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Abstract

In this paper, we present a three-dimensional (3D) digitization technique for natural objects,

such as insects and plants. The key idea is to combine X-ray computed tomography (CT)

and photographs to obtain both complicated 3D shapes and surface textures of target speci-

mens. We measure a specimen by using an X-ray CT device and a digital camera to obtain

a CT volumetric image (volume) and multiple photographs. We then reconstruct a 3D model

by segmenting the CT volume and generate a texture by projecting the photographs onto

the model. To achieve this reconstruction, we introduce a technique for estimating a camera

position for each photograph. We also present techniques for merging multiple textures gen-

erated from multiple photographs and recovering missing texture areas caused by occlu-

sion. We illustrate the feasibility of our 3D digitization technique by digitizing 3D textured

models of insects and flowers. The combination of X-ray CT and a digital camera makes it

possible to successfully digitize specimens with complicated 3D structures accurately and

allows us to browse both surface colors and internal structures.

Introduction

Digitization is a process for converting a target specimen into a digital format. Natural objects,

such as insects and plants, have been important targets of digitization because digital formats

have various benefits, e.g., they are deterioration-free, space-efficient, and highly accessible. In

addition, it is possible to capture and store digital information that is invisible to the naked eye

by using various devices, e.g., highly detailed surface textures obtained with microscopy and

internal structures captured with X-ray computed tomography (CT). Various digitization

methods have been developed, and they store specimens with different data formats, such as

two-dimensional (2D) photographs [1–3] or three-dimensional (3D) surface models [4–14].

In this paper, we also present a 3D reconstruction technique for natural objects based on

measurement.

Many methods for the 3D digitization of plant and insect specimens have been studied.

While some researchers reconstruct a 3D shape by using multiple photographs [4–11], other
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researchers adopt CT devices [12–14]. Both approaches have advantages and disadvantages.

The image-based approach reconstructs 3D shapes from photographs taken from multiple

viewpoints by adopting visual hull or stereo vision methods. Since this approach uses images

as input, it obtains both shapes and textures at the same time; however, it is difficult to recon-

struct concave and occluded structures. The CT-based approach takes an X-ray CT scan of a

specimen to get a volumetric image (volume) and reconstructs the shape by segmenting the

volume. This approach reconstructs a 3D shape accurately even if a specimen has concave

and/or occluded structures. However, X-ray CT does not provide surface colors, and it is diffi-

cult to reconstruct surface textures.

In this paper, we present a novel digitization technique that combines image-based and

CT-based approaches; we reconstruct a shape by using a CT volume of a specimen and gener-

ate a texture from photographs taken from multiple viewpoints. A key idea is camera position

estimation; given a photograph and a 3D model obtained from a CT volume, we estimate the

camera position of the photograph relative to the 3D model. We then project the photograph

onto the 3D model from the found camera position to obtain a texture. We also provide tech-

niques to combine multiple textures obtained from multiple photographs and to synthesize

missing texture regions caused by occlusion.

We illustrate the feasibility of our technique by reconstructing 3D insect models and flower

models with natural color textures. We evaluated the accuracy of our camera position estima-

tion technique by artificially generating photographs of a 3D model with computer graphics

and estimating their camera positions. Our technique was able to estimate camera position

accurately. All data sets, including 3D models, textures, X-ray CT volumes, and photographs

used in this paper, are available at the BioStudy repository (https://www.ebi.ac.uk/biostudies/

studies/S-BSST121). Source codes are available at GitHub repository (https://github.com/

TakashiIjiri/Digitization_pone) The same data and links are also available at the first author’s

web page [15].

Previous work

As we mentioned, the methods for digitizing insect or plant specimens are roughly divided

into two approaches: image-based and CT-based approaches. We review both approaches

below.

Image-based approach

The image-based approach captures multiple photographs from different camera positions

and reconstructs a 3D shape by adopting different methods such as shape-from-focus [4],

structure-from-motion [5, 6], original multi-view-stereo [7], visual-hull [9], or structured-light

[8, 10]. Existing methods were specialized to deal with different targets such as insects [4, 9],

potted plants [5, 8], foliage [7], trees [6], and flowers [10]. Image-based approaches are able to

obtain 3D shapes and surface colors at the same time. They, however, deal with only visible

parts, and it is difficult for them to reconstruct the occluded structures that complicated insects

and flowers often have.

