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Abstract

Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority

eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are

believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating

ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However,

there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways

regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable

targets and infer driver signaling pathways regulating CSCs from a large number of differen-

tially expression genes in an unbiased manner. In this study, we propose a straightforward

and integrative analysis to identify potential core signaling pathways of OCSCs by integrat-

ing transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side

population, with regulatory network (Transcription Factor (TF) and Target Interactome) and

signaling pathways. We first identify the common activated TFs in two OCSC populations

integrating the gene expression and TF-target Interactome; and then uncover up-stream

signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified.

Through literature search validation, 15 of them have been reported in association with can-

cer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-

stream signaling cascades are extracted, which also provide potential treatment targets.

Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cas-

cades, and 15 of them have been reported in literatures in cancer stem cell treatment. In

conclusion, the proposed approach can uncover the activated up-stream signaling, acti-

vated TFs and up-regulated target genes that constitute the potential core signaling path-

ways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling

pathways might be able to eliminate OCSCs. The proposed approach can also be applied

for identifying potential activated signaling pathways of other types of cancers.
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Introduction

Over 90% of ovarian cancers are epithelial in origin, and epithelial ovarian cancer, especially the

most aggressive subtype high-grade serous ovarian cancer (HGSOC), accounts for the majority

of ovarian cancer deaths [1, 2]. Most tumors are initially responsive to the conventional chemo-

therapy, and the patients enter into clinical remission after initial treatment. However, tumor

recurrence occurs in more than 70% of patients despite treatment, and the majority eventually

becomes refractory to treatments [3]. Recent research evidences show that tumor is a mixture of

heterogeneous populations of cells with different levels of malignity. A subpopulation of tumor

cells characterized by the capacity of self-renewing, differentiation, and tumor-initiating are

called cancer stem cells (CSCs) or tumor initiating cells (TICs) [4]. CSCs play important roles

in tumor initiation, progression, metastasis, recurrence and drug resistance [4–7]. Thus, elimi-

nation of CSCs is important to overcome drug resistance to improve the prognosis of cancer

patients. The knowledge about CSCs is limited, and one major challenge is that it is difficult

to identify and isolate CSCs with few biomarkers because CSCs are heterogeneous and could

exist a specific hierarchy [8–10]. Ovarian cancer stem cells (OCSCs) have been successfully

identified and isolated based on their expression of distinctive cell surface markers CD44,

CD117, MyD88, and CD133 [11, 12], as well as the activity of ALDH [13]. These CSCs harbor

enhanced tumorigenicity and chemoresistance [14]) and are thought to drive the universal

recurrence of ovarian cancer, as well as responsible for the development of therapeutic resis-

tance [15]. Though studies with these markers show evidence in support of OCSCs [16], there is

still a lack of effective drugs to differentiate and eliminate them [17].

Though common signaling pathways, e.g., WNT, NOTCH, SHH, JAK/STAT, have been

associated with all types of CSCs [18, 19], the core signaling mechanism regulating Ovarian

CSCs remain unclear. The differential gene expression analysis often fails to identify genes reg-

ulate CSCs because it is difficult to identify a few testable targets from a large number of differ-

entially expressed genes mixed with many passenger genes. Additionally, important proteins

regulating CSCs might be missed because either the fold change is small or the gene expression

data is not available. Therefore, it is necessary to integrate multi-datasets with prior knowledge,

e.g., regulatory network and signaling pathways, to increase the possibility of identifying the

true CSC driver genes in the systems biology perspective. Thus, in this study, we propose an

approach to identify potential core signaling pathways of OCSCs by integrating transcriptome

data of OCSCs isolated based on two distinctive markers, ALDH and side population (Hoechst

33342 stain), with the prior knowledge of regulatory network and KEGG signaling pathways.

Our hypothesis is that the integrative analysis of multi-genomics data sets of OCSCs with dis-

tinct markers could infer more accurate driver-signaling network regulating CSC to generate a

small number of testable biomarkers and drugs. In specific, we first identify the common acti-

vated transcription factors (TFs) in two OCSC populations; and then construct the core signal-

ing pathways by uncovering the up-stream signaling cascades of the activated TFs, which

constitute the potential core signaling pathways of ovarian CSC. Drugs targeting on the up-

stream signaling cascades of activated TFs are selected as potential treatments to eliminate

ovarian cancer stem cells. The details of methodology and datasets are introduced in Section 2;

and analysis results are shown in Section 3, followed by the discussions and conclusion.

Materials and methodology

Transcriptome datasets of OCSCs

In this study, we manually searched the ovarian CSC gene expression datasets in NCBI GEO

(Gene Expression Omnibus) using the aforementioned markers and “Ovarian” as the keywords,
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e.g., “CD44, Ovarian”, and only two datasets were found, i.e., GSE33874 and GSE82304. The

dataset GSE33874 is the gene expression profile of isolated side population (SP-Hoechst Blue

High and Hoechst Red Low, Ovarian CSCs) and main population (MP) of fresh ascites obtained

from women with high-grade advanced stage papillary serous ovarian adenocarcinoma [20].

Gene expression profiles (in triplicate) of SKOV3 human ovarian cancer cells of Aldefluor high

(ALDH+, Ovarian CSCs) and Aldefluor low (ALDH-) populations were available in dataset

GSE82304 [16]. The GEO2R was employed to get the fold change data of individual genes.

KEGG signaling pathways and regulatory network

To obtain the KEGG signaling pathways, the “Pathview” R package was employed to download

KGMLs of humans pathways [21]. Then the “KEGGgraph” R package was used to extract

nodes and edges of KEGG signaling pathways from KGMLs [22]. In total, 282 signaling path-

ways were collected from seven categories: metabolism, genetic information processing, envi-

ronmental information processing, cellular processes, organismal systems, human diseases,

and drug development. The TF-Target regulatory network was downloaded from the supple-

mental material of reference [23], which was derived from the TF binding site predictions for

all target genes from TRANSFAC (v7.4) [24]. In summary, the TF-target regulatory network

consists of 230 TFs, 12733 target genes, and 79100 TF-Target interactions.

Signaling pathway construction

First, the Fisher’s exact test (using hypo-geometric distribution) [25] was used to identify the acti-

vated TFs by comparing the number of up-regulated targets vs. the number of all target genes,

with the number of all the up-regulated genes vs. the number of all the genes tested. The p-value

threshold, 0.05, was used to select the activated TFs. Second, all 282 signaling pathways from

KEGG were examined, and all the signaling cascades from the starting nodes to the activated TFs

were extracted, and then the top 3 signaling paths were kept to construct the signaling pathway

regulating the given TFs. The python package, NetworkX, was used to screen all the 282 KEGG

signaling pathways to extract signaling cascades starting from the beginning genes of individual

signaling pathways to the given TFs. Then we score each signaling cascades using the average

expression fold change of genes (on the signaling cascades and with fold change> 0). To control

the size of up-stream signaling network of given TFs, the top 3 signaling cascades are kept. The

up-regulated target genes (Fold change> = 2) in both datasets are linked to the given TFs.

