly upregulated in AF patients relative to controls. However, recent clinical trials reported

little evidence of benefit of supplementation on incident or recurrent AF [42], therefore, fur-

ther studies on the correlation between cytokines expression and lipid levels would be helpful

to evaluate the association between inflammatory cytokine mRNA and lipid species. We sug-

gest that reduced PUFAs may affect inflammatory cytokine production and the elevated

expression of cytokines could be associated with the initiation and/or perpetuation of AF.

In conclusion, AF patients showed discernible lipid profiles compared to healthy controls:

levels of SFA were elevated, while PUFA levels were decreased in plasma from AF patients.

These changes may be associated with enhanced inflammation and pro-arrhythmic condi-

tions, supporting the association between FFA levels and the risk of AF development and

progression.
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