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Abstract

High usage of progestin-only injectable contraceptives, which include the intramuscular

injectables depo-medroxyprogesterone acetate (DMPA-IM, Depo-Provera) and norethister-

one (NET) enanthate (NET-EN or Nur-Isterate), correlates worldwide with areas of high

HIV-1 prevalence. Epidemiological data show a significant association between usage of

DMPA-IM and increased HIV-1 acquisition but no such association from limited data for

NET-EN. Whether MPA and NET have similar effects on HIV-1 acquisition and pathogene-

sis, and the relationship between these effects and the dose of MPA, are critical issues for

women’s health and access to suitable and safe contraceptives. We show for the first time

that MPA, unlike NET, significantly increases HIV-1 replication in peripheral blood mononu-

clear cells (PBMCs) and a cervical cell line model. The results provide novel evidence for a

biological mechanism whereby MPA, acting via the glucocorticoid receptor (GR), increases

HIV-1 replication by at least in part increasing expression of the CCR5 HIV-1 coreceptor on

target T-lymphocytes. MPA, unlike NET, also increases activation of T-cells and increases

the CD4/CD8 ratio, suggesting that multiple mechanisms are involved in the MPA response.

Our data offer strong support for different biological mechanisms for MPA versus NET, due

to their differential GR activity. The dose-dependence of the MPA response suggests that

significant effects are observed within the range of peak serum levels of progestins in

DMPA-IM but not NET-EN users. Dose-response results further suggest that effects of con-

traceptives containing MPA on HIV-1 acquisition and disease progression may be critically
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dependent on dose, time after injection and intrinsic factors that affect serum concentrations

in women.

Introduction

Understanding the differential mechanisms of action and dose-dependent effects of the pro-

gestins medroxyprogesterone acetate (MPA) and norethisterone (NET) and effects on HIV-1

pathogenesis are crucial to women’s health. The most common form of contraception in devel-

oping countries is the three-monthly intramuscular injection of 150 mg of MPA (Depo-Pro-

vera or DMPA-IM), while NET enanthate (Nur-Isterate or NET-EN), a two-monthly injection

of 200 mg of NET-EN, is less widely used in developing countries. A three-monthly subcutane-

ous formulation of DMPA (DMPA-SC marketed as Sayana1 Press), with a 30% lower dose

(104 mg), is currently being introduced worldwide. Epidemiological data suggest a significant

1.4-fold increased risk of HIV-1 acquisition for DMPA-IM users compared to no hormonal

contraception, although the data may be confounded by behavioural factors [1–3], while no

such association is shown for limited data on NET-EN, and no information is available for

DMPA-SC and HIV-1 acquisition risk [1]. Determination of the absolute and relative risk fac-

tors for HIV-1 acquisition and biological mechanisms for DMPA-IM, DMPA-SC and

NET-EN is a critical issue for women’s health, especially in Sub-Saharan Africa [4–7].

Although the mechanisms whereby DMPA-IM may increase HIV-1 acquisition in the

female genital tract are currently unclear, there is mounting evidence from clinical, animal and

in vitro data to suggest multiple mechanisms [8, 9]. While the dose-dependence of these effects

is unclear, recent data suggest that time after injection with DMPA-IM [9], corresponding to

varying MPA serum concentrations, may be critical. There are no clinical or animal data on

possible biological mechanims relevant to HIV-1 pathogenesis for DMPA-SC or NET-EN,

while limited ex vivo data suggest that NET has no effect on immune function, unlike MPA

[10–15]. Whether physiologically significant concentrations of MPA directly affect replication

of infectious HIV-1 virus in target cells is unclear from the literature, while no information is

available for NET [16, 17]. MPA may directly affect HIV-1 coreceptor expression levels in

HIV-1 target cells, as is suggested from one report [16], while the effects of NET are unknown.

Interestingly, progesterone did not increase CCR5 expression in non-activated PBMCs, but

decreased IL2-induced CCR5 expression in activated PBMCs, which was accompanied by a

slight resistence to HIV infection [18].

MPA, NET and progesterone differ in their glucocorticoid-like properties and are shown to

exert very different biological responses via the glucocorticoid receptor (GR) [10–14, 19, 20].

Designed to act via the progesterone receptor (PR), progestins act to varying degrees via other

members of the steroid receptor family of proteins [20–24]. These include the androgen, glu-

cocorticoid, mineralocorticoid, and estrogen receptors (AR, GR, MR and ER, respectively).

MPA is an outlier amongst this group of progestins, since it binds to the GR with a relatively

high affinity and acts like a full to partial GR agonist, depending on cellular context, while

NET exhibits almost no GR activity. Dose-response analysis defines the potency of a steroid

response, or EC50, as the concentration required for half maximal activity [19, 25]. The EC50

or potency for MPA regulation of gene expression via the GR in ex vivo cell models varies in

different T-cells and for different genes and occurs in the range of about 1–100 nM [10–13,

26–28], while NET has no GR activity [8, 10–13]. The MPA potencies ex vivo fall within the

range of peak serum levels (Cmax) of MPA in DMPA-IM users [8, 19].

MPA unlike NET increases HIV-1 replication in human PBMCs via the GR, increased CD4/CD8 ratios and CCR5 levels
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Given the clinical data suggesting that MPA but not NET increases HIV-1 acquisition, we

sought to investigate the dose dependence and direct effects of both MPA and NET on R5

HIV-1 replication in PBMCs. Towards further understanding the biological mechanisms of

these potential effects, we investigated the role of the GR and CCR5 in both PBMCs and an

indicator cell line.