CT-based approach

To measure and store detailed information on specimens or to reconstruct the 3D shape of

specimens with occluded structures, an X-ray CT device is adopted. Focusing on the potential

of X-ray CT to produce quantitative volumes of biological samples, Metscher [12] provided

easy-to-use staining methods and illustrated their feasibility by showing CT volumes of several

fishes and insects. Faulwetter et al. [13] also explored the potential of X-ray CT as a new tool
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for supporting systematics and taxonomy. They discussed a way to build virtual type materials,

named cybertypes, by X-ray CT and a way to use them. Ijiri et al. [14] adopted X-ray CT to

reconstruct the 3D shapes of flowers that have highly occluded structures. They capture a sam-

ple flower by X-ray CT to obtain a volume and segment it into flower elements such as pistils,

stamens, petals, and sepals by using a specially tailored algorithm.

X-ray CT captures internal structures, which are useful for scientific studies and for recon-

structing objects with highly occluded structures. However, it does not capture the surface

appearance; thus, it is difficult to reconstruct surface colors and textures from CT volumes.

Combination of image-based and CT-based approach

3D modeling techniques that combine image-based and CT-based approaches have not been

studied very much. Zhao et al. adopted such a combination to build volumetric appearance

models of fabric [16]. They scan a small area of a fabric by micro CT and use the obtained CT

volume to extract the orientation and density of fibers. They also take a photograph of the fab-

ric to estimate optical appearance parameters. This method reconstructs an appearance model;

however, it does not deal with 3D modeling.

Methods

We illustrate the workflow of our digitization process in Fig 1. To reconstruct textured 3D

models of natural objects, we capture a specimen with an X-ray CT device and a digital cam-

era. The obtained CT volume is semi-automatically segmented to reconstruct a 3D model and

its UV map. We also semi-automatically segment the photographs taken with the camera. We

next estimate the relative camera positions of the photographs by using their silhouettes. We

then back project each photograph onto the 3D model to obtain a texture atlas. Since multiple

photographs generate multiple textures, we merge them into a single texture atlas.

Capturing X-ray CT and photographs

We first take an X-ray CT scan of a specimen. We use the Matsusada precision μRay8700 with

a micro-focus X-ray tube (90-kV maximum voltage and 18-W maximum power), shown in

Fig 2(a). For insects, we place a specimen directly on a stage (Fig 2b). For flowers, we fix them

to the top of a plastic tube (Fig 2c). Fig 2(d) and 2(e) show obtained CT volumes.

We next take multiple photographs from different viewpoints. We use a consumer grade

digital camera, Nikon D7000, with a zoom lens, AF-S Nikkor 18–105 mm. We set up the

Fig 1. Overview of our digitization processes. Input CT volume is binarized to generate 3D model (A). Input photographs are also binarized (B). We

estimate camera position relative to 3D model by using binarized photographs (C) and back project all photographs onto 3D model to obtain texture

atlases (D). All texture atlases are merged to generate single texture (E).

https://doi.org/10.1371/journal.pone.0195852.g001
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lighting condition by using a fabric light diffuser to provide soft light, as shown in Fig 3(a). We

place a specimen at the center of a diffuser box and take multiple photographs by manually

rotating the specimen and modifying the height of the camera. When taking photographs, we

do not store the accurate position of the camera relative to the specimen, which will be esti-

mated in subsequent processes. Fig 3(b) and 3(c) show representative photographs. During

photographing, we fixed an insect with a pin. We also semi-automatically binarized all of the

photographs by adopting a graph-cut segmentation technique [17, 18].

3D surface model reconstruction

With our setup, an obtained CT volume contains the target specimen and air only. We thus

successfully extract foreground voxels by combining region growing with a threshold, mor-

phological operations, i.e., opening and closing, and hollow region filling. For this purpose, we

adopt our developed 3D volume processing software, RoiPainter3D [19]. We interactively

Fig 2. X-ray CT scanning. We used μRay8700 (a). We place insect directly on stage (b) and fix flower by using plastic tube (c). Obtained CT volumes

are visualized in (d) and (e).

https://doi.org/10.1371/journal.pone.0195852.g002
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tuned the threshold and the order of operations according to the targets. After segmentation,

we adopt the marching cubes algorithm [20] to obtain a surface model (Fig 4a and 4b).