Results

Twenty-two activated TFs

In the two gene expression datasets, there are 1988 and 2528 up-regulated genes (fold change

> = 2); and 883 and 2821 down-regulated genes (fold change < = 0.5) respectively. It is diffi-

cult for biologists to identify potential targets associated with Ovarian CSCs from such large

number of differentially expressed genes. With the aim of discovering testable regulatory sig-

naling networks that maintain Ovarian CSCs, we identify the activated TFs (whose target

genes are up-regulated) in both datasets (CSCs isolated from ALDH+ marker and side-popula-

tion) using the Fisher’s exact test by integrating the up-regulated genes (Fold_Change > = 2)

and the TF-target interactome (gene regulation network) data. In total, 22 TFs are identified

(see Table 1). As can be seen, some TFs will be missed using only gene expression fold change

because either there is no gene expression data available (NA) or the fold change is small. We

conducted the literature search to evaluate these TFs, and surprisingly 15 TFs have been

reported to play important roles in cancer stem cell regulation (see Table 2). For example,

Signaling pathways of ovarian cancer stem cell
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FOXO3 is essential for maintenance of CSC properties in pancreatic ductal adenocarcinoma

[26]; FOXO4 is related to stem cell-like properties of large B-cell lymphoma cells [27]. LEF1 is

able to regulate glioblastoma stem-like cell self-renewal [28]; NFATc2 enhances tumor-initiat-

ing phenotypes in lung adenocarcinoma [29].

Up-stream signaling cascades regulating activated TFs

We further uncover the up-stream signaling cascades regulating these activated TFs using

KEGG signaling pathways. Out of 22 activated TFs, 10 TFs (ELK1, NRF1, FOXO4, LEF1,

MEF2A, FOXO3, NFATC2, SPI1, TEAD1 and E2F1) are found in KEGG signaling pathways

with up-stream signaling cascades link to them (see Table 1 and red color nodes in Fig 1). As

can be seen in Fig 1, many target genes (cyan color nodes) of transcription factors, FOXO4,

LEF1, NFATC2, SPI1 and TEAD1, are up-regulated (fold_change > = 2) in both datasets. The

yellow color nodes represent the starting proteins activating the signaling cascades in KEGG,

e.g., the MAP kinases that are often activated by mitogenic and environmental stress, the EGF

growth factor, and FLT3 that encodes a class III receptor tyrosine kinase that regulates hema-

topoiesis, and PPP3R2 that is related to the calcium signaling. These signaling cascades provide

potential testable biomarkers of Ovarian CSCs for experimental design.

FDA approved drugs targeting on up-stream signaling of activated TFs

To investigate potential drugs that can perturb the Ovarian CSCs, we mapped the FDA

approved drugs on the integrative signaling network (see Fig 2). The target information

Table 1. Twenty-two activated TFs (with p_value< = 0.05 in Fisher’s exact test). The p_value is obtained from Fisher’s exact test in dataset_1 and dataset_2; and

Log_FC denotes the log scaled gene expression fold change (CSC vs. non-CSC) in two datasets; and Within_KEGG indicates if the given transcription factor is on some

signaling cascades from KEGG signaling pathways.

TranscriptionFactors p_value (dataset_1) p_value (dataset_2) Log_FC (dataset_1) Log_FC (dataset_2) Within_KEGG

ELK1 2.05E-07 8.90E-07 0.48 0.12 Y

FOXA1 0.00012 0.00034 1.03 2.63

NRF1 0.01100 0.00047 1.59 2.49 Y

NR3C1 0.01945 0.00076 0.51 -2.16

FOXL1 0.00295 0.00160 0.30 0.79

FOXO4 0.00243 0.00191 0.53 0.75 Y

TAL1_TCF4 0.01586 0.00285 NA NA

LEF1 0.00186 0.00424 -1.05 -1.02 Y

GABPB1 0.00062 0.00761 0.14 -0.43

MEF2A 0.02146 0.00967 -0.73 0.82 Y

FOXI1 0.00219 0.01115 0.37 -3.00

FOXJ2 0.00032 0.01361 -0.60 -0.49

FOXO3 0.00094 0.01948 -0.92 0.73 Y

FOXJ1 0.00057 0.02170 0.10 NA

POU2F1 0.00037 0.02244 -1.55 -0.32

NFATC2 0.00405 0.02352 -1.42 NA Y

SPI1 0.03029 0.02423 0.80 -0.02 Y

POU3F2 0.00639 0.03073 -0.44 -1.85

S8 1.80E-06 0.04148 NA NA

TEAD1 0.00230 0.04209 -0.59 -0.04 Y

FOX 0.00028 0.04483 NA NA

E2F1 0.02243 0.04751 0.37 0.22 Y

https://doi.org/10.1371/journal.pone.0196351.t001
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obtained from DrugBank (version 5.0.11) [41]. In total, 40 drugs (pink nodes in Fig 2) were

selected targeting on different signaling cascades. Through the literature search, we found that

15 drugs have been reported to treat cancer stem cells (see Table 3). For example, Palbociclib

can block the propagation of lung, ovarian and breast cancer stem cells by targeting on CDK4

[42]. Bosutinib and Trametinib targeting on the MAP2K1/2 were used for cancer stem cell and

multi-drug resistance treatment [43, 44]. Celecoxib was used in colon cancer stem cell related

treatment by targeting on PDPK1 [45]. Metformin and Phenformin (targeting on PRKAA1/

PRKAB1 were used for eliminate prostate cancer stem cells [46, 47]. Moreover, Metformin has

been shown to be able to overcome drug resistance to tyrosine kinase inhibitors (TKI) of EGF

receptor (EGFR) in lung cancer [48]. Table 3 shows more details. In addition to the single

drug treatment, combinations of drugs targeting on the different signaling cascades might

Table 2. Literature reports of the Twenty-two TFs. Fifteen TFs have been reported to play important roles in cancer

stem cells.

Transcription

Factors

Titles of articles related to CSC

ELK1 MZF-1/Elk-1 interaction domain as therapeutic target for protein kinase Cα-based triple-

negative breast cancer cells. [30]

FOXA1 FOXA1 expression affects the proliferation activity of luminal breast cancer stem cell

populations. [31]

NRF1 Transcriptional regulation of chemokine receptor 4 (CXCR4) by nuclear respiratory factor 1

(NRF1) controls estrogen-induced malignant transformation of breast epithelial cells to

breast cancer stem cells. [32]

NR3C1 Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic

plasmacytoid dendritic cell neoplasms. [33]

FOXL1 Wnt/b-catenin signaling in cancer stemness and malignant behavior. [34]

FOXO4 FOXO4 expression is related to stem cell-like properties and resistance to treatment in

diffuse large B-cell lymphoma. [27]

TAL1_TCF4 A Small-Molecule Antagonist of the β-Catenin/TCF4 Interaction Blocks the Self-Renewal of

Cancer Stem Cells and Suppresses Tumorigenesis. [35]

