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Abstract

Eye tracking is one of the most widely used technique for assessment, screening and

human-machine interaction related applications. There are certain issues which limit the

usage of eye trackers in practical scenarios, viz., i) need to perform multiple calibrations and

ii) presence of inherent noise in the recorded data. To address these issues, we have pro-

posed a protocol for one-time calibration against the “regular” or the “multiple” calibration

phases. It is seen that though it is always desirable to perform multiple calibration, the one-

time calibration also produces comparable results and might be better for individuals who

are not able to perform multiple calibrations. In that case, “One-time calibration” can also be

done by a participant and the calibration results are used for the rest of the participants, pro-

vided the chin rest and the eye tracker positions are unaltered. The second major issue is

the presence of the inherent noise in the raw gaze data, leading to systematic and variable

errors. We have proposed a signal processing chain to remove these two types of errors.

Two different psychological stimuli-based tasks, namely, recall-recognition test and number

gazing task are used as a case study for the same. It is seen that the proposed approach

gives satisfactory results even with one-time calibration. The study is also extended to test

the effect of long duration task on the performance of the proposed algorithm and the results

confirm that the proposed methods work well in such scenarios too.

1 Introduction

In recent years, eye tracking is gaining huge importance for diagnosis and screening [1] of var-

ious medical conditions, home-based rehabilitation [2] and human-computer applications [3]

due to its unobtrusive nature. Eye tracking is also an important method for analyzing different

cognitive functions [4] associated with variety of tasks like reading, writing, visual searching,

driving and so on. Non-invasive eye trackers can also be used to study infant cognition [5] in

unconstrained, naturalistic environment. However, the accuracy or the robustness of such

applications mostly relies on the quality of the data collected. Noisy eye movement data leads

to misleading interpretations and outcomes.
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Statistics shows that about 8% of world’s total population is the aged population [6], most

of which are suffering from some ailments leading to cognitive decline [7] affecting their occu-

lomotor response. Lagun et al [8] showed that Visual Paired Comparison (VPC) task usually

provides insights to memory impairments associated with mild cognitive impairment which

often progresses to Alzheimer’s disease. Saccadic eye movements can also be used to quantify

motor impairments in Parkinson’s disease (PD) [9]. Regular monitoring of eye movement def-

initely plays a crucial role in assessing cognitive states of such patients. On the other hand, in

order to be an ideal choice for home-based rehabilitation applications, the eye tracking device

should be portable, easy to use and most importantly affordable. However, such low-cost

devices are majorly low in resolution, thereby compromising on the quality of the data [10]

recorded. This is usually handled to some extent through a calibration phase that needs to be

performed at the beginning of each session and most of the times, in between the experiments

too [11]. This is termed as multiple calibration, which is a cumbersome and repetitive process.

Moreover, achieving good calibration is a major challenge for patients (with Stroke, Parkin-

son’s disease, Dementia, Schizophrenia etc.) and infants [10] as they lack the patience and

capability to gaze on a fixed point for longer duration. The process also leads to exhaustion or

loss of engagement during the actual task that is performed after the calibration phase. Hence,

there is a need for establishing a one-time calibration protocol for experiments/tasks targeted

for the above discussed participant groups. Another major problem associated with these low-

cost eye trackers are the presence of huge inherent noise in the recorded data. Even if we some-

how manage to achieve a good calibration score, the quality of data acquired after such ses-

sions is highly susceptible to inherent noise which is a result of head movements, glitches in

the eye tracker sensor algorithms, lightning conditions, and so on. In addition to this, the sub-

ject-specific variances due to drift, micro-saccades, tremors, etc. are also present in the col-

lected eye gaze data. These issues actually gives rise to certain noise in the collected eye tracker

data which can be broadly classified into 2 major classes – variable and systematic errors

[12, 13] as shown in Fig 1. The former refers to the dispersion of the gaze coordinates for a

given target (Fig 1(a)) and the latter refers to the drift from the target location (Fig 1(b)). These

errors are present irrespective of single or multiple calibrations; but the degree of systematic

error is larger in the former in comparison to the latter [14]. Variable error is indicative of the

lack of precision and the systematic error is indicative of the lack of accuracy [12]. The non-

systematic/variable errors are mainly related to physiological characteristics of a participants’

eye and fatigue; and head motion [15]. Changes in screen illumination, participants’ ethnicity

and operating distance from the screen [16], etc. also add to the degradation of the eye tracker

accuracy. High-end eye tracking systems like Tobii also suffers from such errors. Efforts to

denoise Tobii are reported in [14]. However, such high-end eye trackers are not mass-deploy-

able for home-based rehabilitation owing to their high cost; whereas, in low resolution eye

trackers, the amount of system generated noise is greater than the natural (inherent) noise.

Without the removal of these errors, it is difficult to use eye trackers for practical applications,

especially in human-computer interaction (HCI)-based clinical applications [17–19].

Thus, it can be concluded that the two major challenges that reduce the usability of low-

cost eye trackers in various medical or rehabilitation applications are as follows: 1) need for

multiple calibration and 2) inherent variable and systematic errors. The present study proposes

an algorithm which takes care of the noises associated with eye trackers and also a protocol in

order to avoid the overhead of multiple calibration is devised.

The present work is the detailed algorithmic version of the simple eye tracking noise clean-

ing approaches that we proposed earlier [20] with a larger population set, additional metrices

to study the performance of the proposed algorithms on variable and systematic error
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correction, detailed analysis of the supervised and unsupervised approaches and the study of

the effect of longer duration tasks on the proposed approaches.

2 Related work

Eye trackers are mainly categorized into 2 types based on their design features, namely remote

(nearables [21]) and wearables (head mounted [22]). Each one of these comes with its own set

of advantages and disadvantages. For instance, the nearable ones are unobtrusive in nature but

are less efficient in comparison to the wearables. Also, the participants become more cautious

about the sensors that they are wearing during the actual experiment. One of the most robust

wearable eye trackers uses contact lens, wherein the tracking mechanism is embedded into the

lens [23]. However, it is costlier in comparison to other eye tracking devices and also its com-

plexity makes it less user friendly. Electro-occulogram (EOG)-based eye tracking is yet another

popular means of detecting eye movements by acquiring the minute changes generated by the

Fig 1. Two types of errors associated with eye trackers, (a) Variable and (b) Systematic error.

https://doi.org/10.1371/journal.pone.0196348.g001
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corneal-retinal potentials of the eyes [24]. This method is highly vulnerable to various electrical

noises and drift errors. Also, the complex circuitry consisting of wires and gel-based electrodes

make it less appealing for practical scenarios. For large-scale deployment, the device should be

low-cost and unobtrusive in nature. Video-based and infrared-based eye trackers are popularly

used as unobtrusive means of eye tracking. Video-based eye tracking is a popular technique