Since we focus on texture reconstruction from input photographs, additional 2D texture

domain parametrization is required for the surface model. We first segment the model into

near-flat regions by performing a distortion-aware region growing process [21] (Fig 4b). To

build a complete texture atlas, we flatten each region by adopting the Unfold3D function of

Autodesk Maya [22] (Fig 4c).

Camera position estimation—Optimization definition

For each input photograph, we estimate a camera position relative to the 3D model. In other

words, we would like to obtain a camera position from which the rendered image of the 3D

model matches the photograph. Since the 3D model does not have a texture yet, only its shape

is available. We thus perform silhouette matching; we search for a camera position that pro-

vides a rendered image of which the silhouette matches that of the photograph.

Camera representation. We adopt a simple pinhole camera projection model [23]. A

point (x, y, z) in a 3D camera coordinate system is projected onto a 2D screen space as

Fig 3. Photographing. We place specimen at center of light diffuser box (a) and take multiple photographs (b, c).

https://doi.org/10.1371/journal.pone.0195852.g003

Fig 4. Surface reconstruction. We extracted foreground from input CT volume (a) to obtain surface model (b). We segmented surface into near-flat

regions (b) and flattened each region into 2D texture domain (c).

https://doi.org/10.1371/journal.pone.0195852.g004
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xf
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� �
, where (x0, y0) is a projected 2D position and f is a focal length. We suppose

that the focal length and sensor size used for photographing is given.

We represent a local camera position with six parameters c = (θ, ϕ, r, δx, δy, δz). Three values

(θ, ϕ, r) indicate the position in a spherical polar coordinate system of which the origin is the

mass center of the 3D model (Fig 5a). The other three values (δx, δy, δz) indicate the local

rotation of the camera (Fig 5b). From the six parameters, the position cpos 2 R3, ray direction
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where Ra

b
2 R3�3 is a rotation matrix along an axis α with an angle β. The set of three vectors

(cpos, cray, cup) determines a unique camera coordinate system.

Optimization problem. Given a 3D modelM and a binarized photograph I, we estimate a

camera position c� from which the rendered image ofMmatches I. This can be formulated as

the following minimization problem,

c� ¼ argminc dðI; Rðc; MÞÞ; ð2Þ

where R(c,M) is a binarized rendered image ofM from the camera position c and d(I, R(c,

M)) is a metric for measuring the difference between two binary images I and R(c,M). Accord-

ing to [24], the difference metric is defined as

d I; Rðc; MÞð Þ ¼
1

jBrj

X

p2Br

IdðpÞ; ð3Þ

where Id is a distance transform image of I, Br is a set of boundary pixels of R(c,M), and |Br| is

the number of the boundary pixels. Fig 6 depicts this difference metric; it overlaps the bound-

ary pixels Br onto the distance transform image Id and sums up the distance values under the

Fig 5. Representation of camera position.

https://doi.org/10.1371/journal.pone.0195852.g005
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boundary pixels. In other words, this metric provides an average distance between the bound-

aries of two binary images.

Camera position estimation—Implementation

To solve the optimization problem in Eqs (2) and (3) efficiently, we present an algorithm that

consists of three steps: (i) initial estimation by coarse exhaustive search, (ii) gradient descent

optimization, and (iii) hill climbing.

Initial estimation. To obtain an initial camera parameter c0, we first perform a coarse

exhaustive search by varying the three positional parameters (θ, ϕ, r). Specifically, we generate

3D points by near-regularly sampling a unit sphere and compute the azimuth θk and the alti-

tude ϕk for each point to obtain the candidate angles (θk, ϕk). We suppose that an approximate

distance r0 between the camera and a specimen during photographing is given and prepare a

set of candidate distances rl 2 {r0, r0 ± 10, r0 ± 20, r0 ± 30}, where the distance is expressed in

[mm] units. All combinations of the above angles and distances provide the candidates of cam-

era parameters ci = (θi, ϕi, ri, 0,0,0).

We then generate multiple rendered images ofM from all of the candidates. Since the cam-

era rotation angles (δx, δy, δz) of ci are set to be zero, a rendered image R(ci,M) does not

include camera rotation and cannot be used to evaluate the metric (3) as it is. However, if we

build candidates ci with a variation in rotation angles (δx, δy, δz), the combination explodes.