Materials and methods

Compounds, antibodies and plasmids

(11b,16a)-9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione (dexametha-

sone; Dex, D4902), 6α-methyl-17α-hydroxy-progesterone acetate (medroxyprogesterone ace-

tate; MPA, M1629), 4-pregnene-3,20-dione (progesterone; P4, P0130), 17α-ethynyl-19-

nortestosterone (norethisterone; NET, N4128), and 11β-(4-dimethylamino)phenyl-17β-

hydroxy-17-(1propynyl)estra-4,9-dien-3-one (Mifepristone; RU486, M8046) were purchased

from Sigma-Aldrich, South Africa. Interleukin 2 (IL2) and maraviroc (MVC) were obtained

through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, M5655) was purchased

from Sigma-Aldrich, South Africa. Antibodies to glucocorticoid receptor (GR) (H-300, sc-

8992), androgen receptor (AR) (441, sc-7305), mineralocorticoid receptor (MR) (H-300, sc-

11412, as well as C-19, sc-6861), estrogen receptor alpha (ERα) (MC-20, sc-542) and GAPDH

(0411; sc-47724) were obtained from Santa Cruz Biotechnology, USA. Antibodies to the pro-

gesterone receptor (PR) (NCL-LPGR-312) were purchased from Leica Biosystems (Novocas-

tra, United Kingdom). Secondary antibodies for primary detection were purchased from Santa

Cruz Biotechnology, USA, and include anti-mouse (sc-2005) and anti-rabbit (sc-2313). Anti-

CD3 fluorescein isothiocyanate (FITC), (300440), anti-CD4 phycoerythrin-Dazzle 594 (PE-

Dazzle 594) (357412), anti-CD8 PE/Cy5 (300910), anti-CD25 PE (356104), anti-CD69 PE/

Cy7 (310912), anti-CCR5 allophycocyanin (APC) (359122) and ZOMBIE NIR (423113)

were purchased from Biolegend (USA). An R5 infectious molecular clone that had a luciferase

gene inserted adjacent to the env gene in the HIV-1 NL4-3 backbone known as NL—LucR.

T2A—BaL.ecto, was a kind gift from by Dr. Christina Ochsenbauer [29], and known as HIV-

1BaL-Renilla in this study.

Cell culture

Human embryonic kidney cells (HEK293T) were purchased from America Type Culture Col-

lection (ATCC, USA). Human cervical TZM-bl cells were procured from the NIH AIDS

Reagent Program, Division of AIDS, NIAID, NIH from Dr. John C. Kappes, Dr. Xiaoyun Wu

and Tranzyme Inc. (ARP, NIH, USA). Cells were cultured in 75 cm2 flasks (Greiner Bio-one

International, Austria) in Dulbecco’s modified Eagle’s medium [(DMEM) (Sigma-Aldrich,

South Africa) supplemented with 1 mM sodium pyruvate (58636, Sigma-Aldrich, South

Africa), 44 mM sodium bicarbonate (Sigma-Aldrich, South Africa), 10% (v/v) foetal bovine

serum (Thermo Scientific, South Africa) 100 IU/mL penicillin and 100 mg/mL streptomycin

(P4333, Sigma-Aldrich, South Africa); full DMEM]. All cells were maintained at 37˚C in a

water jacketed incubator (90% humidity and 5% CO2). Cells were passaged twice a week, with

0.25% (w/v) trypsin/0.1% (w/v) EDTA in PBS (Sigma-Aldrich, South Africa). Trypsinisation

was terminated with neutralisation medium (full DMEM). All cells were routinely tested and

found to be mycoplasma-free.

MPA unlike NET increases HIV-1 replication in human PBMCs via the GR, increased CD4/CD8 ratios and CCR5 levels
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Virus propagation

Initial viral stocks were prepared as previously described [30] with a few modifications.

HEK293T cells were seeded at a density of 4 X 106 cells in a 10 cm2 plate in full DMEM supple-

mented with 25 mM HEPES buffer (Lonza, Germany) at 37˚C in a water-jacketed incubator

(90% humidity and 5% CO2). The next day, media was replaced and cells were transfected

with 12 μg HIV-1BaL-Renilla or a control (DMEM) using X-tremeGENE 9 DNA transfection

reagent (Roche Applied Science, South Africa) according to the manufacturer’s specifications.

Cells were incubated for 48 hours at 37˚C, the medium was passed through a 0.22 μM filter

and charcoal-stripped (c-s) FCS (Thermo Scientific, USA) was added to a final concentration

of 12.5%. The viral stocks were aliquoted and stored at -80˚C until use. Virus titres were deter-

mined using the TZM-bl assay as previously described [29]. Cells were harvested 72 hours

later with 120 μL Bright-Glo luciferase lysis buffer (Promega, USA). Fluorescence was deter-

mined on a luminometer (Modulus Microplate, Promega, USA), where relative light units

(RLU) were measured for each well. The titre of the virus stock was determined using the Reed

Muench method and expressed as log infectious units (IU)/mL [31].

PBMC isolation and infection assay

Permission to perform these studies was granted by the Human Research Ethics Committee of

the Faculty of Health Sciences of the University of Cape Town (approval number: HREC 210/

2011). Buffy packs were obtained from anonymous healthy female donors who were negative

for HIV-1, syphilis and hepatitis B and C from the Western Province Blood Transfusion Ser-

vices, after written informed consent. PBMCs were isolated using Histopaque (H1077 Hybri-

MaxTM; Sigma-Aldrich, South Africa) density centrifugation with Leucosep tubes (Greiner

Bio-One, Germany) according to the manufacturer’s instructions. The isolated PBMCs were

washed twice with PBS supplemented with 1% (v/v) c-s FCS (Thermo Scientific, South Africa).

PBMCs were subsequently cultured in high glucose (4.5 g/mL) RPMI 1640 (Lonza, Switzer-

land) with 10% (v/v) c-s FCS (Thermo Scientific, South Africa), 2 mM L-glutamine (G7513,

Sigma-Aldrich, South Africa), 100 IU/mL penicillin and 100 mg/mL streptomycin (Sigma-

Aldrich, South Africa) and 30 U/mL IL2 at 37˚C in a water-jacketed incubator (90% humidity

and 5% CO2).

After stimulation with ligands, PBMCs were infected with 10 IU/mL HIV-1BaL-Renilla or

with a mock infection control (RPMI only), in the presence of the hormones, for 2 hours at

37˚C. PBMCs were washed 4 times with 1 X PBS supplemented with 1% cs-FCS. Thereafter,

full RPMI with IL2, was added and PBMCs were incubated for a further 5 days at 37˚C.

PBMCs were harvested at day five post-infection for Renilla luciferase expression using Renilla
luciferin (Promega, USA), according to manufacturer’s instructions. Luminescence was deter-

mined on a luminometer (Modulus Microplate, Promega, USA), where RLU were measured

for each well. Viability was measured using the MTT assay and measured on a spectrophotom-

eter (Thermo Scientific, USA) at 595 nm. PBMCs remained viable for the duration of the

infection assay as determined by the MTT assay. Infection was calculated by dividing the RLU

obtained for each sample by the average MTT absorbance value for that sample group. There-

after, relative infection was calculated by setting vehicle control (EtOH) to 100% infection.