LEF1 LEF1 regulates glioblastoma cell proliferation, migration, invasion, and cancer stem-like cell

self-renewal. [28]

GABPB1 Resetting cancer stem cell regulatory nodes upon MYC inhibition. [36]

MEF2A

FOXI1

FOXJ2

FOXO3 FOXO3/PGC-1β signaling axis is essential for cancer stem cell properties of pancreatic ductal

adenocarcinoma. [26]

FOXJ1

POU2F1

NFATC2 Cancer-stem-cell (CSC) marker, DCLK1-S, enhances invasive potential of cancer cells by

phosphorylating/activating NFATc2: role of COL3A1 and SPARC in mediating metastatic

effects of DCLK1-S/NFATc2. [29]

SPI1 Inhibition of the transcription factor Sp1 suppresses colon cancer stem cell growth and

induces apoptosis in vitro and in nude mouse xenografts. [37]

POU3F2

S8

TEAD1 YAP/TEAD Co-Activator Regulated Pluripotency and Chemoresistance in Ovarian Cancer

Initiated Cells. [38]

FOX Identification of chromatin accessibility domains in human breast cancer stem cells. [39]

E2F1 Transcriptional control of stem cell fate by E2Fs and pocket proteins. [40]

https://doi.org/10.1371/journal.pone.0196351.t002
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have better effects to eliminate cancer stem cells. In summary, this analysis can provide testable

hypothesis and potential drug candidates to eliminate OCSCs.

Discussion and conclusion

Most ovarian cancer tumors are initially responsive to the conventional chemotherapy.

Whereas, more than 70% of patients will experience tumor recurrence, and the majority even-

tually becomes treatment resistant. Ovarian cancer stem cells (CSCs) are thought to drive the

universal recurrence of ovarian cancer, as well as responsible for the development of therapeu-

tic resistance. However, the core signaling pathways regulating Ovarian CSCs remain unclear,

and there is still a lack of effective drugs and drug combinations to differentiate and eliminate

them to improve cancer survival.

In this study, we propose to identify potential core signaling pathways of OCSCs in a data-

driven manner by integrating transcriptome data of OCSCs isolated based on two distinctive

cell surface markers, ALDH and side population, with prior knowledge, e.g., regulatory net-

work and signaling pathways, to increase the possibility of identifying the true CSC driver

Fig 1. Activated signaling pathways of ovarian CSCs. The color of yellow, green, red and cyan represents signaling starting genes, signaling transduction genes, TFs

and target genes respectively.

https://doi.org/10.1371/journal.pone.0196351.g001
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genes and signaling pathways. We identified 22 activated transcription factors, and 15 of them

have been reported in the association with cancer stem cells. In addition, 10 transcription fac-

tors were found in the KEGG signaling pathways, and we extracted the up-stream signaling

cascades regulating these transcription factors, which provide potential core signaling mecha-

nism of ovarian CSC regulation. Moreover, we mapped the FDA approved drugs on these up-

stream signaling cascades. Forty FDA approved drugs were identified and 15 of these drugs

have been reported in cancer stem cell treatment. Combinations of these drugs targeting on

different up-stream signaling cascades might be effective to eliminate ovarian cancer stem

cells.

The proposed approach can be helpful for discovering synergistic and effective drug combi-

nations. It is well known that inhibiting a single target does not ensure the success of effective

treatment due to the complicated interplay of multiple signaling pathways [4]. For example,

the activation of Sonic Hedgehog (SHH) signaling and evolution through a mesenchymal phe-

notype have been uncovered as a novel mechanism of drug resistance to tyrosine kinase inhibi-

tors (TKI) of EGF receptor (EGFR) in lung cancer [48], and play important roles in regulating

hepatocellular carcinoma (HCC) [58]. Also, it was reported that the number of CSCs can be

increased by MSCs [59], which could be produced by the activation of SHH signaling [60] in

ovarian cancer. Thus drug combinations blocking the signaling interplay have high possibility

to be synergistic and effective in cancer treatment. For example, Metformin (widely used as

Fig 2. FDA approved drugs targeting on up-stream signaling of activated TFs of ovarian CSCs. The color of yellow, green, red, cyan and pink represents signaling

starting genes, signaling transduction genes, TFs, target genes, drugs respectively.

https://doi.org/10.1371/journal.pone.0196351.g002
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Table 3. FDA approved drugs targeting on upstream signaling of TFs.

Drug Name Target Titles of articles related to CSC treatment

Palbociclib CDK4 Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: Telomerase drives

tumor cell heterogeneity. [42]

Arsenic trioxide CCND1 MAPK1 IKBKB Arsenic trioxide sensitizes cancer stem cells to chemoradiotherapy. A new approach in the

treatment of inoperable glioblastoma multiforme. [49]

Insulin Human RB1

Insulin Pork RB1

Regorafenib MAPK11

Acetylsalicylic acid TP53 IKBKB PRKAG2 PRKAG3 PRKAA1

PRKAA2 PRKAG1 PRKAB1

Cobimetinib MAP2K1

Bosutinib MAP2K1 MAP2K2 The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. [43]

Trametinib MAP2K1 MAP2K2 Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and

pancreatic cancer stem cells. [44]

Isoprenaline MAPK1PIK3R1

Celecoxib PDPK1 Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in

Multistep Rat Colon Carcinogenesis Bioassays. [45]

Sucralfate EGF

Cetuximab EGFR Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast

cancer stem cells. [50]

Trastuzumab EGFR Cancer stem cell-driven efficacy of trastuzumab (Herceptin): towards a reclassification of

clinically HER2-positive breast carcinomas. [51]

Lidocaine EGFR

Gefitinib EGFR

Erlotinib EGFR Tyr1068-phosphorylated epidermal growth factor receptor (EGFR) predicts cancer stem cell

targeting by erlotinib in preclinical models of wild-type EGFR lung cancer. [52]

Lapatinib EGFR

Panitumumab EGFR Cancer Stem Cell-Based Models of Colorectal Cancer Reveal Molecular Determinants of

Therapy Resistance. [53]

Vandetanib EGFR

Afatinib EGFR Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem

cells. [54]

Osimertinib EGFR

Necitumumab EGFR

Mesalazine IKBKB Mesalazine inhibits the β-catenin signalling pathway acting through the upregulation of μ-

protocadherin gene in colo-rectal cancer cells. [55]

Sulfasalazine IKBKB

Auranofin IKBKB

Acetylcysteine IKBKB

Urea CTNNB1

Lithium GSK3B

Cyclosporine PPP3R2 Cancer Stem Cells in Prostate Cancer: Implications for Targeted Therapy. [56]

Pseudoephedrine NFATC1

Halothane GNG2

Adenosine

monophosphate

PRKAA1 PRKAB1

Adenosine

triphosphate

PRKAA1 Extracellular ATP reduces tumor sphere growth and cancer stem cell population in

glioblastoma cells. [57]

Phenformin PRKAA1 Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during

cell transformation and NTPs in cancer stem cells. [46]

Metformin PRKAB1 Metformin and prostate cancer stem cells: a novel therapeutic target. [47]

Sorafenib FLT3

(Continued)
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anti-diabetic drug, also identified in this study) and MEK-inhibitors (Selumetinib/Pimasertib

targeting on the RAF/RAS/MAPK signaling) were discovered to effectively inhibit the prolifer-

ation and metastasis of LKB1 positive Non-Small Cell Lung Cancer (NSCLC) cancer cells [61].