Instead, we mimic camera rotation by translating and rotating a 2D rendered image. Specifi-

cally, we modify the metric (3) to consider the best fitting 2D translation and rotation as

d0ðI; Rðci; MÞÞ ¼ min
a

X

p2Br

IdðRaðp � grÞ þ gtÞ; ð4Þ

where Rα 2 R2×2 is a 2D rotation matrix with an angle α and gt = (gtx, gty) and gr = (grx, gry)
denote the mass centers of the foregrounds of I and R(ci,M), respectively (Fig 7). The metric

(4) includes a minimization problem in itself; we solve it with coarse exhaustive search, where

we vary α 2 [0˚, 360˚] with an interval of 1˚.

Fig 6. Difference metric of two binary images.

https://doi.org/10.1371/journal.pone.0195852.g006
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The exhaustive search described above finds the initial camera position (θ0, ϕ0, r0) and 2D

rotation angle α. The initial camera rotation angles ðd
0

x; d
0

y ; d
0

zÞ can also be computed as

dx ¼ � a; dy ¼ tan� 1 � g 0rx þ gtx
f

; dz ¼ tan� 1
� g 0ry þ gty

f
; ð5Þ

where ðg 0rx; g
0
ryÞ ¼ Ragr and f is a focal length used for both photographing and rendering. Note

that f, gt, and gr are represented in pixel units.

Although this exhaustive search tests a large amount of candidates, it finishes in a reason-

able computational time. Notice that the distance transform of a photograph is precomputed

only one time before the search. In addition, if multiple photographs have the same candidate

distances, the generated rendered images can be shared for the photographs. In our experi-

ence, when we prepared 2,562 candidate angles, it took about a half minute to precompute

2,562 rendered images and about a few seconds for the exhaustive search.

Gradient decent iteration. Given an initial camera parameter c0 ¼ ðy
0
; �

0
; r0; d

0

x; d
0

y; d
0

zÞ,

we iteratively update it by using a gradient descent method as

ctþ1 ¼ ct � h s � rdðI; Rðct; MÞÞ; ð6Þ

where t is the number of iterations, h 2 R1 is a step size which we determine by the line search

strategy, s2 R6 is a scale coefficient, and � represents the Hadamard product. We approximate

the gradientrd(�,�) with the central difference. For instance, when computing the gradient with

respect to the k-th dimension of c, we prepare two camera parameters ct ± hkek, where ek is the

k-th standard basis in R6 and hk is an offset coefficient. We render two images from them R(ct ±
hkek,M) and approximate the gradient as

@dðI; Rðct ; MÞÞ
@yk

¼
dðI; Rðctþhkek; MÞÞ� dðI; Rðct � hkek ; MÞÞ

2 hk
.

Hill climbing. The gradient descent iteration may fall into local minima. To avoid this

issue, we additionally perform a random walk based method, i.e., the hill climbing algorithm.

Starting from the solution found at the gradient descent step, we iteratively update it; at each

iteration step, we select an element (dimension) of the current solution c, modify the element

by adding a random offset to obtain a new parameter c0, and accept c0 if c0 improves the differ-

ence metric. We repeat this process for a fixed number of times to obtain a final camera

parameter c�.

Implementation details. To compute the distance metric (3) efficiently, we reduce the

sizes of input photographs to 1/8 and generated rendered images so that they had the same

size. In this study, photographs with 3696 × 2448 pixels were reduced to 462 × 306 pixels. For

the initial estimation by exhaustive search, we prepared 2,562 candidate angles by uniformly

Fig 7. Effect of camera rotation. Camera rotations represented with δx, δy, and δz correspond to rotation, horizontal translation, and vertical

translation of rendered image, respectively (c). In Eq (4), we rotate and translate rendered image (b) to fit it to photograph (d).

https://doi.org/10.1371/journal.pone.0195852.g007
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sampling a unit sphere. For the gradient descent iteration, we empirically selected the follow-

ing parameters: s = (10−4, 10−4, 101, 10−7, 10−7, 10−7), h1 ¼ h2 ¼ h4 ¼ h5 ¼ h6 ¼ 0:1� 2p

360
,

h3 = 10. For the hill climbing, we modified an element of the current parameter c by adding a

random value sampled from [−0.1, 0.1] for the 2nd dimension (r) and a value sampled from

[−10−2, 102] for the other dimensions (θ, ϕ, δx, δy, δz). We performed the hill climbing itera-

tions 1000 times. Also, we discard input photographs of which the difference metric (3) is not

less than a threshold (we used 0.7 in this study) and do not use such photographs in the follow-

ing process since our algorithm fails to find their camera positions properly.