TZM-bl infection assay

TZM-bls were seeded at a concentration of 5 X 104 cells/mL in a 96-well flat bottomed culture

plate in full DMEM. The following day the TZM-bl cells were either stimulated with hormone

or maraviroc (MVC) for 24 hours in triplicate. Cells were then infected with 20 IU/mL HIV-

1BaL_Renilla and were harvested 48 hours later with Bright-Glo luciferase lysis buffer (Promega,
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USA). Luminescence was determined on a luminometer (Modulus Microplate, Promega,

USA), where relative light units were measured for each well. Viability was measured using the

MTT assay and measured on a spectrophotometer (Thermo Scientific, USA) at 595 nm. Lucif-

erase readings were normalized to MTT values (RLU/MTT). Relative infection was calculated

by setting the vehicle control (EtOH) to 100% relative infection.

Knockdown of GR by siRNA

TZM-bl cells were seeded at 1 X 105 cells/well in 12-well plates. After 24 hours, cells were trans-

fected with 10 nM non-silencing control (NSC) or siRNA targeting the human GR (siGR, Qia-

gen, South Africa) for 48 hours. Cells were re-seeded at a concentration of 2 X 105 cells/mL in

a 12-well culture plate (for western blotting) or at a concentration of 2.5 X 104 cells/well into

96-well plates in quadruplicate wells for another 24 hours, followed by stimulation for 24

hours with 100 nM MPA or vehicle (EtOH). Media was removed and replaced with phenol

red-free DMEM containing 10 IU/mL HIV-1BaL-Renilla (HIV-BaL) or equivalent volume of

virus control. Western blot samples were washed once with PBS and lysed with 50 μl 2 X SDS

sample buffer (5 X SDS sample buffer: 100 mM Tris-Cl pH 6.8, 5% (w/v) SDS, 20% (v/v) glyc-

erol, 2% ß-mercaptoethanol and 0.1% (w/v) bromophenol-blue) and boiled for 10 minutes at

100˚C. The infected cells were harvested 72 hours later for luciferase (infection) and for cell

viability using the MTT assay, as described above.

RNA isolation and real time quantitative PCR (qPCR)

TZM-bl cells were seeded at a concentration of 2 X 105 cells/mL in a 12-well culture plate in

full DMEM. The following day the TZM-bl cells were stimulated with hormone for 24 hours,

harvested in 400 μl TriReagent1 (T9424, Sigma-Aldrich, South Africa) and processed for

RNA according to the manufacturer’s instructions.

250 ng total RNA was reverse-transcribed using the Transcriptor First Strand Synthesis

cDNA kit (Roche Applied Science, South Africa) according to the manufacturer’s instructions.

cDNA samples were stored at -80˚C until use in subsequent real time qPCR reactions. Real-

time quantitative PCR (qPCR) was performed using the Bioline SensiMix™ SYBR1 no ROX

kit (QT650-05, Bioline USA) on a RotorGene 3000 (Qiagen, Netherlands) real time qPCR

machine, according to manufacturer’s instructions. The steroid receptor primers and profiles

were previously established [14]. CCR5 and CXCR4 were amplified with the following primer

pairs 5’ TGGACCAAGCTATGCAGGTG 3' and 5' CGTGTCACAAGCCCACAGAT 3' and

CXCR4 5'GAAATGGGCTCAGGGGACTAT 3' and 5' TTCAGCCAACAGCTTCCTTGG 3'
with a Ta of 55˚C and 60˚C respectively. CD4 primers and profile were as previously reported

[32] while for GAPDH the primers were by Verhoog et al. (2011) [33]. Relative transcript levels

were determined using the method as previously described [34], with the vehicle control set

to 1.

Flow cytometry

Flow cytometry was performed as described previously [14] with a few modifications. Two

million PBMCs (at a concentration of 2 million/mL) in full RPMI were placed into 5 mL Bec-

ton Dickinson Falcon tubes (BD Scientific, South Africa). PBMCs were subsequently stimu-

lated with ligands or vehicle for 24 hours or 7 days at 37˚C in a water jacketed incubator. After

treatment, PBMCs were stained with anti-CD3 FITC, anti-CD4 PE-DAZZLE 594, anti-CD8

PE/Cy5, anti-CD25 PE or anti-CD69 PE/Cy7 and anti-CCR5 APC antibodies and the viability

dye, ZOMBIE NIR (Biolegend, USA) at room temperature for 15 minutes in the dark. After

staining, PBMCs were washed with PBS and resuspended in 1 X Cell Fix solution (Becton-
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Dickinson, USA). Samples were acquired using a BLSRII Becton-Dickinson flow cytometer

(Becton-Dickinson, USA) and analysed using Flow Jo software (version 10.1, Treestar, Inc,

Ashland, Ore). Lymphocytes were gated according to their forward- and side-scatter profiles.

Only the single cellular population was analysed. There was no difference in the viability of

PBMCs between treatments, as assessed by ZOMBIE NIR or MTT and PBMCs remained

>90% viable for the duration of the experiments. Dead cells were excluded from the scatter

plots prior to analysis and negative gates were set using minus fluorescence one (MFO) con-

trols. Results are represented as either frequency (as a percentage of total) or expression

(median fluorescence intensity, MFI). Relative fold change in frequency or expression levels

was calculated by setting vehicle control (EtOH) expression to 1.

Western blotting

TZM-bl western blot samples were obtained as described above (Knockdown of GR by

siRNA). For the steroid receptor positive controls, COS-1 cells were seeded into 12-well plates

(Greiner bio-one, Cellstar) at a density of 25 X 104 cells/well. The next day the cells were trans-

fected with 1 μg/well of empty vector, GR, AR, or PR or empty vector and 2 μg/well of MR or

ERα using FuGENE™ 6 (Roche Applied Science Diagnostics, South Africa) and incubated for

another 24 hours, before being harvested as described above. Western blotting was performed

as previously described [35].