[25] in which a camera focuses on the eyes and the eye ball movements are recorded. One vari-

ant of this as proposed by Zhang et al. [26] is basically an appearance-based method which

does not require calibration, but the accuracy of detection is highly dependent on ambient

lighting conditions; thereby degrading its performance in real time scenarios. Basilio et al [27]

proposed a calibration free method but it faces challenges in real life applications due to head

and body movements. The accuracy of the method is less due to the following reasons: 1)

severe lighting conditions owing to the head movements towards bright areas of the environ-

ment; 2) distortion due to wireless transmission of the video data and 3) absence of user cali-

bration. Therefore, the accuracy of video-based eye trackers is compromised due to head

movements, which are prevalent during longer duration experiments, thereby limiting the

usage in short-term experimental sessions only. The infrared-based methods are less complex,

cost-effective [28] and un-obtrusive in nature [29]. Subject-specific attributes like eyelashes

covering the pupil, eye glasses or contact lenses, physiological characteristics of the eye like

additional dark spots on the iris, interferes with the pupil detection algorithms [30]. In addi-

tion to these, the factors like changing illumination, recording errors, motion blur, rapidly

changing illumination due to the fast movement of the participant (for instance, while driving)

also adds to the errors in pupil position measurement [30]. There have been attempts to use

low-cost infrared eye trackers in HCI-based applications [3]. These low-cost devices are basi-

cally lower in resolution and calibration phase plays a major role in determining the quality of

the data. Multiple calibrations seem an attractive means but accomplishing it, is often cumber-

some and exhaustive process [10]. Bereft of the modes of the calibration, the inherent noise

namely, variable and systematic, poses major challenge for using eye tracker data.

In general, filtering-based approach is used for excavating the variable error. Most of the fil-

tering-based approaches remove the abrupt fluctuations in the gaze data, thereby smoothing

the overall signal. Some approaches design low pass filters, as suggested by Olsson et al. [31],

which use both offline and online filtering to remove the noise. In the offline approach, the fix-

ation data is extracted from the raw noisy data using sliding window approach, whereas for

online approach, it estimates the filtered data by considering the mean of previously estimated

position data. Many researchers proposed various techniques to compute the window size

[32, 33] to estimate the fixation data. An advantage of this approach is that they allow increas-

ing the window size depending on the application. In [34], the authors proposed a hybrid filter.

It is composed of several linear FIR (Finite Impulse Response) sub-filters and finally, it per-

forms a median filter operation over the outputs of sub-filters. The advantage of this approach

lies in the ability to preserve the sharp fluctuations by attenuating the noise to some extent,

whereas the fluctuations in the signal are suppressed considerably in linear low-pass filtering

methods. The accuracy of these methods depends on several parameters, such as window

length, fixation detection threshold, which in general are difficult to estimate as these parame-

ters largely depend on the magnitude of the noise present at any instant of time. Some works

suggest using the Kalman filter for denoising the data. It eliminates the need for storing previ-

ously observed data at each step of the filtering process. Sauter et al. [35] have proposed eye-

movement detection using Kalman filter. Many authors [36] [37] have extended the Kalman

filter for identifying different eye movements based on their applications. For example, in [37],

the authors used Kalman filter to classify different types of eye movements and to reduce sen-

sor lag through eye movement prediction. On similar grounds, Komogortsev et al. [38], used
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an attention-based Kalman filter, which aims at reducing the noise in addition to minimizing

the delay between eye gaze-based systems and displayed data for designing an interaction

model based on eye movement language token.

One of the popular methods of handling the systematic error is based on the concept of

extraction of ‘required fixation location’. If the region on screen where the participant is gazing

is known, then correcting the discrepancy in the gaze data and the ground truth is handled by

estimating the amount and the direction of the drift [12]. The major shortcoming of this

approach, however, lies in the fact that the error signature need not be constant throughout

the experiment [39]. The error varies with sessions due to head movements, fatigue of the par-

ticipant, screen illumination, changes in the distance from the screen and the ethnicity of the

participants [16], etc. Also, the concept of ‘required fixation location’ does not apply in most of

the real life scenarios, i.e. it is not always possible to know the ground truth of the gaze data.

Another major approach is based on the principle of ‘closest stimulus’ [14] which applies the

principle of annealed mean shift algorithm. This method suffers severely when the fixation has

many stimulus points around it and the closest point might not be the desired target location.

Also, the fact that calibration error is sometimes location dependent on the screen, the perfor-

mance of this method is thus compromised [39]. Vadillo et al. [39] have proposed a linear

transformation (LT) algorithm to correct the systematic error by using the concept of ‘proba-

ble fixation location’, which is more likely to be prevalent in practical cases. However, this

method too does not retain the nature of the drift, rather it deals with the discrepancy between

the target and the gaze data.

In case of human eye movements, there are inherent noises due to drift, micro-saccades,

tremors, etc. However, along with these artifacts, there are noises like the variable and the sys-

tematic errors in the eye tracker data. In low resolution eye trackers, obtaining clear demarca-

tion between the device imposed and naturally generated error, is difficult. Moreover, our aim

in the current use-case is to handle fixations, and not to detect micro-saccades. The naturally

generated noise is constant bereft of the quality of the eye tracker. But, in low resolution eye

trackers, the characteristics of device generated noise and the natural noise closely resembles

each other. Without the removal of these errors, it is difficult to use the fixation information in

controlling HCI-based applications.

3 Design of stimulus

In the present study we have designed i) a set of stimulus to be used for calibration and ii) two

test stimulus for evaluating the accuracy of the proposed methodology with respect to noise

removal.

3.1 Calibration stimulus

Calibration is an important phase in eye tracking to collect data in order to map the coordi-

nates of the pupil movements in the eye-video to that of the coordinates in the stimulus space.

Hence, the challenge is to gather data from as many known locations as possible but with least

mental effort on the participant and ensuring sustained attention on the target [40]. Blignaut

[40] proposed a calibration scheme which involves collecting the data during smooth move-

ments of the eye, termed as smooth pursuit. Thiago et al [41] proposed a dynamic calibration

scheme called CalibMe which uses eye movements for collecting data during calibration. This

method allows free head movements during calibration. In this work, we have used a simple

calibration phase, which has static calibration points appearing at pre-defined positions and

then it moves smoothly by generating smooth pursuits. However, we haven’t used the smooth
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pursuits for the calibration and the readers are free to use any of the above discussed calibra-

tion schemes depending upon their applications and target participants.

For the calibration purpose, 4 sets of stimuli are designed and developed using Pygame [42]

(Fig 2). The stimulus consists of a tiny ball, having a field of view (FOV) of approximately,

0.657˚, moving at a constant speed of 1.92˚/sec on the screen. The FOV of 0.657˚ corresponds

to the tiny ball having a diameter of 20 pixels viewed at a distance of 60 cm. In order to cover

the entire screen during the calibration phase, the ball moves in horizontal, vertical and in 2

diagonal directions as shown in Fig 2. During each of these movements, the ball stops for 5 sec-

onds at nine positions, shown as dark spots (S1 through S9) in the Fig 2, and then it moves

again along the path shown as dotted lines. The size of the ball is deliberately kept small so that

the participants can easily fixate at the center of the ball. The participants are supposed to gaze

carefully at the ball while their gaze data are logged using the eye tracker. In total, we have 9

static points, S1 through S9 whose corresponding fixations are used for noise correction.