The synergism of the combination is the down-regulation of GLI1, which is the mediator of

epithelia-to-mesenchymal transition (EMT) signaling, and can be affected by SHH signaling

[61]. Moreover, the drug combination, Metformin and Erlotinib (EGFR inhibitor), is used in a

phase II study for the treatment of stage IV NSCLC [62, 63].

There are also some limitations of this integrative data analysis. First, the current TF-target

interactome data might not be complete and accurate. In the future work, we will integrate

new TF-target interaction data resources, e.g., TRUST (text mining) [64] and GTRD (Chip-

Seq data) [65], to improve the quality and completeness [66]. Moreover, the tissue specific reg-

ulatory network data might be useful to further refine the TF-target interactome data [66, 67].

Second, 12 activated TFs are still missed in the up-stream signaling network analysis. Addi-

tional signaling pathway database, e.g., BioGRID [68], STRING [69], Reactome [70], could be

integrated to identify more up-stream signaling cascades of additional active TFs. Thirdly,

other pharmacological data resources, e.g., LINCS (reverse gene signature based data) [71],

can be integrated to identify more drugs or prioritize drugs to eliminate the Ovarian CSCs.

Also, the drug repositioning [72–74] and drug combination prediction [75–77] are not trivial

tasks. In the future work, we will integrate additional data resources to prioritize targets and

drug combinations to block multiple TF and signaling interplays to eliminate ovarian CSCs.

Acknowledgments

We would like to thank colleagues in Biomedical Informatics Department for the helpful

discussions.

Author Contributions

Conceptualization: Fuhai Li.

Data curation: Tianyu Zhang, Jielin Xu, Qi-En Wang, Fuhai Li.

Methodology: Tianyu Zhang, Jielin Xu, Siyuan Deng, Fengqi Zhou, Jin Li, Liwei Zhang, Lang

Li, Qi-En Wang, Fuhai Li.

Writing – original draft: Tianyu Zhang, Qi-En Wang, Fuhai Li.

Writing – review & editing: Tianyu Zhang, Qi-En Wang, Fuhai Li.

References
1. Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM. The histologic type

and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004; 23

(1):41–4. https://doi.org/10.1097/01.pgp.0000101080.35393.16 PMID: 14668549.

2. Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 2010; 10

(11):803–8. https://doi.org/10.1038/nrc2946 PMID: 20944665.

Table 3. (Continued)

Drug Name Target Titles of articles related to CSC treatment

Sunitinib FLT3

Ponatinib FLT3

Nintedanib FLT3

https://doi.org/10.1371/journal.pone.0196351.t003

Signaling pathways of ovarian cancer stem cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0196351 May 3, 2018 9 / 14

https://doi.org/10.1097/01.pgp.0000101080.35393.16
http://www.ncbi.nlm.nih.gov/pubmed/14668549
https://doi.org/10.1038/nrc2946
http://www.ncbi.nlm.nih.gov/pubmed/20944665
https://doi.org/10.1371/journal.pone.0196351.t003
https://doi.org/10.1371/journal.pone.0196351


3. Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet. 2009; 374(9698):1371–82. https://

doi.org/10.1016/S0140-6736(09)61338-6 PMID: 19793610

4. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise Review: Cancer Cells, Can-

cer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development. Stem Cells Transl

Med. 2017; 6(12):2115–25. https://doi.org/10.1002/sctm.17-0138 PMID: 29072369; PubMed Central

PMCID: PMCPMC5702541.

5. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, et al. Human primary bone sarcomas

contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J. 2011; 25(6):2022–

30. https://doi.org/10.1096/fj.10-179036 PMID: 21385990.

6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74. https://

doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230.

7. Zhang M, Lee AV, Rosen JM. The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harb

Perspect Med. 2017; 7(3). https://doi.org/10.1101/cshperspect.a027128 PMID: 28062556; PubMed

Central PMCID: PMCPMC5334246.

8. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an inte-

grated concept of malignant tumour progression. Nat Rev Cancer. 2005; 5(9):744–9. https://doi.org/10.

1038/nrc1694 PMID: 16148886.

9. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not

restricted to stem cells, and both CD133(+) and CD133(–) metastatic colon cancer cells initiate tumors.

The Journal of Clinical Investigation. 2008; 118(6):2111–20. https://doi.org/10.1172/JCI34401 PMID:

18497886.

10. Ren F, Sheng WQ, Du X. CD133: a cancer stem cells marker, is used in colorectal cancers. World J

Gastroenterol. 2013; 19(17):2603–11. https://doi.org/10.3748/wjg.v19.i17.2603 PMID: 23674867;

PubMed Central PMCID: PMCPMC3645378.

11. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, et al. Molecular phenotyping of

human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle.

2009; 8(1):158–66. https://doi.org/10.4161/cc.8.1.7533 PMID: 19158483; PubMed Central PMCID:

PMCPMC3041590.

12. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of

ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008; 68(11):4311–20. https://

doi.org/10.1158/0008-5472.CAN-08-0364 PMID: 18519691; PubMed Central PMCID:

PMCPMC2553722.

13. Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, et al. Aldehyde dehydrogenase in combination

with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer

Res. 2011; 71(11):3991–4001. https://doi.org/10.1158/0008-5472.CAN-10-3175 PMID: 21498635;

PubMed Central PMCID: PMCPMC3107359.

14. Shah MM, Landen CN. Ovarian cancer stem cells: Are they real and why are they important? Gyneco-

logic Oncology. 2014; 132(2):483–9. https://doi.org/10.1016/j.ygyno.2013.12.001. PMID: 24321398

15. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive

behavior of human epithelial ovarian cancer. Cancer Res. 2005; 65(8):3025–9. https://doi.org/10.1158/

0008-5472.CAN-04-3931 PMID: 15833827.

16. Sharrow AC, Perkins B, Collector MI, Yu W, Simons BW, Jones RJ. Characterization of aldehyde dehy-

drogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy. Gynecol Oncol. 2016; 142

(2):341–8. https://doi.org/10.1016/j.ygyno.2016.03.022 PMID: 27017984.

17. Gil J, Stembalska A, Pesz KA, Sasiadek MM. Cancer stem cells: the theory and perspectives in cancer

therapy. J Appl Genet. 2008; 49(2):193–9. https://doi.org/10.1007/BF03195612 PMID: 18436993.

18. Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Bio-

chim Biophys Acta. 2013; 1830(2):2481–95. https://doi.org/10.1016/j.bbagen.2012.11.008 PMID:

23196196.

19. Jin X, Jin X, Kim H. Cancer stem cells and differentiation therapy. Tumour Biol. 2017; 39

(10):1010428317729933. https://doi.org/10.1177/1010428317729933 PMID: 29072131.

