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Abstract

In this work, a computer-aided tool for detection was developed to segment breast masses

from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convo-

lutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a pro-

spective study of the automatic segmentation of suspicious breast masses was performed.

The cohort consisted of 258 female patients who were clinically identified with suspicious

breast masses and underwent clinical US scan and breast biopsy. The computer-aided

detection tool effectively segmented the breast masses, achieving a mean Dice coefficient

of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By

avoiding positioning of an initial seed, the algorithm is able to segment images in real time

(13–55 ms per image), and can have potential clinical applications. The algorithm is at par

with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and per-

forms significantly better (P< 0.0001) than the original U-net algorithm.

Introduction

Breast cancer is the most common cancer among American women after skin cancer, and is a

leading cause of death with an estimate of 40,450 cases in 2016 [1, 2]. Additionally, more than

half of the cases of breast cancer occur in the developing world, with a mortality rate inversely

related to the country’s wealth [2]. Various imaging modalities are used for screening breast

tissue with the goal of early detection (e.g., mammography, US, and magnetic resonance imag-

ing). Annual breast cancer mammography screening is recommended by the American Can-

cer Society for women between the ages of 45 and 54, with biennial screening after the age of

54 [3]. Mammography is discouraged in women younger than 45 due to the risk radiation

poses and likelihood of outweighed benefits. Furthermore, younger, premenopausal women

have denser breasts compared to older, postmenopausal women, which makes interpretation
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of mammograms more difficult [4]. Young patients with high breast density and family history

of cancer often undergo magnetic resonance imaging or US examination for cancer screening,

thus, US plays a major role for patients who cannot undergo mammography examination [5].

In addition, US is commonly used as a secondary screening modality to further inspect suspi-

cious breast masses identified by mammography. US imaging is a relatively inexpensive, nonin-

vasive, and widely available medical imaging technique used for breast cancer screening, with

growing use in developing countries [6]. Ultrasonographers use the morphological and textural

features to identify suspicious masses. These visual cues can be shape, margin, echo pattern, pos-

terior features, presence of calcifications, or architectural distortion [7]. The suspicious mass is

then scored based on the Breast Imaging Reporting and Data System (BI-RADS) scale. The

BI-RADS scale is a purely visual system developed to quantify cancer suspicion in breast masses

and is the basis for recommending core needle biopsy or continuous monitoring if the mass is

suspected to be of low suspicion. With the aid of mammography, localization of breast masses

with US is done relatively effortlessly; however, in the absence of a mammogram, many chal-

lenges arise when finding breast masses only with US, as US requires a meticulous scanning of

the entire breast. A computer-aided detection system could reduce the time sonographers spend

finding breast masses, thus making the localization and segmentation process more efficient.

Algorithms to segment breast masses on ultrasound imaging in two and three dimensions

have been proposed. The majority of the algorithms use a seeded boundary, which is a rough

estimate of the mass boundary drawn on a single B-mode frame or an initial point seed to initi-

ate the segmentation algorithm. Some examples include, a leak plugging algorithm to find dif-

fused and partially diffused boundaries based on a pre-specified seed [8, 9], region-growing

algorithms that grow regions based on an initial seed and eventually converge to the seg-

mented boundaries [9–13], active contour model and its variations [14–16], a level

set algorithm which uses the principle of active contour energy minimization [17–19], a two-

stage active contour method based on an initial point seed [20], an automated particle swarm

optimization clustering algorithm which does not require an initial seed but is computationally

costly and not suitable for live imaging implementation [21], and a segmentation algorithm

based on the cellular automata principle which requires an initial seed [22]. Marking a seed is

a trivial task when reviewing cases retrospectively, but is a major impediment for segmentation

during live imaging. Correct segmentation of breast masses is very important, as determining

malignancy of a mass is critically dependent on the mass morphological features (e.g., shape,

smoothness of boundary). Therefore, any automated approach to classify breast masses should

first be able to accurately identify the mass boundary.

Deep learning takes advantage of improvements in graphics processing unit’s computing

power to develop larger and more complex neural networks capable of performing vision-

based tasks comparable to humans and, in some cases, exceeding human performance [23].

Deep learning algorithms have been previously used for classification of benign and malignant

breast masses [24, 25]. In this paper, we propose a Multi U-net algorithm to segment suspi-

cious breast masses on US imaging. The proposed algorithm builds up on existing deep learn-

ing based segmentation algorithm [26]. The segmentation algorithm is introduced first,

followed by implementation on 258 patients and comparison with conventional seed based

algorithm and original U-net algorithm.