Statistical analysis

Results were analysed using GraphPad PRISM (version 6) software from GraphPad Software

Inc (La Jolla California, USA). Data were tested for normality before parametric tests were per-

formed using the D’Agostino-Pearson omnibus normality test for large data sets and the Kol-

mogorov-Smirnov test with Dallal-Wilkinson-Lillefor P value for small data sets (n< 6). For

parametric data, where samples were treated with ligands at one time point, a one-way

ANOVA, with either a Dunnett’s or Tukey’s multiple comparisons post-test, comparing each

group to control or each other was performed. For comparison between two conditions, an

unpaired two-tailed student’s t-test was performed. For dose-response curves, data were ana-

lysed with the maximal response set to 100% and a non-linear regression model was employed,

plotting log agonist vs response, with the Hill slope set to 1. For data that were non-parametric,

a Kruskal-Wallis ANOVA with Dunn’s multiple comparisons test was performed when com-

paring samples to each other. Additionally, when two groups were compared to each other, a

non-parametric Mann-Whitney test (where the vehicle control was not normalized to 1) or

Wilcoxon signed rank test (where the vehicle control was normalized to 1) was performed.

Data were expressed as mean ± SEM on histograms or XY scatter charts, with n values given in

each figure legend. Where statistical significance of difference was obtained relative to a single

control statistical significance is denoted by �, ��, ���, or ���� to indicate p<0.05, p<0.01,

p<0.001, or p<0.0001 respectively. Where statistical significance of difference was obtained

between two values, this is indicated with lines between the two sample sets.

Results

MPA, unlike NET, increases HIV-1 replication in PBMCs at peak serum

levels of DMPA users, via the GR

The direct effects of MPA and NET on HIV-1 replication were investigated in PBMCs ex vivo.

We found that 100 nM MPA significantly increased R5 HIV-1 replication in non-activated

PBMCs from 14 independent female donors by 3.1 ± 0.9 fold, while equimolar NET had no

MPA unlike NET increases HIV-1 replication in human PBMCs via the GR, increased CD4/CD8 ratios and CCR5 levels
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effect (Fig 1a). No significant effects on HIV-1 replication were observed for pooled results

from ten independent female donors for PBMCs activated with PHA before exposure to 100

nM MPA or NET (data not shown). Interestingly, we also observed a variable response in

HIV-1 replication with the GR-specific agonist dexamethasone (Dex) (Fig 1a), suggesting that

synthetic GR agonists increase HIV-1 replication in some donor samples. We have previously

shown that PBMCs from female donors express GR mRNA and protein, but do not express

detectable levels of PR, AR, ER or MR mRNA or protein [14]. We report here that RU486

abrogates the MPA-induced increase in R5 HIV-1 replication in PBMCs (Fig 1b), providing

evidence for a GR-mediated mechanism for increased HIV-1 replication in PBMCs in

response to MPA, given our demonstrated lack of PR expression. Towards investigating the

dose-dependence of the MPA effect, Fig 1c shows that at both 1 and 10 nM MPA, approxi-

mately half of the donor samples showed an increase in HIV-1 replication while about half did

not. This wide inter-donor variability in response was observed in all the PBMC experiments.

The average increase in HIV-1 replication with MPA shows a typical steroid receptor sigmoi-

dal dose-response curve with an EC50 of about 15 nM (Fig 1d), within the range of peak serum

levels of DMPA-IM users.

MPA increases the ratio of CD4+/CD8+ cells, the frequency of activated

and CCR5 expressing T-cells and the density of the CCR5 coreceptor on T-

cells

Towards understanding the mechanisms whereby MPA but not NET affects HIV-1 replica-

tion, we investigated whether MPA differentially regulates activation and CCR5 HIV-1 core-

ceptor levels compared to NET in PBMCs by flow cytometry. The gating strategy is shown in

Fig A in S1 File. Exposure of non-activated PBMCs for 24 hours to 100 nM MPA or NET had

no significant effects on total cell numbers or frequency of CD3+, CD4+ or CD8+ T-cells (Fig

2a and 2b). Interestingly, 100 nM MPA, but not NET, increased the frequency of activated

CD3+, CD4+ and CD8+ T-cells, as measured by CD25 (Fig 2c), as well as the density of CD25

on CD3+ and CD4+ T-cells (Fig 2d). Additionally, we observed a significant increase with 100

nM MPA in the frequency of CD3+CCR5+ and CD8+CCR5+ T-cells, but not CD4+CCR5+

T-cells within the CD3+ population, unlike for 100 nM NET (Fig 2e), with a concomitant

increase in CCR5 density in CD8+ T-cells for MPA but not NET (Fig 2f). Tables A and B in S1

File summarize the total percentage of cell types and the average of the MFI densities, respec-

tively, for the above flow cytometry data.

Having observed that MPA increased the frequency of activated and CCR5-expressing T-

cells after 24 hours, we further investigated the effects of time of exposure to MPA by incubat-

ing PBMCs with vehicle or 100 nM MPA for 7 days, followed by analysis by flow cytometry.

MPA decreased the frequency of CD8+ T-cells (Fig 3a), thereby significantly increasing the

CD4/CD8 ratio 1.5-fold (Fig 3b). In addition, MPA increased the frequency and density of

CD69 on activated CD4+ cells but decreased the frequency of activated CD69+CD14+ mono-

cytes (Fig 3c and 3d). Furthermore, while having no significant effect on the frequency of

CCR5-expressing cells, MPA increased CCR5 MFI or density, in CD3+, CD4+ and CD8+ T-

cells (Fig 3e and 3f). Tables C and D in S1 File detail the total percentage of cell types and the

average MFI densities, respectively, for the above flow cytometry data.