3.2 Test stimulus

The test stimulus is derived from standard psychological tests and redesigned in order to test

the robustness of the proposed algorithms. The test stimulus needs to be designed in such a

way that it covers a broader spectrum of psychological test batteries. In this work, two stimuli

are designed to test the accuracy of noise correction—1) recall-recognition (RR) [43] and 2)

number gazing task (NG) (analogous to the Digit-Symbol Substitution Test (DSST) [44])

using Pygame package. A summary of the stimulus is provided in Table 1. It is to be noted that

the systematic and variable errors are independent of the stimulus. The NG task contains the

stimulus points (numbers through 1-9) only in a single row, whereas, the RR task presents the

stimuli (words) in multiple rows. Variation in the inter-stimulus spacing (horizontal gap

between 2 numbers) in the NG task and number of words in the RR task, yield different set of

challenges for handling the noise.

In the RR task, initially a list of 6 words is shown to the participants and they are instructed

to memorize the words. Next, a new list of words is shown to them. Some of the words from

the first list are also present in the second list. The participants are asked to recognize those

Fig 2. Schema of the designed calibration stimulus with the calibration point having diameter 0.657˚ and moving

at a constant speed of 1.92˚/sec on the screen.

https://doi.org/10.1371/journal.pone.0196348.g002
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words and click on them. The font size of the words is selected to be 48 pixels (1.57˚) [46] and

the words are presented in a 2 column format. In order to evaluate the performance of noise

cleaning algorithms (gaze tracking), the number of words per column is varied from 6 to 16.

Fig 3 shows a snapshot of the designed task. The words have been chosen from National Insti-

tute of Mental Health and Neurosciences (NIMHANS) neuropsychological test battery [45].

The second test stimulus consists of a NG task wherein, a lookup table of 9 digits (1 to 9) is

shown at the top of the screen as shown in Fig 4. The participants are instructed to gaze at 4

digits, one after the other, in a predefined sequence (as communicated by the instructor/exper-

imenter) before starting the task. The inter-number spacing (S), and the font size (f) are varied

in each trial keeping the S/f ratio constant. Three trials are conducted with inter-digit spacing

Table 1. Details of the test stimulus used for the study.

RR task NG task

Task (i) A list of 6 words is shown first for 30 seconds

(ii) Next, a new list of words is shown

(iii) Identify words from the new list those match

with the first list

(iv) Gaze at the word for 2 seconds and then click

on that word

(v) Repeat the steps (iii) and (iv) for all such

matching words

(i) A sequence of 4 numbers (pin) is given (e.g., ‘1234’) beforehand

(ii) A sequence of 9 numbers is shown on the screen

(iii) Gaze each number on the screen in the sequence as given in the pin

(iv) Click on the number after gazing for seconds

(v) Repeat the steps (iii) and (iv) for each number in the pin

Entities Words taken from NIMHANS neuropsychological

test battery [45]

Numbers (1-9)

Arrangement of

entities

Multiple rows, 2 columns Single row, 9 columns

Variations in the

task

Difference in number of words in a column Difference in inter-digit spacing between the 9 numbers with FOVs 3.28˚, 2.29˚ and

1.642˚ (100, 70 and 50 pixels), respectively

Font size 48 pixels Font sizes used are 50, 35 and 25. The ratio of inter-digit spacing and font size is kept

constant to 2:1

https://doi.org/10.1371/journal.pone.0196348.t001

Fig 3. Designed recall-recognition (RR) test (a) 6 words for recall (3 words/column); and (b) 12 words (6 words/

column) (c) 24 words (12 words/column) and (d) 32 words (16 words/column) for recognition.

https://doi.org/10.1371/journal.pone.0196348.g003
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of 100, 70 and 50 pixels, respectively. The font size f for the 3 different spacings are respectively,

1.675˚, 1.182˚ and 0.854˚.

After gazing at a particular word or a digit, the participant is instructed to click on the

same. The coordinates and timestamps of the click event are logged in order to segment the

corresponding eye gaze data for further analysis.

The underlying motivation for the selection of these test stimuli are as follows. Recently var-

ious medical applications are being developed keeping in mind the overall mental/cognitive

well-being. On the other hand, alternative communication aids for patients with neuro-motor

disorders, controlling wheel chair or various devices through human computer interfaces [47],

gaze tracking-based applications for patients suffering from Autism [48], and also various

standard cognitive assessments like SDMT [49], trail making task, etc. are some of those kinds

of applications. In most of these applications, attention, memory retention, working memory,

etc. are important aspects. RR test used in the present study is a standard psychological test,

which is used to assess higher order cognitive functions, like memory retention capacity and

attention. On the other hand, the NG task additionally involves the usage of working memory

in order to correctly sequence the fixations on the given order of numbers. Thus the stimuli

used, closely resembles the tasks that are performed by psychologists to assess cognitive func-

tionalities of an individual.

Fig 4. Number gazing (NG) task for inter-digit spacing of 100 pixels.

https://doi.org/10.1371/journal.pone.0196348.g004
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4 Methodology

In the present study, we propose a novel approach of handling errors by using the nature of

the drift or the systematic error from the neighborhood regions. Along with this, we have

applied the principle of ‘n-nearest stimulus points’ and have adopted unsupervised techniques.

In addition to this, a novel supervised method based on the concept of ‘n-nearest calibration

points’ is applied. The essence of ‘n-nearest’ over ‘closest stimulus point’ [14] and ‘n-nearest’

over ‘closest calibration point’ is introduced along with inverse weighing function-based

approximation. The accuracies of all these approaches are compared.

This section explains the noise removal approaches adopted in the present study. It also

explains the methodology adopted for generating corrected gaze data from raw eye tracker

data. The overall process is shown in the Fig 5.

First the fixation data are extracted from the raw (unprocessed) eye tracker data. Next, the

variable error is filtered from this data. Finally, the systematic error is removed to get corrected

gaze coordinates using both supervised and unsupervised approaches. Each of these

approaches are explained in detail in Figs 6 and 7.

4.1 Extraction of fixations from raw eye tracker data

Eye movement data can be classified into 2 major classes, i.e., fixations and saccades. Many

works pertaining to the classification of eye tracker data into these classes exists [50], [51, 52].

Enkelejda, et al [51] proposed the usage of low resolution eye tracker in approximating the

clusters of fixation to a region of interest (ROI) using online bayesian learning. However, even

in a given fixation chunk, the variable error persists. We have extracted the fixations from the

raw eye tracker data using the velocity threshold-based method (VT) as explained in [50]. Eye

gaze data usually consists of fixations and saccades. The data points lying above a threshold

velocity are treated as saccades and the rest are categorized as fixations. As suggested in [53],

we have used the velocity threshold value as 20.