20. Vathipadiekal V, Saxena D, Mok SC, Hauschka PV, Ozbun L, Birrer MJ. Identification of a potential

ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

PLoS One. 2012; 7(1):e29079. https://doi.org/10.1371/journal.pone.0029079 PMID: 22272227;

PubMed Central PMCID: PMCPMC3260150.

21. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visu-

alization. Bioinformatics. 2013; 29(14):1830–1. Epub 2013/06/07. https://doi.org/10.1093/

bioinformatics/btt285 PMID: 23740750; PubMed Central PMCID: PMCPMC3702256.

Signaling pathways of ovarian cancer stem cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0196351 May 3, 2018 10 / 14

https://doi.org/10.1016/S0140-6736(09)61338-6
https://doi.org/10.1016/S0140-6736(09)61338-6
http://www.ncbi.nlm.nih.gov/pubmed/19793610
https://doi.org/10.1002/sctm.17-0138
http://www.ncbi.nlm.nih.gov/pubmed/29072369
https://doi.org/10.1096/fj.10-179036
http://www.ncbi.nlm.nih.gov/pubmed/21385990
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.1101/cshperspect.a027128
http://www.ncbi.nlm.nih.gov/pubmed/28062556
https://doi.org/10.1038/nrc1694
https://doi.org/10.1038/nrc1694
http://www.ncbi.nlm.nih.gov/pubmed/16148886
https://doi.org/10.1172/JCI34401
http://www.ncbi.nlm.nih.gov/pubmed/18497886
https://doi.org/10.3748/wjg.v19.i17.2603
http://www.ncbi.nlm.nih.gov/pubmed/23674867
https://doi.org/10.4161/cc.8.1.7533
http://www.ncbi.nlm.nih.gov/pubmed/19158483
https://doi.org/10.1158/0008-5472.CAN-08-0364
https://doi.org/10.1158/0008-5472.CAN-08-0364
http://www.ncbi.nlm.nih.gov/pubmed/18519691
https://doi.org/10.1158/0008-5472.CAN-10-3175
http://www.ncbi.nlm.nih.gov/pubmed/21498635
https://doi.org/10.1016/j.ygyno.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24321398
https://doi.org/10.1158/0008-5472.CAN-04-3931
https://doi.org/10.1158/0008-5472.CAN-04-3931
http://www.ncbi.nlm.nih.gov/pubmed/15833827
https://doi.org/10.1016/j.ygyno.2016.03.022
http://www.ncbi.nlm.nih.gov/pubmed/27017984
https://doi.org/10.1007/BF03195612
http://www.ncbi.nlm.nih.gov/pubmed/18436993
https://doi.org/10.1016/j.bbagen.2012.11.008
http://www.ncbi.nlm.nih.gov/pubmed/23196196
https://doi.org/10.1177/1010428317729933
http://www.ncbi.nlm.nih.gov/pubmed/29072131
https://doi.org/10.1371/journal.pone.0029079
http://www.ncbi.nlm.nih.gov/pubmed/22272227
https://doi.org/10.1093/bioinformatics/btt285
https://doi.org/10.1093/bioinformatics/btt285
http://www.ncbi.nlm.nih.gov/pubmed/23740750
https://doi.org/10.1371/journal.pone.0196351


22. Zhang JD, Wiemann S. KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor.

Bioinformatics. 2009; 25(11):1470–1. Epub 2009/03/25. https://doi.org/10.1093/bioinformatics/btp167

PMID: 19307239; PubMed Central PMCID: PMCPMC2682514.

23. Osmanbeyoglu HU, Pelossof R, Bromberg JF, Leslie CS. Linking signaling pathways to transcriptional

programs in breast cancer. Genome Res. 2014; 24(11):1869–80. https://doi.org/10.1101/gr.173039.

114 PMID: 25183703; PubMed Central PMCID: PMCPMC4216927.

24. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signa-

tures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739–40. https://doi.org/10.1093/

bioinformatics/btr260 PMID: 21546393; PubMed Central PMCID: PMCPMC3106198.

25. Fisher RA. On the interpretation of χ2 from contingency tables, and the calculation of P. Journal of the

Royal Statistical Society. 1992; 85(1):87–94.

26. Kumazoe M, Takai M, Hiroi S, Takeuchi C, Kadomatsu M, Nojiri T, et al. FOXO3/PGC-1β signaling axis

is essential for cancer stem cell properties of pancreatic ductal adenocarcinoma. Journal of Biological

Chemistry. 2017. https://doi.org/10.1074/jbc.M116.772111 PMID: 28507102

27. Ryu KJ, Park C, Hong M, Ko YH, Kim WS, Kim SJ. FOXO4 expression is related to stem cell-like prop-

erties and resistance to treatment in diffuse large B-cell lymphoma. Oncotarget. 2017; 8(2):2466–76.

https://doi.org/10.18632/oncotarget.13690 PMC5356816. PMID: 27911272

28. Gao X, Mi Y, Ma Y, Jin W. LEF1 regulates glioblastoma cell proliferation, migration, invasion, and can-

cer stem-like cell self-renewal. Tumour Biol. 2014; 35(11):11505–11. https://doi.org/10.1007/s13277-

014-2466-z PMID: 25128061.

29. Xiao Z-J, Liu J, Wang S-Q, Zhu Y, Gao X-Y, Tin VP-C, et al. NFATc2 enhances tumor-initiating pheno-

types through the NFATc2/SOX2/ALDH axis in lung adenocarcinoma. eLife. 2017; 6:e26733. https://

doi.org/10.7554/eLife.26733 PMID: 28737489

30. Lee C-J, Hsu L-S, Yue C-H, Lin H, Chiu Y-W, Lin Y-Y, et al. MZF-1/Elk-1 interaction domain as thera-

peutic target for protein kinase Cα-based triple-negative breast cancer cells. Oncotarget. 2016; 7

(37):59845–59. https://doi.org/10.18632/oncotarget.11337 PMC5312353. PMID: 27542222

31. Tachi K, Shiraishi A, Bando H, Yamashita T, Tsuboi I, Kato T, et al. FOXA1 expression affects the prolif-

eration activity of luminal breast cancer stem cell populations. Cancer Sci. 2016; 107(3):281–9. https://

doi.org/10.1111/cas.12870 PMID: 26708273; PubMed Central PMCID: PMCPMC4814260.

32. Das JK, Roy D. Abstract 3312: Transcriptional regulation of chemokine receptor 4 (CXCR4) by nuclear

respiratory factor 1 (NRF1) controls estrogen-induced malignant transformation of breast epithelial cells

to breast cancer stem cells. Cancer Research. 2016; 76(14 Supplement):3312–. https://doi.org/10.

1158/1538-7445.am2016-3312

33. Emadali A, Hoghoughi N, Duley S, Hajmirza A, Verhoeyen E, Cosset FL, et al. Haploinsufficiency for

NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms.