Texture reconstruction

In this Subsection, we reconstruct a single texture by stitching multiple textures generated

from multiple photographs. Given a camera parameter for each input photograph, we back

project a photograph onto a 3D model to generate a texture atlas. In Fig 8, the input photo-

graphs (A) and (B) are back projected onto a 3D model to generate texture atlases (IA) and

(IB). Since multiple photographs usually cover the same area, it is necessary to stich textures

without distinct seams. For this purpose, we present an extension of graph-cut texture synthe-

sis [25]. We first introduce a technique for stitching two textures and then discuss a method

for dealing with multiple textures.

Fig 8. Texture generation. Each photograph (A and B) generates texture atlas (IA and IB). We stitch two textures with indistinct seam to obtain one

texture (IC). To obtain clearer texture, we consider both texture color and projected normal direction (InA and InBÞ: I
m
C visualizes used texture with

different color (red for A and green for B).

https://doi.org/10.1371/journal.pone.0195852.g008
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Stitching two textures with graph cut [25]. When stitching together two textures IA and

IB, a texture can be classified into three regions, A, B, and U . Region A is covered only with IA,

B is covered only with IB, and U is covered with both IA and IB. As shown in Fig 9, we compute

a seam in region U by using the graph-cut method. As shown in Fig 9(b), we construct a graph

such that its nodes consist of pixels in U , the source node S, and the sink node T. Each pixel

node p is connected to its neighbors q with an edge. The edge capacity En(p, q) is defined as

Enðp; qÞ ¼ jIAðpÞ � IBðqÞj � jIAðpÞ � IBðqÞj: ð7Þ

The pixel nodes neighboring region A are connected to S, and those neighboring B are con-

nected to T with edges. Their capacities are1. We compute the minimum cut of this graph

and use the cut as the seam to stitch IA and IB (Fig 9c and 9d).

Extension of graph-cut textures. Since textures are generated by back-projecting photo-

graphs onto a 3D model, a clear texture image is obtained around the region where the surface

normal is oriented to the camera. A blurred texture is generated around the region where the

surface normal is not oriented to the camera (Fig 10). When computing a seam, we prefer to

use the texture region where the surface normal is oriented to the camera. To do this, we intro-

duce a simple extension to the original graph-cut method [25]; we connect each pixel node p
to source S and sink T with edges E(p, S) and E(p, T). Their capacities are defined as

Etðp; SÞ ¼ � I
n
AðpÞ; Etðp;TÞ ¼ � I

n
BðpÞ; ð8Þ

where InAðpÞ is a dot product of the camera ray and surface normal at pixel p when generating

Fig 9. Graph-cut textures to stitch two textures with indistinctive seam.

https://doi.org/10.1371/journal.pone.0195852.g009
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IA and InBðpÞ is similarly defined. Note that � InAðpÞ becomes large if the surface normal at p is

oriented to the camera. With this simple modification, we integrate two textures such that two

images are stitched together with an indistinctive seam and clearer texture pixels are preferred.

The technique mentioned above is for combining two textures. When dealing with multiple

textures, we adopt it multiple times. Given multiple textures, we first stitch two of them to

obtain a resulting texture. We then select a non-combined texture and combine it into the

resulting texture. We repeat this process until combining the all given textures.

Occlusion reconstruction

Since we reconstruct a texture by back projecting multiple photographs, it is impossible to

reconstruct texture areas hidden by occlusion. We recover such occluded region by copying

boundary colors and performing texture synthesis. Fig 11 summarizes the process. For each

missing area (a), we first fill in an area by iteratively growing the boundary and copying pixel

colors from boundary (b). We next adopt simple smoothing to obtain a blurred texture in the

area (c).

By adopting a texture synthesis method [26] presented in the graphics field, it is possible to

further enhance the appearance of a missing area as in Fig 11(d). This is a straightforward

extension of the texture synthesis algorithm [26] to a surface model. See algorithm 1 in the

original paper for details [26]. We present only a summary of the process below.