4.2 Variable error removal (VER)

To handle the fluctuations or the variable error in the fixation data, we have made a survey of

various filtering approaches available in literature. In the present study, we have used the

graph signal processing (GSP) [54] and Kalman filter (KF) [55] for removing the variable

error. The application of GSP and KF on the raw eye gaze data is explained as follows:

Fig 5. Block-diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0196348.g005
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4.2.1 Graph signal processing-based signal cleaning. During the data capture, the eye

tracker captures the noisy (x, y) gaze coordinates on a plane (monitor) reported by the eye

tracker and can be represented as Eq (1),

S ¼ ½ðx1; y1Þ; ðx2; y2Þ; :::; ðxn; ynÞ�
T ð1Þ

where n is the number of samples in the signal. In our experiment as we focus on a single posi-

tion on the screen, the eye gaze signal should return a single coordinate. However, S fluctuates

due to the presence of variable error. Sometimes, the fluctuations are not mere oscillations

around the actual position, rather these are far away from it. Hence, the denoising algorithm

needs to be designed in such a way that it can handle those abrupt changes and produce a

smooth signal, which is close to the actual eyeball location. Hence, GSP is suitable for this

application as it smoothens the signal in accordance with the underlying graph structure,

unlike other low pass filtering (LF) methods [31]. In order to perform the denoising, S is

divided into a number of non-overlapping windows of length L(� n) and then GSP-based

denoising is applied on each of these windows separately. In order to do so, first a graph signal

G(V, E, A) is formed, which is characterized by a set of vertices V, set of edges E and an adja-

cency matrix A, which stores the weighted connection between the vertices. In our case, V is

formed by taking the coordinates (xi, yi) in a particular window. The connection is formed by

keeping all the vertices pairs between which an edge exists. The edges are formed if the

Fig 6. Supervised approach for data correction.

https://doi.org/10.1371/journal.pone.0196348.g006
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Euclidean distance between the two vertices n and m is less than a threshold value th (empiri-

cally taken as 1) and the set of edges can be expressed as,

E ¼ ðni;mjÞ ð2Þ

In this type of range-based searching, each of the vertices has different number of neighbors

in a particular window, which introduces dynamicity in the graph formation and provides an

edge over other filtering methods. The weighted adjacency matrix A is constructed by putting

weights on edges depending on closeness measure between the two vertices. Closeness

between two vertices is measured by the Euclidean distance between those 2 vertices. Hence,

the weight of the connection between vertices n and m is defined using a Gaussian kernel for a

constant θ as shown in Eq (3),

~CB ¼

(
exp � ½dist½n;m��

y2

� �
; ifðn;mÞ 2 E

0; otherwise
ð3Þ

In our study, θ is chosen to be 1. The graph signal G formed in each window is corrupted

by variable noise and can be written as,

G ¼ t þ e ð4Þ

Fig 7. Unsupervised approach for data correction.

https://doi.org/10.1371/journal.pone.0196348.g007
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where t is the clean signal and e is the noise added to it. In order to obtain the clean signal that

is close to the original signal as well as smooth, a multi-objective optimization can be formed

in a quadratic form as,

argmint
1

2
jjt � Gjj2 þ a

1

2
jjt � Atjj2

� �

ð5Þ

Here, α controls the amount of smoothness desired in the estimated St. This stated optimi-

zation problem can be solved by setting the first derivative of Eq (5) to zero and the closed

form solution can be derived as,

1

2

@

@t
ðjjt � Gjj2 þ ajjt � Atjj2Þ ¼ 0 ð6Þ

1

2

@

@t
ððt � GÞ�ðt � GÞ þ at�ðI � AÞ�ðI � AÞtÞ ¼ 0 ð7Þ

St ¼ ðI þ aðI � AÞ�ðI � AÞÞ� 1G ð8Þ

where � is Hermitian of the matrix. The solution stated in Eq (6) denoises the graph signal in

each window as shown in Eq (8). The formation of the graph is dependent on the size of the

window, which can be chosen judiciously. A bigger window provides a smoother signal which

is more influenced by the abrupt fluctuations present in that window, whereas smaller win-

dows fail to smooth the signal efficiently. Here, we have heuristically taken L as 10. The most

expensive step in Eq (8) is the inversion of the matrix (I − A). In our case the size of A is only

of 10 × 10, which makes the (I − A) inversion affordable in terms of computation. The pseudo-

code is provided in Algorithm 1.

Algorithm 1: Pseudocode for Graph Signal Processing based signal cleaning

GSPfiltering(Sx, Sy) timeseries of eye gaze position;
Input :Timeseries of eye gaze coordinates S
Output :GSP filtered eye gaze data St
Initialization :Window length L = 10, θ = 1, α = 5, th = 1
FOR each time window k
Graph G(V, E, A) Formation :

Edge E formation by finding the eye gaze positions whose
euclidean distances fall inside the unit circle (th = 1)
Compute the closeness measure as euclidean measure between two
connected vertices
Edge weight CB is defined as a Gaussian kernel over closeness
measure with constant θ if there is any edge between two verti-
ces or 0 otherwise
Adjacency matrix A is computed for G(V, E, A)

Estimation of clean signal (St) for a window:
Filtered signal, St = (I + α(I − A)�(I − A)−1)G

Loop continue for other windows

4.2.2 Kalman filter (KF)-based signal enhancement. In order to minimize the noise fur-

ther, we have used KF on the GSP filtered data St{Sx, Sy}. The state vectors at time k is given by,

~Rk ¼ ½SxkSykS
:
xk
S:yk �, where, S:xkS

:
yk

denotes the velocity of eyeball among the X and the Y direc-

tions, respectively. The instantaneous eye movements depend on the prior velocities, i.e.~vj ¼

fS:xjS
:
yj
g where time (j< k) and hence we have modeled ~vk as the weighted sum of previous
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velocities. The dynamic equations that govern the position ~pkðSxkSykÞ, for (x, y) position at

instance k, of eye gaze data are,

~pk ¼~pk� 1 þ T �~vk� 1 ð9Þ

~vk ¼ ak� 1~vk� 1 þ ak� 2~vk� 2 þ ak� 3~vk� 3 þ � ð10Þ

where T ¼ 1

fs
; fs is the sampling frequency (30 Hz) of the Eye Tribe eye tracker. It is observed

that the eyeball velocity follows ARIMA (3, 0, 0) or AR(3) [56] and hence, we have derived the

coefficients ak−1, ak−2, ak−3 and ϕ from the ARIMA model. It is required that the coefficients

are to be derived separately for each participant. The discrete state space model for eye gaze

data is given by the linear stochastic difference at time k as,

~Rk ¼ F~Rk� 1 þ ~wk� 1
ð11Þ

~Zk ¼ H~Rk þ~rk ð12Þ

where F is the state transformation matrix. The actual observation is made at time k. The

noiseless connection among the measurement vector~Zk and state vector~Rk is designated by

H. The~rk and ~wk are measurement and process noise (uncorrelated gaussian noise following

zero mean and co-variance of ϕ2 and ϕ1), respectively. The Kalman filter corrects the eye gaze

data~Rk after receiving~Zk (at time k) by,

R̂k ¼
~Rk þ Kkð

~Zk � H~RkÞ ð13Þ

where Kk is the Kalman gain [57] and R̂k is the filtered data at time k. The pseudocode is as

provided in Algorithm 2.