Blood. 2016; 127(24):3040–53. https://doi.org/10.1182/blood-2015-09-671040 PMID: 27060168;

PubMed Central PMCID: PMCPMC5043425.

34. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin

Cell Biol. 2007; 19(2):150–8. https://doi.org/10.1016/j.ceb.2007.02.007 PMID: 17306971.

35. Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, et al. A Small-Molecule

Antagonist of the β-Catenin/TCF4 Interaction Blocks the Self-Renewal of Cancer Stem Cells and Sup-

presses Tumorigenesis. Cancer Research. 2016; 76(4):891. https://doi.org/10.1158/0008-5472.CAN-

15-1519 PMID: 26645562

36. Galardi S, Savino M, Scagnoli F, Pellegatta S, Pisati F, Zambelli F, et al. Resetting cancer stem cell reg-

ulatory nodes upon MYC inhibition. EMBO Reports. 2016; 17(12):1872–89. https://doi.org/10.15252/

embr.201541489 PMC5283599. PMID: 27852622

37. Zhao Y, Zhang W, Guo Z, Ma F, Wu Y, Bai Y, et al. Inhibition of the transcription factor Sp1 suppresses

colon cancer stem cell growth and induces apoptosis in vitro and in nude mouse xenografts. Oncol Rep.

2013; 30(4):1782–92. https://doi.org/10.3892/or.2013.2627 PMID: 23877322.

38. Xia Y, Zhang YL, Yu C, Chang T, Fan HY. YAP/TEAD co-activator regulated pluripotency and chemore-

sistance in ovarian cancer initiated cells. PLoS One. 2014; 9(11):e109575. https://doi.org/10.1371/

journal.pone.0109575 PMID: 25369529; PubMed Central PMCID: PMCPMC4219672.

39. Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, et al. Identification of chromatin accessibility

domains in human breast cancer stem cells. Nucleus. 2016; 7(1):50–67. https://doi.org/10.1080/

19491034.2016.1150392 PMID: 26962893; PubMed Central PMCID: PMCPMC4916893.

40. Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet.

2015; 6:161. https://doi.org/10.3389/fgene.2015.00161 PMID: 25972892; PubMed Central PMCID:

PMCPMC4412126.

Signaling pathways of ovarian cancer stem cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0196351 May 3, 2018 11 / 14

https://doi.org/10.1093/bioinformatics/btp167
http://www.ncbi.nlm.nih.gov/pubmed/19307239
https://doi.org/10.1101/gr.173039.114
https://doi.org/10.1101/gr.173039.114
http://www.ncbi.nlm.nih.gov/pubmed/25183703
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/pubmed/21546393
https://doi.org/10.1074/jbc.M116.772111
http://www.ncbi.nlm.nih.gov/pubmed/28507102
https://doi.org/10.18632/oncotarget.13690
http://www.ncbi.nlm.nih.gov/pubmed/27911272
https://doi.org/10.1007/s13277-014-2466-z
https://doi.org/10.1007/s13277-014-2466-z
http://www.ncbi.nlm.nih.gov/pubmed/25128061
https://doi.org/10.7554/eLife.26733
https://doi.org/10.7554/eLife.26733
http://www.ncbi.nlm.nih.gov/pubmed/28737489
https://doi.org/10.18632/oncotarget.11337
http://www.ncbi.nlm.nih.gov/pubmed/27542222
https://doi.org/10.1111/cas.12870
https://doi.org/10.1111/cas.12870
http://www.ncbi.nlm.nih.gov/pubmed/26708273
https://doi.org/10.1158/1538-7445.am2016-3312
https://doi.org/10.1158/1538-7445.am2016-3312
https://doi.org/10.1182/blood-2015-09-671040
http://www.ncbi.nlm.nih.gov/pubmed/27060168
https://doi.org/10.1016/j.ceb.2007.02.007
http://www.ncbi.nlm.nih.gov/pubmed/17306971
https://doi.org/10.1158/0008-5472.CAN-15-1519
https://doi.org/10.1158/0008-5472.CAN-15-1519
http://www.ncbi.nlm.nih.gov/pubmed/26645562
https://doi.org/10.15252/embr.201541489
https://doi.org/10.15252/embr.201541489
http://www.ncbi.nlm.nih.gov/pubmed/27852622
https://doi.org/10.3892/or.2013.2627
http://www.ncbi.nlm.nih.gov/pubmed/23877322
https://doi.org/10.1371/journal.pone.0109575
https://doi.org/10.1371/journal.pone.0109575
http://www.ncbi.nlm.nih.gov/pubmed/25369529
https://doi.org/10.1080/19491034.2016.1150392
https://doi.org/10.1080/19491034.2016.1150392
http://www.ncbi.nlm.nih.gov/pubmed/26962893
https://doi.org/10.3389/fgene.2015.00161
http://www.ncbi.nlm.nih.gov/pubmed/25972892
https://doi.org/10.1371/journal.pone.0196351


41. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for

drugs, drug actions and drug targets. Nucleic Acids Res. 2008; 36(Database issue):D901–6. Epub

2007/12/01. gkm958 [pii] https://doi.org/10.1093/nar/gkm958 PMID: 18048412; PubMed Central

PMCID: PMC2238889.

42. Bonuccelli G, Peiris-Pages M, Ozsvari B, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Targeting

cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: Telomerase drives tumor cell hetero-

geneity. Oncotarget. 2017; 8(6):9868–84. https://doi.org/10.18632/oncotarget.14196 PMID: 28039467;

PubMed Central PMCID: PMCPMC5354777.

43. Bugde P, Biswas R, Merien F, Lu J, Liu DX, Chen M, et al. The therapeutic potential of targeting ABC

transporters to combat multi-drug resistance. Expert Opin Ther Targets. 2017; 21(5):511–30. https://

doi.org/10.1080/14728222.2017.1310841 PMID: 28335655.

44. Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, et al. Roles of EGFR and

KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells.

Advances in Biological Regulation. 2015; 59:65–81. https://doi.org/10.1016/j.jbior.2015.06.003. PMID:

26257206

45. Salim EI, Hegazi MM, Kang JS, Helmy HM. Expression Patterns of Cancer Stem Cell Markers During

Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays. Asian Pac J Cancer

Prev. 2016; 17(3):1023–35. PMID: 27039721.

46. Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenfor-

min deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in

cancer stem cells. Proc Natl Acad Sci U S A. 2014; 111(29):10574–9. https://doi.org/10.1073/pnas.

1409844111 PMID: 25002509; PubMed Central PMCID: PMCPMC4115496.

47. Mayer MJ, Klotz LH, Venkateswaran V. Metformin and prostate cancer stem cells: a novel therapeutic

target. Prostate Cancer Prostatic Dis. 2015; 18(4):303–9. https://doi.org/10.1038/pcan.2015.35 PMID:

26215782.