We first prepare a large number of reference patches such that we randomly place points on

a 3D model and generate a small texture patch for each point by sampling the texture color

around the point. We adopt exponential mapping [27] for sampling texture colors on the

model and discard patches that contain pixels of the missing area. Next, we randomly sample

target pixels from the missing texture area and create a target patch around each of the target

pixels. We also adopt exponential mapping in this process. For each target patch, we search the

most similar reference patch and blend the found reference patch around the target pixel. We

repeat this search and blend process several times to obtain the final results.

Fig 10. Blurred textures caused by back-projection.

https://doi.org/10.1371/journal.pone.0195852.g010
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Notice that the texture synthesis described above generates a “fake” texture. It thus should

be used only for computer graphics purposes and not for scientific digitization. To reconstruct

textures in occluded areas correctly, Yin et al. [11] presented an intrusive method in which

they excised leaves and captured their shapes and textures separately. To adopt such an intru-

sive method to our targets remains as future work.

Results and discussions

Accuracy of our camera estimation technique

We first evaluated the accuracy of our camera position estimation technique. We prepared

two 3D models (Eupholus_A and Orchid, Fig 12 top) reconstructed from X-ray CT volumes.

Fig 11. Patch-based texture synthesis to recover missing area. For black circular area (a) (artificially generated for explanation), we fill it in by

copying boundary pixels (b), smoothen it (c) and perform texture synthesis to refine it (d).

https://doi.org/10.1371/journal.pone.0195852.g011

Fig 12. Evaluation of our camera estimation by using artificial data set. This figure shows average, median, and maximum camera estimation errors

and cost values of our technique for artificially generated photographs.

https://doi.org/10.1371/journal.pone.0195852.g012

Digitization of natural objects with CT and photos

PLOS ONE | https://doi.org/10.1371/journal.pone.0195852 April 12, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0195852.g011
https://doi.org/10.1371/journal.pone.0195852.g012
https://doi.org/10.1371/journal.pone.0195852


We also generated 100 camera positions by sampling each element of 6D parameters (r, θ, ϕ,

δx, δy, δz) from uniform random distributions; the range of each parameter was r 2 [540,

560], θ 2 [0,2π], � 2 � 0:7p

2
; 0:7p

2

� �
, δx 2 [0,2π], and δy 2 [−0.006π, 0.006π], δz 2 [−0.006π,

0.006π]. We then created rendered images of the two models from them. We estimated a

camera position for each artificially generated rendered image by adopting our technique

and evaluated the estimation error; we measured the distance between the estimated and the

correct camera positions in 3D, the differences in rotation angles (δx, δy, δz), and the cost

value defined in Eq (3). The evaluated errors are summarized in Fig 12. The median of the

distances was less than 5.0 mm. The median of the cost value was less than 0.2. Notice that

the cost value represents the mean distance between the silhouette of an input image and

that of a rendered image from the estimated camera position. Although our technique uses

only the silhouette information of an input image, it is able to estimate camera positions

accurately.

Generated models

Fig 13 shows the 3D models generated by our technique. We reconstructed models and tex-

tures from both X-ray CT volumes and photographs, which made it possible to digitize speci-

mens with highly occluded structures, such as flowers. Since our technique reconstructs

shapes from CT volumes, the number of required photographs was relatively small compared

with pure image-based modeling methods, e.g., [9]. The resulting dataset are available on the

first author’s web page [15].

Fig 14 shows the number of photographs used to reconstruct each model and the average/

median/maximum matching cost values of the used photographs. Notice that we did not use

photographs of which the matching costs were not less than 0.7 for texture reconstruction. The

median of the cost values was less than 0.5. Our technique successfully estimates camera posi-

tions for real-world data sets.

Since we have X-ray CT volumes, it is possible to provide a cross-section visualization.

Fig 15 and S1 Video show our 3D model browser. It allows the user to browse a target model

by interactively modifying the camera position with a mouse. It also allows the user to draw a

mouse stroke to cut the model and generate a cross section, on which an X-ray CT image is

visualized. With this application, it is possible to observe both naturally colored surfaces and

internal structures. We believe that this visualization enhances the understanding of internal

structures of specimens and is well suited for education.