Algorithm 2: Pseudocode for Kalman filtering for denoising the signal

KalmanSmoothing (Stx, Sty);
Input : GSP filtered eye gaze coordinates St = (Stx, Sty)
Output : Smooth data R̂k

Initialization: Estimated state vector ~̂Rþkjk� 1, state transition matrix F,
measurement mapping matrix H, process noise co-vari-
ance matrix �1, measurement noise co-variance matrix

�2, priori state co-variance ~̂Pk� 1

FOR each time epoch k
Prediction : State prediction based on (k − 1)th state given F and �1
Update : Update the posterior mean of state estimate based on

the new measurement ~Skt given �2 and H. Compute Kalman

Gain Kk and update the covariance ~̂Pk� 1 and state esti-
mate R̂k

Loop continue

4.3 Systematic error removal (SER) using linear transformation (LT)

The filtered data, R̂ is subjected to further processing with spatial transformation in order to

remove the systematic error [39]. The method basically uses the separation between the actual

and the desired (ground truth) gaze coordinates for generating a 2 × 2 transformation matrix
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T. The best-fitting values of T are obtained using optimization routines such as simplex algo-

rithm [39]. Next, this matrix is used to correct the actual fixation data R̂ as,

~C ¼ R̂ � T ð14Þ

where ~C is the corrected gaze data. In ideal case, if R̂ exactly matches the ground truth coordi-

nates, T would have been an identity matrix. We have applied both supervised and unsuper-

vised approaches for error removal.

In the supervised approach, the systematic error is learnt in the calibration phase in terms

of transformation matrix T, which is then used in the succeeding test phase (for supervised

approach), whereas it is derived directly from the test data set in case of unsupervised

approaches, discussed in the following subsections.

4.3.1 Supervised approaches—Paths A and B. The designed supervised approach is

depicted in Fig 6.

The fixation data is extracted from the eye gaze data collected in the calibration phase, as

explained in section 4.1. Next, the data is subjected to variable error removal as explained in

section 4.2. Finally, the transformation matrix T is derived for each of the 9 static points (S1

through S9). Each of the Ts are evaluated for correctness. We define a correctness measure M,

given by,

M ¼ detðTÞ ð15Þ

Ideally, if the raw data and the ground truth data exactly matches, Twould be an identity

matrix with M = 1. We computed M for over 200 fixation chunks and a threshold of 0.8 is set

empirically. If M< 0.8 for any calibration point, then it is rejected and is replaced by the aver-

age T of 2 nearest calibration points whose M value is greater than the threshold. If more than

3 Ts have M less than threshold of 0.8, a fresh set of data are captured for the calculation of

transformation matrices for that particular participant.

The matrices derived from the calibration phase are stored and are used to remove the sys-

tematic error in the test phase. The proposed method deals with extracting the transformation

matrix T for a given fixation chunk with centroid X from its nearest calibration point S. The

main principle behind this assumption is that the nature of systematic error for the given fixa-

tion chunk is similar to the systematic error seen on the nearest calibration point S (during the

calibration phase), computed using k-nearest neighbor search algorithm [58]. Path A, as

shown in Fig 6 has 4 Ts based on inverse weighing function ~CIWF, defined as,

~CIWF ¼

PN
i¼1
wiðxÞ~ui

PN
i¼1
wiðxÞ

; if dðx; yÞ 6¼ 08i

~ui ; otherwise

ð16Þ

8
>><

>>:

where ~ui ¼ R̂k � Tk for k = 1 to 4 nearest calibration points; N = 4 nearest neighbors; wiðxÞ ¼
1

dðx;yÞp where, d is the Euclidean distance between the centroids of the fixation data x and the cal-

ibration point (any one among the points S1 through S9) and the value of p is set to 2. The

weight w is normalized by dividing each of the 4 weights by the sum of the total weight. The

weights are inversely proportional to the square of the distance, which implies that the cor-

rected gaze data is mostly influenced by the nearer neighbors. Nearer the point, more the force

applied to pull the point towards the calibration point. For path B, as shown in Fig 6, only the

transformation matrix corresponding to the most nearest calibration point is taken into

account for correcting the systematic error. Hence, in the current supervised approach, we
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have used either 4 and 1 nearest calibration points. The reason behind using 4 points is to

check the influence of systematic error across the screen (i.e. in terms of magnitude and direc-

tion of the drift). In contrast to this, we have checked the performance of the filtered fixation

data against 1 closest calibration point, which incorporates the nature of the systematic error

corresponding to that particular point only. The psuedocodes for paths A and B are provided

in Algorithms 3 and 4, respectively.

Algorithm 3: Pseudocode for Path A

Input : Raw Gaze data, S = (Sx, Sy)
Output : Variable and Systematic error removed data, C
Procedure: S = Extract fixation data from raw eye gaze data, S

Variable Error Correction:
St = GSPfiltering(Sx, Sy)
R̂k = KalmanSmoothing(Stx, Sty)

Systematic error removal:
Obtain 1 T derived from 1 nearest calibration point
Obtain corrected data C, by transforming the R̂k using T as,
C ¼ R̂k � T

Algorithm 4: Pseudocode for Path B

Input : Raw Gaze data, S = (Sx, Sy)
Output : Variable and Systematic error removed data, C
Procedure: S = Extract fixation data from raw eye gaze data, S

Variable Error Correction:
St = GSPfiltering(Sx, Sy)
R̂k = KalmanSmoothing(Stx, Sty)

Systematic error removal:
Obtain 4 Ts derived from 4 nearest calibration points
Find weighted T from the 4 Ts using inverse weighing function
Obtain corrected data C, by transforming the R̂k using T as,
C ¼ R̂k � T

4.3.2 Unsupervised approach—Paths C and D. This approach is based on the ‘n—near-

est stimulus point’ (not the calibration point), in contrast to the ‘required fixation location’

[12], ‘probable fixation location’ [39], and ‘closest stimulus point’ [14]. In our case, n = 2 or 4

neighboring stimulus points.

For path C, as shown in Fig 7, 4 nearest stimulus points are selected and transformation

matrices with respect to each of these 4 locations are derived. Later, inverse weighing function

is applied, as discussed in Eq (16), to get the corrected data. For path D, as shown in Fig 7, sim-

ilar approach is applied but with only 2 nearest stimulus points instead of 4 (Fig 8). For the fix-

ation data represented by black dots, the 4 nearest stimuli are A, F, P and X with the Euclidean

distances d1, d2, d3 and d4 from the fixation center. The weights are chosen to be inversely pro-

portional to the distance, i.e. lesser the distance, larger the weight; which implies that the cor-

rected fixation would be more biased towards the nearer neighbors. In the unsupervised

approach, we have used 4 and 2 nearest stimulus points. The usage of 4 points is analogous to

the one mentioned in supervised approach. The psuedocodes for paths C and D are provided

in Algorithms 5 and 6, respectively.
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Algorithm 5: Pseudocode for Path C

Input : Raw Gaze data, S = (Sx, Sy)
Output : Variable and Systematic error removed data, C
Procedure: S = Extract fixation data from raw eye gaze data, S

Variable Error Correction:
St = GSPfiltering(Sx, Sy)
R̂k = KalmanSmoothing(Stx, Sty)

Systematic error removal:
Obtain 4 Ts derived from 4 nearest stimulus points
Find weighted T from the 4 Ts using inverse weighing
function
Obtain corrected data C, by transforming the R̂k using T as,
C ¼ R̂k � T