48. Della Corte CM, Bellevicine C, Vicidomini G, Vitagliano D, Malapelle U, Accardo M, et al. SMO Gene

Amplification and Activation of the Hedgehog Pathway as Novel Mechanisms of Resistance to Anti-Epi-

dermal Growth Factor Receptor Drugs in Human Lung Cancer. Clin Cancer Res. 2015; 21(20):4686–

97. https://doi.org/10.1158/1078-0432.CCR-14-3319 PMID: 26124204.

49. Tomuleasa C, Soritau O, Kacso G, Fischer-Fodor E, Cocis A, Ioani H, et al. Arsenic trioxide sensitizes

cancer stem cells to chemoradiotherapy. A new approach in the treatment of inoperable glioblastoma

multiforme. J BUON. 2010; 15(4):758–62. PMID: 21229642.

50. Tanei T, Choi DS, Rodriguez AA, Liang DH, Dobrolecki L, Ghosh M, et al. Antitumor activity of Cetuxi-

mab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer

Research. 2016; 18(1):6. https://doi.org/10.1186/s13058-015-0662-4 PMID: 26757880

51. Martin-Castillo B, Lopez-Bonet E, Cuyas E, Vinas G, Pernas S, Dorca J, et al. Cancer stem cell-driven

efficacy of trastuzumab (Herceptin): towards a reclassification of clinically HER2-positive breast carci-

nomas. Oncotarget. 2015; 6(32):32317–38. https://doi.org/10.18632/oncotarget.6094 PMID:

26474458; PubMed Central PMCID: PMCPMC4741696.

52. Sette G, Salvati V, Mottolese M, Visca P, Gallo E, Fecchi K, et al. Tyr1068-phosphorylated epidermal

growth factor receptor (EGFR) predicts cancer stem cell targeting by erlotinib in preclinical models of

wild-type EGFR lung cancer. Cell Death Dis. 2015; 6:e1850. https://doi.org/10.1038/cddis.2015.217

PMID: 26247735; PubMed Central PMCID: PMCPMC4558509.

53. De Angelis ML, Zeuner A, Policicchio E, Russo G, Bruselles A, Signore M, et al. Cancer Stem Cell-

Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance. Stem Cells

Transl Med. 2016; 5(4):511–23. https://doi.org/10.5966/sctm.2015-0214 PMID: 26956206; PubMed

Central PMCID: PMCPMC4798739.

54. Macha MA, Rachagani S, Qazi AK, Jahan R, Gupta S, Patel A, et al. Afatinib radiosensitizes head and

neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget. 2017; 8(13):20961–73.

https://doi.org/10.18632/oncotarget.15468 PMID: 28423495; PubMed Central PMCID:

PMCPMC5400558.

55. Parenti S, Ferrarini F, Zini R, Montanari M, Losi L, Canovi B, et al. Mesalazine inhibits the β-catenin sig-

nalling pathway acting through the upregulation of μ-protocadherin gene in colo-rectal cancer cells. Ali-

mentary Pharmacology & Therapeutics. 2010; 31(1):108–19. https://doi.org/10.1111/j.1365-2036.

2009.04149.x PMID: 19785626

56. Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U, Castelo-Branco P. Cancer Stem Cells in

Prostate Cancer: Implications for Targeted Therapy. Urologia Internationalis. 2017; 99(2):125–36.

https://doi.org/10.1159/000455160 PMID: 28142149

Signaling pathways of ovarian cancer stem cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0196351 May 3, 2018 12 / 14

https://doi.org/10.1093/nar/gkm958
http://www.ncbi.nlm.nih.gov/pubmed/18048412
https://doi.org/10.18632/oncotarget.14196
http://www.ncbi.nlm.nih.gov/pubmed/28039467
https://doi.org/10.1080/14728222.2017.1310841
https://doi.org/10.1080/14728222.2017.1310841
http://www.ncbi.nlm.nih.gov/pubmed/28335655
https://doi.org/10.1016/j.jbior.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26257206
http://www.ncbi.nlm.nih.gov/pubmed/27039721
https://doi.org/10.1073/pnas.1409844111
https://doi.org/10.1073/pnas.1409844111
http://www.ncbi.nlm.nih.gov/pubmed/25002509
https://doi.org/10.1038/pcan.2015.35
http://www.ncbi.nlm.nih.gov/pubmed/26215782
https://doi.org/10.1158/1078-0432.CCR-14-3319
http://www.ncbi.nlm.nih.gov/pubmed/26124204
http://www.ncbi.nlm.nih.gov/pubmed/21229642
https://doi.org/10.1186/s13058-015-0662-4
http://www.ncbi.nlm.nih.gov/pubmed/26757880
https://doi.org/10.18632/oncotarget.6094
http://www.ncbi.nlm.nih.gov/pubmed/26474458
https://doi.org/10.1038/cddis.2015.217
http://www.ncbi.nlm.nih.gov/pubmed/26247735
https://doi.org/10.5966/sctm.2015-0214
http://www.ncbi.nlm.nih.gov/pubmed/26956206
https://doi.org/10.18632/oncotarget.15468
http://www.ncbi.nlm.nih.gov/pubmed/28423495
https://doi.org/10.1111/j.1365-2036.2009.04149.x
https://doi.org/10.1111/j.1365-2036.2009.04149.x
http://www.ncbi.nlm.nih.gov/pubmed/19785626
https://doi.org/10.1159/000455160
http://www.ncbi.nlm.nih.gov/pubmed/28142149
https://doi.org/10.1371/journal.pone.0196351


57. Ledur PF, Villodre ES, Paulus R, Cruz LA, Flores DG, Lenz G. Extracellular ATP reduces tumor sphere

growth and cancer stem cell population in glioblastoma cells. Purinergic Signalling. 2012; 8(1):39–48.

https://doi.org/10.1007/s11302-011-9252-9 PMID: 21818572.

58. Della Corte CM, Viscardi G, Papaccio F, Esposito G, Martini G, Ciardiello D, et al. Implication of the

Hedgehog pathway in hepatocellular carcinoma. World J Gastroenterol. 2017; 23(24):4330–40. https://

doi.org/10.3748/wjg.v23.i24.4330 PMID: 28706416; PubMed Central PMCID: PMCPMC5487497.

59. McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, et al. Human ovarian carcinoma–associated mes-

enchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. The

Journal of Clinical Investigation. 2011; 121(8):3206–19. https://doi.org/10.1172/JCI45273

PMC3148732. PMID: 21737876

60. Coffman LG, Choi Y-J, McLean K, Allen BL, di Magliano MP, Buckanovich RJ. Human carcinoma-asso-

ciated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH sig-

naling loop. Oncotarget. 2016; 7(6):6916–32. https://doi.org/10.18632/oncotarget.6870 PMC4872758.

PMID: 26755648

61. Della Corte CM, Ciaramella V, Di Mauro C, Castellone MD, Papaccio F, Fasano M, et al. Metformin

increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human

NSCLC cancer cells. Oncotarget. 2016; 7(4):4265–78. https://doi.org/10.18632/oncotarget.6559 PMID:

26673006; PubMed Central PMCID: PMCPMC4826204.