MPA, unlike NET, dose-dependently increases HIV-1 replication in a

cervical cell line, via the GR

To further investigate the mechanism of CCR5 regulation by MPA, we determined whether

the effects on HIV-1 replication and CCR5 expression levels could be mimicked in an

MPA unlike NET increases HIV-1 replication in human PBMCs via the GR, increased CD4/CD8 ratios and CCR5 levels
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Fig 1. MPA, unlike NET, dose-dependently increases R5 HIV-1 replication in PBMCs in the range of peak serum levels of DMPA users, via a GR-

dependent mechanism. (a-d) Non-activated PBMCs were pre-treated with various ligands at the concentrations indicated, or with vehicle control,

(0.1% v/v EtOH) for 24 hours. Thereafter, PBMCs were infected with 10 IU/mL HIV-1BaL-Renilla IMC for 2 hours and maintained in full RPMI

supplemented with 30 IU/mL IL2 for 5 days before harvesting for Renilla luciferase or MTT viability. Relative infection for each donor for progestins

relative to vehicle, where the only variable was the absence or presence of progestin, was calculated by normalizing RLU against corresponding MTT

values, and calibrated to vehicle set to 100% relative infection. Each condition was performed at least in triplicate. The data (a-d) are represented as

mean ± SEM. In (a-c), individual experimental means are depicted as black dots. Statistical analysis was performed using (a-c) a non-parametric

Kruskal-Wallis one-way ANOVA with a subsequent Wilcoxon non-parametric t- test to compare vehicle and MPA or (b) a Mann Whitney test when
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infectable cell line model. We found that 100 nM of the GR-specific agonist Dex and 100 nM

MPA significantly increased R5 HIV-1 replication by 1.9 ± 0.1 and 1.4 ± 0.1 fold, respectively,

in cervical TZM-bl cells, unlike equimolar NET (Fig 4a), similar to the effects observed in

PBMCs (Fig 1). The MPA-induced effect was completely abrogated with the GR/PR antagonist

comparing MPA to RU486/MPA. (d) A non-linear regression line was generated to calculate EC50 and statistical analysis was performed using a

parametric one-way ANOVA with Tukey multiple comparisons post-test comparing all conditions. Statistical significance is indicated with � or
�� denoting p<0.05 or p<0.01, respectively. In a) the dexamethasone (Dex) (a synthetic GR agonist) result is from 6 donors, MPA is from 14 donors

and NET is from 8 donors, b shows results for 6 donors and c-d show results for 10 donors, where each point on the histogram shows the result from a

separate donor.

https://doi.org/10.1371/journal.pone.0196043.g001

Fig 2. MPA, unlike NET, increases CCR5 levels and activation of T-cells in PBMCs after 24 hours. PBMCs were

stimulated with 100 nM MPA, 100 nM NET or vehicle for 24 hours after which relative levels of CD25 and CCR5 were

determined in CD3+, CD4+ and CD8+ T-cells using flow cytometry. Results are shown as either relative frequency of

CD3+, CD4+ and CD8+ T-cells (a), CD4/CD8 ratios (b), relative frequency of cells expressing CD25 (c) or CCR5 (e),

or relative MFI of CD25 (d) or CCR5 (f) in CD3+, CD4+ and CD8+ T-cells. (a, c-f) show results from 10 independent

donor experiments, while (b) shows CD4/CD8 ratios for 8 independent donor experiments. The data (a-f) are

represented as mean ± SEM. Each point on the histogram shows the result from a separate donor, with experiments

for each donor performed with vehicle, MPA and NET in parallel, and the value for vehicle set to 1. Statistical

significance was determined by using a non-parametric Kruskal-Wallis one-way ANOVA with Dunn’s post-test with
� or �� denoting p<0.05 or p<0.01 respectively.

https://doi.org/10.1371/journal.pone.0196043.g002
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Fig 3. Longer exposure to MPA increases the CD4/CD8 ratio, decreases CD8+ T-cell frequency, and increases the density of the CCR5 coreceptor on

CD4+ and CD8+ T-cells. PBMCs were stimulated with 100 nM MPA vehicle for 7 days, after which relative levels of CD69 and CCR5 were determined in

CD3+, CD4+ and CD8+ T-cells and CD14+ monocytes using flow cytometry. Results are shown as either relative frequency of CD3+, CD4+ and CD8+ T-

cells and CD14+ monocytes (a), CD4/CD8 ratio (b), relative frequency of cells expressing CD69 (c) or CCR5 (e), or relative MFI of CD69 (d) or CCR5 (f) in

CD3+, CD4+ and CD8+ T-cells and CD14+ monocytes. Results are shown from 8 independent donor experiments. The data (a-f) are represented as

mean ± SEM. Each point on the histograms shows the result from a separate donor, with experiments for each donor performed with vehicle and MPA in

parallel, with the values for vehicle set to 1. Data were analyzed using a parametric unpaired t-test comparing vehicle to MPA. Statistical significance is

shown with �, �� or ��� denoting p<0.05, p<0.01 or p<0.001, respectively.

https://doi.org/10.1371/journal.pone.0196043.g003
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Fig 4. MPA, unlike NET, dose-dependently increases R5 HIV-1 replication in the TZM-bl cervical cell line, via a GR-dependent mechanism. TZM-bl cells

were stimulated in parallel for 24 hours with the various ligands, or combinations thereof or vehicle control (0.1% v/v EtOH), at the concentrations indicated,

before infection with 20 IU/mL R5 HIV-1BaL-Renilla. Samples were harvested 48 hours later for Renilla luciferase and MTT viability assays. Each condition was

performed at least in triplicate. Relative infection was calculated by normalising RLU against corresponding MTT values. This value for vehicle was set to 1 for (a)

and (b), while for (c), data were analysed relative to the maximal response generated by MPA which was set to 100%. Statistical analysis was performed using (a) a

parametric one-way ANOVA with Dunnett’s multiple comparisons post test when comparing to vehicle or (b) a non-parametric Kruskal-Wallis one-way ANOVA

with a subsequent unpaired t test comparing vehicle and MPA or comparing MPA and MPA/RU486. (c) A non-linear regression line was generated to calculate

EC50 and statistical analysis was performed using a parametric one-way ANOVA with Tukey multiple comparisons post-test comparing all conditions. Significant

differences are shown by �, �� or ��� denoting p<0.05, p<0.01 or p<0.001, respectively. The data (a-c) are represented as mean ± SEM and show the results of nine,

five and six independent experiments, respectively, with each point performed in triplicate at least. (d-e) The GR is the predominant steroid receptor protein

expressed in the TZM-bl cell line. Cell lysates were prepared and the steroid receptor mRNA and protein levels were detected by qRT-PCR and western blotting,

respectively. (d) indicates that TZM-bl cells express detectable GR, AR and MR mRNA while (e) shows that TZM-bl cells express detectable GR and AR protein.

https://doi.org/10.1371/journal.pone.0196043.g004
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RU486 (Fig 4b). Dose-response analysis revealed that MPA had a potency or EC50 of 3.4 ± 1.5

nM for HIV-1 infection (Fig 4c). TZM-bl cells express both GR and AR mRNA (Fig 4d) and

protein (Fig 4e), but do not express detectable PR and ER mRNA (Fig 4d) or protein (Fig 4e).