Comparison with existing digitization methods

Existing measurement-based 3D digitization methods for insects and plants can be roughly

classified into image-based [4–11] and CT-based [12–14] approaches. To clarify the advantage

of our approach, we summarize the capabilities of each approach in Fig 16. The image-based

approach [4–11] reconstructs 3D shapes from multiple photographs. Although this approach

is able to generate shapes and textures at the same time, it does not capture internal structures.

In addition, it misses the shapes and textures of the occluded areas of target specimens since a

photograph does not capture areas being occluded. The CT-based approach [12–14] recon-

structs a shape by segmenting a CT volume. Although this approach reconstructs a highly

accurate 3D shape and captures internal structures, it does not measure surface textures. By

combining both approaches, our proposed technique reconstructs 3D shapes and surface tex-

tures at the same time.
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Fig 14. Detailed data for models in Fig 13. First row shows number of photographs used to reconstruct models in Fig 13. Second and third rows show

average and median of cost values for camera position estimation in Eq (3). Notice that photographs of which matching cost were greater than or equal

to 0.7 were not used for texture generation and not counted in this table.

https://doi.org/10.1371/journal.pone.0195852.g014

Fig 13. 3D models generated with our technique.

https://doi.org/10.1371/journal.pone.0195852.g013
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Limitations and future work

As shown in Fig 16, our technique is still limited in reconstructing textures of occluded areas.

Although we presented texture synthesis, it generates only a fake appearance. Developing a

measurement-based approach for occluded areas to generate true textures remains as our

future work.

Another limitation of our technique is highly symmetrical objects. Since we estimate the

relative camera position only from silhouettes, it is difficult to deal with a photograph of which

the silhouette matches multiple viewpoints of a target object. Fig 17a and 17b show example

Fig 15. Cross-section visualization. Our browsing system allows user to draw cut stroke (left) to generate cross section on which X-ray CT image is

visualized (right).

https://doi.org/10.1371/journal.pone.0195852.g015

Fig 16. Capabilities of existing 3D digitization methods. Green triangle indicates limitations in reconstructing shapes and textures in occluded areas.

https://doi.org/10.1371/journal.pone.0195852.g016

Fig 17. Photographs of highly symmetric objects. Our camera estimation fails for photographs (a, b) since their silhouettes match multiple viewpoints

of target objects. It works well for photograph (c) with silhouette that matches unique viewpoint of target.

https://doi.org/10.1371/journal.pone.0195852.g017
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photographs. Because a tomato and a Lentinula provide circle-like silhouettes when viewed

from different points, our technique fails to accurately estimate the camera positions of these

photographs. To deal with such objects, one solution is to record relative camera positions

between photographs. For instance, the Lentinula has an asymmetric silhouette depending on

the viewpoint, as shown in Fig 17c, and our technique works well for such photographs. If we

recode relative (physical) camera positions between Fig 17b and 17c during photography, we

can guess the camera position for Fig 17b by using the estimated camera position of Fig 17c.

Furthermore, by using the relative camera positions of photographs, it would be possible to

estimate all camera positions relative to a 3D model simultaneously, resulting in accurate cali-

bration for symmetric objects. Another solution is to develop a marker that can be captured

by both X-ray CT and digital cameras. We would like to work on these two solutions in the

future.

Our current technique still requires user operation for CT volume segmentation, photo-

graph segmentation, and taking photographs. Such operation would become a bottleneck

when generating a huge digitization database. Our on-going future work is to automate the

process completely.

Conclusions

In this paper, we presented a technique for digitizing natural objects, such as insects and flow-

ers. The key idea is to combine X-ray CT scans and photographs; we segment a CT volume to

reconstruct a 3D shape model and back project photographs to the model to obtain its texture.

We presented a technique for estimating the relative camera positions for each input photo-

graph by using the silhouette information. We also provided a technique for merging multiple

textures obtained from photographs taken from different viewpoints by extending graph-cut

textures. We adopted a texture synthesis technique to surface model to retrieve occluded areas.

We illustrated the feasibility of the presented technique by adopting it to flowers, insects, and

mushrooms to create 3D textured models of them.

Supporting information

S1 Video. Supporting video. This video shows a rendered scene including nine models gener-

ated with our system and our cross section visualization tool.
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