62. Morgillo F, Fasano M, Della Corte CM, Sasso FC, Papaccio F, Viscardi G, et al. Results of the safety

run-in part of the METAL (METformin in Advanced Lung cancer) study: a multicentre, open-label phase

I-II study of metformin with erlotinib in second-line therapy of patients with stage IV non-small-cell lung

cancer. ESMO Open. 2017; 2(2):e000132. https://doi.org/10.1136/esmoopen-2016-000132 PMID:

28761738; PubMed Central PMCID: PMCPMC5519802.

63. Fasano M, Della Corte CM, Capuano A, Sasso FC, Papaccio F, Berrino L, et al. A multicenter, open-

label phase II study of metformin with erlotinib in second-line therapy of stage IV non-small-cell lung

cancer patients: treatment rationale and protocol dynamics of the METAL trial. Clin Lung Cancer. 2015;

16(1):57–9. https://doi.org/10.1016/j.cllc.2014.06.010 PMID: 25242667.

64. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of

human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018; 46(D1):D380–D6.

https://doi.org/10.1093/nar/gkx1013 PMID: 29087512; PubMed Central PMCID: PMCPMC5753191.

65. Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov F. GTRD: a database of transcription factor binding

sites identified by ChIP-seq experiments. Nucleic Acids Res. 2017; 45(D1):D61–D7. https://doi.org/10.

1093/nar/gkw951 PMID: 27924024; PubMed Central PMCID: PMCPMC5210645.

66. Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-specific regulatory circuits

reveal variable modular perturbations across complex diseases. Nat Methods. 2016; 13(4):366–70.

https://doi.org/10.1038/nmeth.3799 PMID: 26950747; PubMed Central PMCID: PMCPMC4967716.

67. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue

gene regulation in humans. Science. 2015; 348(6235):648–60. https://doi.org/10.1126/science.

1262110 PMID: 25954001; PubMed Central PMCID: PMCPMC4547484.

68. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for

interaction datasets. Nucleic Acids Res. 2006; 34(Database issue):D535–9. Epub 2005/12/31. 34/

suppl_1/D535 [pii] https://doi.org/10.1093/nar/gkj109 PMID: 16381927; PubMed Central PMCID:

PMC1347471.

69. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: pro-

tein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(Database

issue):D447–52. https://doi.org/10.1093/nar/gku1003 PMID: 25352553; PubMed Central PMCID:

PMCPMC4383874.

70. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions,

pathways and biological processes. Nucleic Acids Res. 2011; 39(Database issue):D691–7. https://doi.

org/10.1093/nar/gkq1018 PMID: 21067998; PubMed Central PMCID: PMCPMC3013646.

71. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-

expression signatures to connect small molecules, genes, and disease. Science. 2006; 313

(5795):1929–35. https://doi.org/10.1126/science.1132939 PMID: 17008526.

72. Wu H, Miller E, Wijegunawardana D, Regan K, Payne PRO, Li F. MD-Miner: a network-based approach

for personalized drug repositioning. BMC Systems Biology. 2017; 11(Suppl 5):86. https://doi.org/10.

1186/s12918-017-0462-9 PMC5629618. PMID: 28984195

73. Li F, Wang L, Kong R, Sheng J, Cao H, Mancuso J, et al., editors. DrugMoaMiner: A computational tool

for mechanism of action discovery and personalized drug sensitivity prediction. 2016 IEEE-EMBS Inter-

national Conference on Biomedical and Health Informatics (BHI); 2016 24–27 Feb. 2016.

Signaling pathways of ovarian cancer stem cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0196351 May 3, 2018 13 / 14

https://doi.org/10.1007/s11302-011-9252-9
http://www.ncbi.nlm.nih.gov/pubmed/21818572
https://doi.org/10.3748/wjg.v23.i24.4330
https://doi.org/10.3748/wjg.v23.i24.4330
http://www.ncbi.nlm.nih.gov/pubmed/28706416
https://doi.org/10.1172/JCI45273
http://www.ncbi.nlm.nih.gov/pubmed/21737876
https://doi.org/10.18632/oncotarget.6870
http://www.ncbi.nlm.nih.gov/pubmed/26755648
https://doi.org/10.18632/oncotarget.6559
http://www.ncbi.nlm.nih.gov/pubmed/26673006
https://doi.org/10.1136/esmoopen-2016-000132
http://www.ncbi.nlm.nih.gov/pubmed/28761738
https://doi.org/10.1016/j.cllc.2014.06.010
http://www.ncbi.nlm.nih.gov/pubmed/25242667
https://doi.org/10.1093/nar/gkx1013
http://www.ncbi.nlm.nih.gov/pubmed/29087512
https://doi.org/10.1093/nar/gkw951
https://doi.org/10.1093/nar/gkw951
http://www.ncbi.nlm.nih.gov/pubmed/27924024
https://doi.org/10.1038/nmeth.3799
http://www.ncbi.nlm.nih.gov/pubmed/26950747
https://doi.org/10.1126/science.1262110
https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.1093/nar/gkj109
http://www.ncbi.nlm.nih.gov/pubmed/16381927
https://doi.org/10.1093/nar/gku1003
http://www.ncbi.nlm.nih.gov/pubmed/25352553
https://doi.org/10.1093/nar/gkq1018
https://doi.org/10.1093/nar/gkq1018
http://www.ncbi.nlm.nih.gov/pubmed/21067998
https://doi.org/10.1126/science.1132939
http://www.ncbi.nlm.nih.gov/pubmed/17008526
https://doi.org/10.1186/s12918-017-0462-9
https://doi.org/10.1186/s12918-017-0462-9
http://www.ncbi.nlm.nih.gov/pubmed/28984195
https://doi.org/10.1371/journal.pone.0196351


74. Li F. Computational Approaches and Pharmacogenomics Data Resources for Drug Repositioning.

Medical Research Archives; Vol 5 No 6 (2017): Vol 5 Issue 6, June, 2017. 2017.

75. Xu J, Regan-Fendt K, Deng S, Carson WE, Payne PRO, Li F. Diffusion mapping of drug targets on dis-

ease signaling network elements reveals drug combination strategies. Biocomputing 2018: WORLD

SCIENTIFIC; 2018. p. 92–103.

76. Regan KE, Payne PRO, Li F. Integrative network and transcriptomics-based approach predicts geno-

type- specific drug combinations for melanoma. AMIA Summits on Translational Science Proceedings.

2017; 2017:247–56. PMC5543336.

77. Huang L, Li F, Sheng J, Xia X, Ma J, Zhan M, et al. DrugComboRanker: drug combination discovery

based on target network analysis. Bioinformatics. 2014; 30(12):i228–i36. https://doi.org/10.1093/

bioinformatics/btu278 PMC4058933. PMID: 24931988

Signaling pathways of ovarian cancer stem cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0196351 May 3, 2018 14 / 14

https://doi.org/10.1093/bioinformatics/btu278
https://doi.org/10.1093/bioinformatics/btu278
http://www.ncbi.nlm.nih.gov/pubmed/24931988
https://doi.org/10.1371/journal.pone.0196351