Consistent with this result, we further show that siRNA-mediated knock down of the GR in

TZM-bl cells abrogated the MPA-induced increase in HIV-1 replication (Fig 5a). Taken

together these results show that MPA-induced increased HIV-1 replication in TZM-bl cells is

dependent on the presence of the GR, consistent with a lack of such an effect for NET which

does not act via the GR.

MPA, unlike NET, increases CCR5 levels in TZM-bl cells via a GR-

dependent mechanism

Having shown that MPA but not NET increased R5 HIV-1 replication in PBMCs and TZM-

bl cells, we next investigated whether this increase in HIV-1 replication required the CCR5

coreceptor in TZM-bl cells. Experiments with the CCR5 antagonist, maraviroc, revealed

that R5 HIV-1 replication in TZM-bl cells requires entry via the CCR5 coreceptor (Fig 6).

Fig 5. MPA-induced HIV-1 replication requires the GR in TZM-bl cells. TZM-bl cells transfected with 10 nM non-silencing control (NSC) or siRNA targeting

the human GR (siGR) for 48 hours. (a) Cells were re-seeded into 96-well plates for 24 hours, followed by stimulation for 24 hours with 100 nM MPA or vehicle

(0.1% v/v EtOH), then infected with 10 IU/mL HIV-1BaL_Renilla (“HIV-BaL”) or equivalent volume of virus control (“Uninfected”). Cells were harvested 72 hours

later for luciferase (infection) and for MTT (cell viability). The results were pooled from 3 independent experiments where each point was in quadruplicate and are

represented as mean ± SEM. Relative infection was calculated as luciferase (RLU) divided by average absorbance at 595nm (MTT) for the quadruplicates. Infection

was plotted relative to HIV-1BaL_Renilla vehicle control set to 1. Statistical comparisons were carried out using a two-way ANOVA with Tukey’s multiple

comparisons post-test, with ���� denoting p<0.001. (b) Cells seeded and transfected in parallel were harvested 48 hours after transfection in SDS sample buffer.

Lysates were analyzed for GR levels by western blotting using GAPDH as a loading control. A representative western blot is shown.

https://doi.org/10.1371/journal.pone.0196043.g005
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Interestingly, MPA did not change the potency (EC50) or efficacy (maximal response) of mara-

viroc (Fig 6). We next sought to determine whether the differential increase by MPA compared

to NET on HIV-1 replication was due to the differential effects of these progestins on CD4

receptor or CCR5 HIV-1 coreceptor expression levels. Both CD4 and CCR5 mRNA levels

were significantly upregulated by 1.6 ± 0.10 (p = 0.007) and 1.4 ± 0.12 (p = 0.019) fold, respec-

tively, by 100 nM MPA but not by equimolar NET, after 24 hours incubation in TZM-bl cells

(Fig 7a and 7b). Similar effects were observed with 10 nM MPA (Fig 7c and 7d). No significant

differences in CXCR4 coreceptor expression levels were observed with 10 or 100 nM MPA or

with 100 nM NET (data not shown). The MPA effect on both CD4 (Fig 7e) and CCR5 (Fig 7f)

expression was significantly inhibited by co-incubation with RU486, consistent with a GR-

mediated mechanism, although to a lesser extent for CD4 compared to CCR5.

Fig 6. Increased R5 HIV-1 replication with MPA in TZM-bl cells requires the CCR5 coreceptor. TZM-bl cells were treated for 24 hours with 100 nM MPA, 100

nM NET or vehicle control (EtOH, 0.1% v/v). Cells were infected with 20 IU/mL of HIV-1BaL-Renilla or control in the presence of progestins in the absence or

presence of varying concentrations of MVC or DMSO. Cells were harvested 48 hours later and infection determined with BrightGlo luciferase. Cell viability was

measured by MTT assay and read at an absorbance of 595 nm. Luciferase readings were expressed over MTT and infection determined relative to HIV-1BaL-Renilla

vehicle control (EtOH/DMSO, 0.1% v/v) set to 1. Results show MVC dose- response curves for four independent experiments, each performed in triplicate and is

represented as mean ± SEM. Non-linear regression was used and generated best fit slopes with R2 values of 0.87, 0.81 and 0.63 for vehicle, 100 nM MPA or NET,

respectively, to determine IC50 of MVC. Statistical significance was assessed using a two-way ANOVA with a post hoc Tukey tests between MPA and NET to the

vehicle control, or MPA compared to NET with �, �� denoting p<0.05, p<0.001 respectively.

https://doi.org/10.1371/journal.pone.0196043.g006
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Fig 7. MPA, unlike NET, increases CD4 and CCR5 mRNA levels in TZM-bls, via a GR-dependent mechanism.

TZM-bl cells were stimulated for 24 hours with indicated ligands (a-b) 100 nM MPA, 100 nM NET or vehicle control

(EtOH) (0.1% v/v ethanol) or (c-d) 10 nM MPA or (e-f) 100 nM MPA, 100 nM RU486 (RU), or combinations thereof

(RU/MPA). RNA was isolated, cDNA was synthesised and relative CCR5, CD4 mRNA levels were determined by real

time qPCR, normalized to GAPDH and relative fold change in expression was determined by setting vehicle control to

1. Results are shown from 6 independent experiments for each panel and is represented as mean ± SEM. Statistical

significance was determined by using (a-b, e-f) one-way ANOVA with a post hoc Tukey tests between conditions or

(c-d) using a parametric unpaired t-test comparing the vehicle to 10 nM MPA with � or �� denoting p<0.05 or p<0.01

respectively.

https://doi.org/10.1371/journal.pone.0196043.g007
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Discussion

We show for the first time that physiologically-relevant MPA concentrations, unlike equimolar