Algorithm 6: Pseudocode for Path D

Input : Raw Gaze data, S = (Sx, Sy)
Output : Variable and Systematic error removed data, C
Procedure: S = Extract fixation data from raw eye gaze data, S

Variable Error Correction:
St = GSPfiltering(Sx, Sy)
R̂k = KalmanSmoothing(Stx, Sty)

Fig 8. Demonstration of inverse weighing function for 4 nearest neighbor stimuli points.

https://doi.org/10.1371/journal.pone.0196348.g008
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Systematic error removal:
Obtain 2 Ts derived from 2 nearest stimulus points
Find weighted T from the 2 Ts using inverse weighing function
Obtain corrected data C, by transforming the R̂k using T as,
C ¼ R̂k � T

From the above discussion it is clear that unsupervised approaches mainly aim on dragging

the gaze data towards its nearest stimulus, whereas, supervised approaches handle the gaze

data by considering the direction and magnitude of the systematic error as obtained in the cali-

bration phase. However, usage of any one of this method solely cannot serve all the types of

stimulus. For instance, if the stimulus points are very densely packed (e.g. designed stimulus

Recall-Recognition (RR) task with more than 24 words), then the nearest stimulus-based noise

cleaning fails considerably. In such cases, the supervised approaches can prove to be beneficial.

In contrast to this, in case of stimulus points being placed far apart (e.g. designed stimulus

Number Gazing (NG) task), the gaze data could be handled very well using the nearest stimu-

lus positions. Hence, the accuracy of noise cleaning relies on the nature of the stimulus and so

we have experiemented with both the supervised and unsupervised approaches.

It is to be noted that the four paths A, B, C and D are independent of each other and we

tested them one after the other on the data to check the effectiveness of each of them.

5 Experimental paradigm

This section discusses the experimental setup, various stimuli used and the details of the data

collection procedure adopted in the present study.

5.1 Setup

The experimental setup is shown in Fig 9. We have used a low-cost eye tracker from Eye Tribe

[59] having a sampling rate of 30 Hz. The Eye Tribe device is placed below the screen as shown

in Fig 9. An wooden chinrest fixed on the table is used while collecting the eye gaze data. A

height adjustable chair was used during data collection. The stimulus is shown on a computer

screen (1366 × 768) placed at a distance of approximately 60 cm from the participants. The

entire experiment is carried out in a closed, quite room under constant lighting conditions.

5.2 Participants

Twenty participants (12 females and 8 males, mean age 32 ± 5.54 years) are selected from our

research lab for the experimentation. All of them had normal or corrected to normal vision

with spectacles. We have ensured that they belong to similar cultural backgrounds and have

similar educational qualification. None of them had any background history of any mental or

physical ailments. Participants are allowed to wear spectacle during data collection. The clear-

ance on ethical issues for handling and analysis of the data collected has been acquired from

Institutional Review Board of Tata Consultancy Services Ltd. (TCS). Informed consent is also

taken from the participants and the data is anonymized for further processing.

5.3 Data collection

The experimental protocol and the tasks to be performed are explained to the participants

before starting the experiment. The participants are asked to sit comfortably on a chair with

adjustable height and a chin-rest is used to minimize the head movements. The participants

then performed an initial software development kit (SDK)-based calibration (provided by the

Eye Tribe sensor). The goodness of calibration is represented on a scale of 1-5. A score of 5
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corresponds to best calibration giving an error below 0.5 degree, whereas the error is more

than 1.5 degrees for the score of 2. Score 1 indicates the calibration is extremely bad and re-cal-

ibration needs to be performed. Before starting the actual experiment, the participants are

encouraged to take part in a practice session in order to have a better understanding of the

stimulus and the task to be performed. The stimulus used for practice sessions are similar to

that used for the actual experimentation, however, not exactly the same in terms of the set of

words to be recalled or the numbers to be gazed. The data collection is carried out in 2 phases

as described in the following subsections.

5.3.1 Phase one: Initial calibration. An initial calibration (both SDK-based and our

designed one) is performed once for a single (first) participant and the calibration results are

applied on the remaining participants. The position of the chin rest and the eye tracker are not

altered for the remaining participants. Next participant onwards, 2 tests (NG and the RR task)

Fig 9. Experimental setup with the eye tracker at the bottom of the display and a chin rest.

https://doi.org/10.1371/journal.pone.0196348.g009
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are performed as explained earlier. Corresponding eye gaze data are collected and are used for

further analysis.

5.3.2 Phase two: Repeated calibration. The accuracy of the protocol is later tested for

‘multiple time’ or ‘repeated calibration’, against one time calibration. Here, every participant

performs both the SDK and the designed calibration, before every test session.

Participants signed a consent form before the commencement of the experimentation. The

data corresponding to every participant is anonymized.

6 Results and discussion

The performance evaluation of our proposed methods are done in terms of algorithm/

approaches for the following scenarios

1. variable error removal techniques

2. comparison of supervised and unsupervised approaches for systematic error removal

3. comparison of single calibration against multiple calibration protocols

4. evaluation of proposed noise removal method for long duration tasks

We have also compared our designed approaches with the closely related state of the art

methods as explained in the tree diagram given in Fig 10.

Fig 10. State of the art methods considered for comparison for different types of error, where, LF = Low pass filtering, KF = Kalman filtering,

LT = Linear Transformation and CS = Closest Stimulus based approach.

https://doi.org/10.1371/journal.pone.0196348.g010
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6.1 Variable error removal technique

The performance evaluation is carried out to test if our proposed method is able to extract the

desired dense cluster of input fixation points.

Hence, by considering the problem associated with the variable errors, our proposed

method has been compared with most widely used filtering approaches for eye tracking, i.e.,

Low pass filtering and Kalman Filter. Fig 11 shows the effects of different filtering approaches

used on the gaze data corresponding to the NG task.

Fig 12 shows the sample results of different filters for the NG task for one particular partici-

pant (assuming systematic error to be zero). The participant is asked to gaze the numbers, 1-3-

5-7. The radius of each circle reflects the general smoothness of the data. Smaller the radius of

the circle, better is the filtering capabilities. For the gazed number ‘1’ in the Fig 12, the radius

of raw data, low pass filter (LF) and Kalman filter (KF) filtered data is almost the same and

hence, the circles are overlapping. Similarly, for the gazed number 7, the radius of Kalman fil-

ter KF filtered data is slightly larger than the GSP + KF filtered data. Note that the radii of the

proposed GSP + KF data chunk are least for all the gazed numbers.

In order to get insight of the change in the radius from raw to filtered data, we have defined

Smoothness Ratio (SR) metric as the ratio of the radius of raw data chunk Dr and the radius of

the filtered data Df (Eq 17). Fig 12 depicts the visualization of filtered output assuming system-

atic error as zero.

SR ¼
Dr

Df
ð17Þ

Larger values of SR mean better the filtering approach. The estimated SR values for each fil-

ter on both the tasks are shown in Figs 13 and 14. Fig 13 shows the SR in the NG task, when

the test is carried on the different categories of word spacing in comparison to the existing

methods. Fig 13 clearly depicts that the performance of GSP + KF is by far better than the exist-

ing methods. There is an enhancement of 69% over the complete spacing against Raw-LF and

more than 27% against Raw-KF (raw means data taken directly from the eye tracker device).