NET, increases HIV-1 replication in non-activated PBMCs from female donors, and HIV-1

infection in the TZM-bl indicator cell line. We observed a dose-dependent increase in HIV-1

replication with MPA, with an EC50 of 15.1 ± 22.1 nM in non-activated PBMCs and 3.4 ± 1.5

nM in TZM-bl cells. Reasons for the increased sensitivity to MPA of the cell line compared to

PBMCs are not clear but may be due to inherent differences or mechanisms used in PBMCs

and TZM-bl cells and could reflect higher HIV-1 receptor, HIV-1 coreceptor or GR levels, or

other differences in intracellular mediators [8, 36]. Since serum concentrations of DMPA-IM

range from 3–100 nM within the first 20 days post-injection and plateau at about 2.6 nM

for 2–3 months after injection [8], our results suggest that these direct effects of MPA on

PBMCs occur at physiologically-relevant concentrations as found in DMPA-IM users. Recent

clinical data showing increased ex vivo infection of CD4+ T-cells in PBMCs from women on

DMPA-IM [9] are in support of our findings and suggest that our ex vivo findings may be of

clinical relevance. Our results are consistent with another report showing that MPA increases

HIV-1 pseudovirus infection in non-activated PBMCs at about 1–12.5 nM [17]. Interestingly,

another report showed that MPA, but not progesterone, increases R5 HIV-1 IMC replication

in activated PBMCs at 1 μM, but not with 10 nM [16]. While we did observe increased HIV-1

replication in some PHA-activated PBMCs at 100 nM MPA, this effect was not significant

when results for several donors were pooled (data not shown). Bearing in mind the limitations

in directly translating ex vivo results to in vivo, the high degree of biological variability between

donor samples in HIV-1 replication in response to MPA shown in Fig 1 could conceivably

translate into variable donor cell responses in vivo. Additionally, the finding that 1–100 nM

MPA falls in the steep and not the shallower parts of the dose-response curve [8] in Fig 1d fur-

ther suggests that if these effects occur in vivo, women could possibly be particularly prone to

differential responses to MPA depending on their MPA serum concentrations in the 1–100

nM range. The possible risks associated with MPA usage may thus depend critically on indi-

vidual factors such as number of injections, time after injection, metabolism, body weight,

BMI, lactation and timing of sexual intercourse after injection. The effects on HIV-1 replica-

tion in PBMCs and T-cells may be less significant for DMPA-SC users [7], with similar plateau

but lower reported peak serum concentrations (1.6–4.4 nM) [37, 38] than DMPA-IM users,

corresponding to a shallower part of the dose-response curve (Fig 1d). In contrast to MPA,

our findings suggest that NET-EN is unlikely to affect HIV-1 replication even at peak serum

NET concentrations (10–50 nM) [39, 40].

Flow cytometry of PBMCs exposed in parallel to vehicle or equimolar MPA or NET

revealed for the first time that MPA, unlike NET, is likely to increase HIV-1 replication via sev-

eral complimentary mechanisms involving target T-cells. These include increased activation of

T-cells, increased ratio of CD4+/CD8+ T-cells and increased CCR5 chemokine receptor

expression levels, in a manner dependent on time of exposure to MPA. Specifically, 24 hour

stimulation with MPA, unlike NET, increased the frequency of CD3+, CD4+ and CD8+ T-

cells expressing the early activation marker, CD25. Longer (7-day) stimulation with MPA

increased expression of the activation marker CD69 in CD4+ T-cells, with a near-significant

increase (p = 0.055) in CD69+CD4+ T cell frequency, indicating increased activation of CD4+

T-cells. This increase in T-cell activation by MPA would be consistent with increased T-cell

infection as previously reported [41–43]. The CD4/CD8 ratio of greater than 1 found in this

study is consistent with the number of CD4 outnumbering CD8 cells in PBMCS, as previously

reported [44, 45]. The CD4/CD8 ratio increased approximately 1.6-fold from day 2 to day 7

indicating a general increase after 7 days of culture (Tables A and C in S1 File). More
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importantly though long-term MPA stimulation (7 days) significantly increased the CD4/CD8

ratio further in PBMCs. This, together with the increase in frequency of activated CD4+ cells

and significant decrease in % CD8+ cells after 7 days, suggests that MPA promotes infection

by increasing the frequency of infectable cells while concomitantly decreasing the frequency of

cytotoxic cells.

When comparing our flow cytometry data to those in the literature, limited data exist on

the clinical effects of DMPA-IM (or predominant DMPA-IM usage) on PBMCs in women [9,

44, 46], while there is no data for DMPA-SC or NET-EN, and limited data for other forms of

hormonal contraception [46]. A recent paper showed that PBMCs from women on DMPA-IM

exhibit altered immune markers and increased ex vivo infection with R5 HIV-1 [9], consistent

with our MPA results. Interestingly they observed increased activation (CD38 marker) for

CD4+ T-cells in PBMCs from women on DMPA-IM 1 month after injection and a significant

difference at 3 months compared to 1 month after injection [9]. This broad consistency with

our results suggests that effects of DMPA-IM on PBMCs in vivo are likely due to direct actions

of MPA on PBMCs and are dose-dependent, since MPA serum levels are higher 1 month

(Cmax average about 10–20 nM) compared to 3 months (Cmin 1–3 nM) after injection [7, 8].

These authors did not investigate changes in CD8+ T-cell frequency [9]. Others have found

that while the CD4/CD8 ratio was not affected in PBMCs from women using combined oral

contraceptives [47], it increased in DMPA-IM users [48], consistent with our ex vivo results. In

contrast, the increased CD4/CD8 ratio observed by others in postmenopausal NET users [49]

may be particular to the postmenopausal state. There are limited flow cytometry data investi-

gating the direct ex vivo effects of MPA in PBMCs [17, 50] and none for NET. One report

observed no effect with up to 8 nM MPA on the frequency of activated CD4+ T-cells or density

of activation markers, as assessed by CD69, CD25 or HLA-DR markers [17]. Similarly, MPA

had no effect on dendritic cell activation as assessed by HLA-DR expression [50]. These data

may differ from our findings due to the shorter period of incubation with MPA (24 or 48

hours) or other methodological differences.