Fig 11. Comparison of different filtering approaches for the NG task wherein the participant gazed at 4 different numbers. Here, LF = Low

pass filtering, KF = Kalman filtering, GSP + KF = Graph signal processing and Kalman filter.

https://doi.org/10.1371/journal.pone.0196348.g011
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SR in recall-recognition (RR) task for the proposed and existing methods is shown in Fig 14.

The enhancement ranges from 56% (for minimum words) to 66% (for maximum words) com-

pared to Raw-LF. It is to be noticed that, even though the number of words increases, the per-

formance of the proposed method is still better.

The variable error also arises due to eye tracker hardware, exhaustion or fatigue of the user,

etc. Thus a closeness measure (CL) is also required to know how the points deviate or spread

across its cluster center. We have computed the CL of the data chunk with respect to its cluster

Fig 12. Demonstration of different filtering approaches in terms of smoothness for NG task. Note that for the gaze chunk on the digit ‘1’, the values

of SR in terms of degrees are 0.932˚, 0.92˚, 0.26˚, 0.2˚, respectively for raw data, LF, KF and GSP + KF approaches. Here, LF = Low pass filtering,

KF = Kalman filtering, GSP + KF = Graph signal processing and Kalman filter.

https://doi.org/10.1371/journal.pone.0196348.g012

Fig 13. Smoothness ratio of proposed and existing methods in NG task. Here, LF = Low pass filtering, KF = Kalman

filtering, GSP + KF = Graph signal processing and Kalman filter.

https://doi.org/10.1371/journal.pone.0196348.g013
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center as given by Eq (18),

CL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðp‘ � piÞ

2

N

r

ð18Þ

where N is the number of samples, p = (x, y) are the fixation data coordinates and p‘ ¼ ðx‘; y‘Þ

represents the coordinates of the cluster center. We call this metric as the closeness measure, as

it computes the distance of cluster center from rest of the points. Lower closeness values indi-

cate better filtering approach.

The results for variable error removal, based on closeness measure are presented in Figs 15

and 16, for the NG task and the RR task, respectively. It is to be noted that the combination of

graph signal processing and Kalman filter performs better in comparison to the low pass filter

and Kalman filter in increasing the compactness in the data chunk. Hence, this combination is

used for the further analysis.

Note that in case of the NG task, the number of participants are 20, out of which for the

first 10, we manually selected the chunks in the gaze data. From these chunks, the data of win-

dow length 2 seconds was taken for further analysis because as per the subjective feedback, gaz-

ing on a particular entity for more time is difficult, which would rather encompass micro-

saccades. For remaining 10 participants, we introduced a ‘click’ event in the NG task and the

data of window length 2 seconds before the click event was considered. This was done to verify

any significant change in the performance of the algorithms due to click event and it was seen

that there was no significant effect. Hence, for the rest of the stimulus types, i.e. for the NG

task with multiple calibration and modified NG task for long duration analysis, the click event

was used to speed up the process.

Fig 14. Smoothness ratio of proposed and existing methods in the RR task. Here, LF = Low pass filtering,

KF = Kalman filtering, GSP + KF = Graph signal processing and Kalman filter.

https://doi.org/10.1371/journal.pone.0196348.g014
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Fig 16. Closeness measure results for variable error correction of the RR task for different number of words (for

one-time calibration protocol). Here, LF = Low pass filtering, KF = Kalman filtering, GSP + KF = Graph signal

processing and Kalman filter.

https://doi.org/10.1371/journal.pone.0196348.g016

Fig 15. Closeness measure results for variable error correction of the NG task for different spacing (for one-time

calibration protocol). Here, LF = Low pass filtering, KF = Kalman filtering, GSP + KF = Graph signal processing and

Kalman filter.

https://doi.org/10.1371/journal.pone.0196348.g015
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6.2 Comparison of unsupervised and supervised approach for systematic

error removal

For systematic error removal, the approach used to measure the algorithmic performance is

through the accuracy of having the centroid of the gaze chunk in the area of interest (AOI) of

the stimulus. Hence, efficient designing of the AOI boundary also plays a vital role in the com-

putation of accuracy. Based on this, three different AOIs are considered, viz. circular, rectan-

gular and elliptical, as shown in Fig 17 for the NG task. The accuracy thus obtained for raw

gaze data is reported in Table 2. The reason for using the raw gaze data in this context is to

throw light on the effectiveness of the boundaries in the absence of any noise cleaning tech-

niques. It is evident from Table 2 that rectangular boundary provides maximum accuracy and

hence, further analysis is carried out using the rectangular boundary only.

Next the performance of each path (Path A through D as depicted in Figs 6 and 7) is

assessed in terms of accuracy for the rectangular boundary and is shown in Figs 18 and 19, for

the NG task and the RR task, respectively. In case of NG task, the accuracy of the raw data

decreases considerably with the decrease in inter-number spacing. However, with the

Table 2. Accuracy (%) of detecting the gazed number using the 3 different boundaries for raw gaze data.

AOI 100 Space 70 Space 50 Space

Circle 57.5 53.75 38.75

Ellipse 66.25 65 57.5

Rectangle 71.25 67.5 60

https://doi.org/10.1371/journal.pone.0196348.t002

Fig 17. Pictorial scheme of different types of boundaries defined around each number in the NG task.

https://doi.org/10.1371/journal.pone.0196348.g017
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proposed approach, the error is reduced, thereby enhancing the accuracy. For the RR task, the

accuracy of all the approaches drops with the increase in number of words (thereby decrease

in spacing between the neighboring words). However, it is to be noted that it is the best possi-

ble option to use 12 words in order to get good accuracy in such systems. The results confirm

that even with one-time calibration, the designed algorithmic chain can handle the variations

in the gaze data due to subject-specific differences, making it a practical solution for patients

who are unable to perform calibration.

Fig 18. Accuracy of detecting the gazed numbers using different algorithmic chains for the NG task (for one-time

calibration protocol).

https://doi.org/10.1371/journal.pone.0196348.g018

Fig 19. Accuracy of detecting the gazed words using different algorithmic chains in the RR task (for one-time

calibration protocol).

https://doi.org/10.1371/journal.pone.0196348.g019
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6.3 Comparison of single calibration against multiple calibration methods

We have further compared the proposed and the existing noise cleaning methods considering

multiple calibration (i.e. calibration for each participant) and proposed one time calibration.

The stimulus chosen for comparison are NG task with 50 pixels (inter-digit spacing) and RR

task with 32 words (i.e. 16 words/column). The comparison of accuracy of handling the sys-

tematic error for single and multiple calibration is given in Table 3. The nature of systematic

error is calibration-dependent, which is evident from this table. Also, with multiple calibration,

the accuracy of detecting the desired stimulus point increases, however, the difference in accu-

racy for both the cases is not considerably high. Hence, in cases where multiple calibration is

not possible, it is acceptable to go ahead with single calibration, provided the eye tracker and

chin rest positions are not altered.

In Table 3 it can be seen that the overall accuracy for the supervised approach (for RR task)

for multiple calibration is lesser in comparison to its single calibration counterpart; in contrast

to the NG task where the reverse behavior is seen. This can be attributed to the fact that not all

the participants were able to perform the calibration phase properly, thereby degrading the

overall accuracy. This behavior is seen specifically for the RR task as the stimulus points

(words) are densely packed in this case, hence, the effect of the n-nearest calibration points for

the supervised approach has more impact which might be degraded due to bad calibration. In

case of the NG task, the calibration points at the top of the screen had more impact owing to

the placement of the numbers on the screen.

Table 3 shows the comparison of various proposed approaches over the closely related

state-of-the-art methods. It is to be noted that in case of NG task, the proposed unsupervised

approach (Path C and D of Fig 7) outperforms [39]. It is also evident from the Table 3 that

though the method proposed in [14] outperforms all other methods for NG task, but it does

not work in cases where the number of stimuli points is large or the stimuli are densely packed.

Hence, the results obtained using [14] is not good for the RR task. The main reason is that the

method in [14] is based on closest stimulus point and hence, the accuracy is computed by look-

ing at the closest stimulus point from the gaze chunk obtained using mean shift algorithm

[14]. In our case, the error free data either lies in the correct stimulus region {Rc 2 U}, wrong

stimulus region {Rw 2 U} or in no-man’s land {Rn 2 U, where Rn =2 (Rc [ Rw)}; due to the rect-

angular boundary defined around each stimulus point, where U corresponds to the overall

screen region. However, it is to be noted that the method given in [14], forcibly moves a fixa-

tion to the closest point and hence, a true fixation away from the stimulus is not detected by

the algorithm. Therefore, all our proposed methods are performing better than existing meth-

ods as reported in Table 3, maximum accuracy is obtained with Path B for RR task and that for

NG task is obtained through Path D.

Table 3. Comparison of average accuracy (%) in systematic error correction for different calibration protocol (RR-Recall recognition, NG-Number gaze).

Task Calibration Type Raw Path A Path B Path C Path D [39] LT Closest Stimulus [14]

RR Single 28.86 45.38 47.47 34.07 36.16 18.6 38.24

Multiple 38.33 40 38.33 36.67 38.33 10 36.67

NG Single 60 53.75 58.75 78.75 83.75 78.75 88.75

Multiple 70 82.5 82.5 87.5 90 82.5 100

https://doi.org/10.1371/journal.pone.0196348.t003
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6.4 Performance of proposed noise removal methods for

long duration tasks

To check the scalability aspects for long duration task on the proposed eye tracking noise

removal methods, the NG task is modified. The inter-number spacing is selected to be 50 pix-

els (as this is the least spacing). The total duration of the task is set to 15 minutes approximately

in which 9 random single digit numbers (4 odd numbers) appear on the screen at a time. The

participants are expected to gaze and click on these 4 odd numbers only. After 4 clicks a new

set of numbers appears on the screen. Totally 3 participants were taken for this case. Fig 20

shows the variable error related parameters-smoothness and closeness for one participant P1.

The participant P1 performed the task for a duration of 15 minutes approximately and

hence, the results are shown by computing the parameters over a window length of 60 seconds.

It is noted from Fig 20 that our variable error removal technique is able to reduce the noise

(i.e. extracting dense fixation chunk from raw eye tracker data), whereas, the parameters corre-

sponding to the raw data degrade considerably over time as the participant felt exhausted and

stopped the experiment abruptly at the 14th minute. This observation (i.e. how subjective

fatigue and exhaustion affects the variable error) also emphasizes the fact reported in [15]. In

order to establish the fatigue factor on variable error, we have carried out same analysis for

another participant P2 who was well-acquainted with the data capture procedures as he had

participated several times during the initial phases of our experiment. From the subjective

feedback, it was clear that he did not feel exhausted during the study and Fig 21 also supports

the fact. The nature of variable error (see Fig 21) is somewhat constant owing to the raw data,

whilst the proposed GSP + KF method is successful in handling the variable noise in contrast

to the state-of-the-art methods.

Figs 20 and 21 truly justify how the proposed method is robust enough in handling the vari-

able error induced by fatigue, head movement and exhaustion etc. Table 4 provides the consol-

idated results for the variable error correction with respect to the closeness and smoothness

parameters for the proposed GSP + KF technique. It can be seen that the variation in the

parameters for long duration task is within the 10% range of the short duration task. Table 5

shows the accuracy of correcting the systematic error for the short and long duration task.

Fig 20. Removal of variable error for participant P1. (a) Smoothness parameter, (b) Closeness parameter.

https://doi.org/10.1371/journal.pone.0196348.g020
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Note that the accuracies are consistent bereft of the duration of the task while handling the sys-

tematic error. Path C and D perform better in denoising the systematic error.

7 Conclusions

The study aims at denoising a low-cost eye tracker in order to make it a perfect choice for the

applications, such as rehabilitation, cognitive assessments, etc. The noise characteristics of a

low resolution eye tracker are studied thoroughly and optimized approaches are designed to

handle the errors associated with those errors. The algorithms are tested on 2 simple test sti-

muli and it is seen that our approach improves the overall performance of the system. In case

of variable error, our proposed method reduces the dispersion of data points (i.e. closeness) by

48.98% and 59.53% in comparison with the raw data, for RR and the NG task, respectively. For

systematic error removal, the results show improvements of about 17.86% and 15.25% over

the raw data, for RR and NG tasks (taken average across all proposed paths for one time

Table 5. Comparison of average accuracy (%) in systematic error correction for short and long duration task.

Short Duration Task Long Duration Task

Path A 53.75 53.95

Path B 58.75 54.78

Path C 78.75 74.49

Path D 83.75 73.71

https://doi.org/10.1371/journal.pone.0196348.t005

Fig 21. Removal of variable error for participant P2. (a) Smoothness parameter, (b) Closeness parameter.

https://doi.org/10.1371/journal.pone.0196348.g021

Table 4. Comparison of variable error correction in terms of closeness measure and smoothness ratio in short and

long duration task using GSP + KF.

Short Duration Task Long Duration Task

Smoothness 3.79 3.96

Closeness 6.62 5.36

https://doi.org/10.1371/journal.pone.0196348.t004
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calibration). The chosen test stimuli are closely related to the psychological tests and our

results are motivating enough for the usage of eye tracker as a physiological sensor that can be

used to extract more subject specific information such as working memory, attention or

engagement, visual-motor coordination, etc., in real-time feedback for home-based applica-

tions. In addition to this, we have devised a one-time calibration protocol to avoid repeated

calibration. Results confirm that the proposed approach gives satisfactory results in compari-

son to its multiple calibration scheme. Thus, it can be used successfully for patients who are

unable to perform calibration due to some medical conditions. We have also evaluated our

algorithms for long duration tasks and the results obtained are quite satisfactory. The system

suits well for rehabilitation purpose. For the sake of rigorous scientific applications, the study

needs to be further examined with detailed case studies governing the cognitive and behavioral

aspects of eye movements research. In future we intend to increase the task duration further

and study the effects on applications involving dynamic visual scenes like that of driving

scenarios.
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