Changes in frequency of CCR5-expressing cells and density of CCR5 chemokine receptor

expression is another mechanism whereby R5 HIV-1 infection and replication could be

increased in target T-cells. Decreased expression of CCR5 in PBMCs has been shown to corre-

late with reduced HIV-1 infectivity in vitro [18]. We show for the first time that in PBMCs,

MPA unlike NET increased the frequency of CCR5-expressing CD3+ and CD8+ T-cells after

24 hours, and MPA increased CCR5 expression on CD3+, CD4+ and CD8+ T-cells after 7

days. The recent paper from Tasker et al. showed an increasing trend for both activation and

CCR5 density for CD4+ T-cells in PBMCs from women on DMPA-IM [9], consistent with

our MPA results. They also showed that ex vivo R-tropic HIV-1 infected CD4+ cells in PBMCs

from women on DMPA-IM with have a higher CCR5 density than uninfected PBMCs [9],

also consistent with the argument that increased CCR5 density increases R-tropic HIV infec-

tion of T-cells. Our results are also consistent with previous data in PBMCs from women on

DMPA-IM in which CCR5 expression increased in CD4+ and CD8+ T-cells, although there

was no reported increase in the frequency of CCR5-expressing CD4+ or CD8+ T-cells [46].

However, others have shown an increase in CCR5 expression and frequency of T-cells express-

ing CCR5 in cervical but not matched PBMCs in women predominantly using DMPA-IM

[44]. Interestingly, others have shown an increased cell surface density of CCR5 on both CD4+

and CD8+ T lymphocyte subsets in PBMCs from women on combined oral contraceptives,

compared to no hormone [47], suggesting that this effect may not be unique to MPA. Limited

ex vivo PBMC data include one report that reported 1 μM, but not 100 nM, MPA prevented

the down-regulation of CXCR4 and CCR5 HIV-1 coreceptors on the surface of T-cells after

activation and increased HIV-1 replication in activated PBMCs [16]. The latter results do not
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exclude the possibility that MPA increases CCR5 expression and activation of non-activated

PBMCs. Our results do not exclude the possibility that MPA also increases the frequency and

expression of the integrin α4β7 on CD4+ T-cells in PBMCs as recently reported by Tasker

et al. [9], a topic for future investigation.

Since MPA but not NET increases HIV-1 replication in TZM-bl cells as for PBMCs, we

investigated this apparently conserved mechanism further in this cell line model. We showed

using the CCR5 antagonist maraviroc that R5 HIV-1 replication requires entry via the CCR5

coreceptor in TZM-bl cells. Using the GR/PR antagonist, RU486, we found that MPA-associ-

ated infection was inhibited in both PBMCs and TZM-bl cells. Since PR is not detectable in

PBMCs or TZM-bl cells, it is likely that the GR is mediating the response in both these models.

This was confirmed by knockdown of the GR using siRNA, which significantly inhibited the

MPA effect on HIV-1 infection in TZM-bl cells. Our data provide evidence for the first time

that the mechanism via which MPA, unlike NET, increases R5 HIV-1 replication in both

PBMCs and TZM-bl cells is mediated via the GR. Attempts to explore these mechanisms in T-

cell lines were not successful since the GR was not active in these cells (data not shown). Fortu-

itously, the use of the TZM-bl cell line contributed additional novel insight, since they do not

undergo activation as observed in T-cells, and would presumably lack many of the receptors

and signalling pathways found in T-cells. The finding that MPA but not NET increased expres-

sion of both the CD4 receptor and the CCR5 coreceptor but not the CXCR4 coreceptor in

TZM-bl cells suggests that MPA, unlike NET, upregulates CCR5 expression independently of

T-cell activation or other T cell-specific signalling pathways. Changes to CD4/CCR5 ratios are

also an important factor controlling HIV infection both in TZM-bl cells and PBMCs [36, 51].

Our TZM-bl results further support a role for GR in mediating MPA-induced infection via

changes in CD4 and CCR5 levels, since RU486 significantly inhibited the MPA-induced

increase in CCR5 and CD4 mRNA levels. The % inhibition by RU486 was less for CD4 than

CCR5, suggesting that other mechanisms may be involved in the MPA regulation of CD4

mRNA. The intracellular mechanism whereby MPA but not NET increases CCR5 mRNA lev-

els in TZM-bl cells is intriguing since these cells are engineered from HeLa cells to express

exogenous CD4, CCR5 and CXCR4 [51]. However, we (data not shown) and others have

shown that HeLa cells do also express these receptors endogenously [52]. Further detailed

investigations on this mechanism are ongoing and beyond the scope of this study.

Taken together, our data strongly support a biological mechanism for increased HIV-1 rep-

lication in T-cells based on intrinsic differences between the actions of MPA compared to

NET, via GR-mediated mechanisms, which discriminates between MPA and NET. Supporting

this are our previous findings that MPA and NET exert differential effects on expression of

select genes via the GR in several model systems [10–13]. Our PBMC and TZM-bl cell results

are consistent with a predominant mechanism involving MPA-induced increased CD4 and

CCR5 expression on T-cells, unlike for NET. It would be interesting to further investigate

whether MPA increases CD4+ T-cell proliferation as a possible additional mechanism. The

findings in the present study are consistent with tissue explant data (unpublished) adding sup-

port for a GR-mediated mechanism involving an MPA-induced increase in CD4 and CCR5

expression in target T-cells. Our data collectively suggest that MPA unlike NET, may increase

activation of target systemic and genital tract T-cells, thus supporting higher degrees of viral

replication than resting cells and likely acceleration of viral dissemination by T-cells after

exposure to HIV in the female genital tract. Our results showing an increased HIV-1 replica-

tion in PBMCs may also have physiological implications for effects of MPA on disease progres-

sion. Although limited studies to date suggest that DMPA does not have significant effects on

AIDS disease progression [53–55], these may occur in some individuals but may not be appar-

ent in a large population analysis and may also depend on time of DMPA usage and time after
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injection. Additionally, our previous [14] results suggest that MPA, but not NET, may have

significant effects on T-cell apoptosis in some women at peak serum concentrations, which

may depend critically on weight, metabolism and immune status. Our dose-response results

also suggest that individual patient responses to MPA may depend critically on dose, time after

injection and intrinsic factors that affect serum concentrations in women, perhaps explaining

the variable clinical results to date on biomarkers and infection. However, further investiga-

tions are required to determine whether the biological mechanisms elucidated in our ex vivo
experiments, also occur in vivo.
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