Materials and methods

Patients

Clinical US Images were taken using 2 different commercial clinical US machines: LOGIQ E9

(General Electric; Boston, USA) and IU22 (Philips; Amsterdam, Netherlands). No specific
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probe, center frequency, or gain settings were specified for image acquisition. Written consent

was obtained from all patients along with proper institutional review board approval from

Mayo Clinic, while being HIPPA complaint. Patients older than age 19 undergoing biopsy

after US imaging for breast cancer were included in the prospective study. Patients with breast

implants, abnormalities, and who previously underwent any breast surgical procedures were

excluded from the study. A total of 258 patients participated, resulting in 433 US clinical

images from multiple orientations. US images with calipers or region of interest (e.g., boxes)

were excluded. One hundred twenty-four (124) masses were malignant and one hundred

thirty-four masses (134) were benign, as confirmed by biopsy. Table 1 shows the distribution

of BI-RADS among the patient population. Most of the cases were BI-RADS 4, which are sus-

picious cases as they do not present clear features of benignity or malignancy.

Table 2 shows the number of patients for all seven types of malignant pathologies. Table 3

displays the number of patients for twelve different benign pathologies. The other benign

pathologies include 1 case each of: apocrine metaplasia, complex sclerosing lesion, diabetic

mastopathy, fibroadipose tissue, fibroconnective adipose tissue, fibrin deposition, fibroadeno-

matoid, fibromyxoid spindle cell lesion, hematoma, histiocytes, intramammary lymph node,

mastitis, and papillary proliferation. The data was divided into three groups: training, valida-

tion, and testing. Images reserved for testing was not used in the training and validation set.

The training set consisted of 337 images, the validation set consisted of 35 images, and the test

set consisted of 61 images. The sets were divided such that individual patients appear in only

one set. Images were manually segmented by a trained sonographer with thirty one years of

experience and were used as gold standard. Identifying breast mass boundaries is a subjective

process; therefore, having an experienced professional is of critical importance.

Preprocessing

The clinical US images were down sampled to 208 by 208 pixels with zero padding to preserve

the image aspect ratio. The US images were taken with different imaging voltages, gain set-

tings, and different transducers, thus resulting in variation in B-mode intensity values. To

standardize the images, standard scores for each image were calculated by subtracting the

mean value of the image from each pixel followed by division with the standard deviation of

the image.

Algorithm

Fig 1(a) illustrates the original U-net algorithm [26]. Fig 1(b) summarizes the use of multiple

U-net algorithms to create a single segmentation mask by using majority voting on the inputs

of multiple U-net. The U-net algorithm consists of the feature collecting encoding branch on

the left side and the rebuilding decoding branch on the right side. The encoding branch con-

sists of five layers, and each layer has two convolutional layers with a nonlinear activation func-

tion using leaky rectified linear units [27]. The essential parameters of the Multi U-

Table 1. BI-RADS distribution of patients in training/validation and test sets.

BI-RADS No. of Patients in Training and Validation Set No. of Patients in Testing Set

2 3 1

3 2 10

4 155 35

5 41 15

6 6 0

https://doi.org/10.1371/journal.pone.0195816.t001
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net algorithm are summarized in Table 4 along with the corresponding parameters for original

U-net. The Max-pooling layer reduces the dimensionality of the resulting output, enabling fur-

ther collection of features. At the deepest layer (layer 5), a dropout layer is used to randomly

drop out filters to avoid overfitting. After collecting the required features, the decoding branch

of Multi U-net performs nonlinear up sampling of the feature maps before merging with a

skip connection from the encoding branch. The final output is obtained by passing the result

of last decoder through a sigmoid classifier, which independently assigns a probability to each

pixel. The input to the algorithm is a preprocessed, down sampled B-mode image and the out-

put is a probability map with predicted suspicious mass and predicted normal breast tissue.

The algorithm was developed using Python (version 2.7.11, Python Software Foundation) and

open-source Keras Python library (version 1.1.0). The algorithm was executed on a Tesla

K40C (Nvidia; Santa Clara, USA) graphic processing unit. A ten-fold cross-validated Multi U-

net model is used in which the data is split into 9:1 parts, with 9 parts used for training and 1

part used for validation. Thus, ten unique U-nets are trained and all individual U-nets are ran-

domly initialized. S1 Fig in appendix describes the cross validation technique in more detail.

Data augmentation

One of the major concerns when using deep learning is overfitting; this is particularly true for

convolutional neural networks [30]. The features in US images are dependent upon the inter-

action of US waves and the tissue, like acoustic shadowing and size of the suspicious mass.

Table 2. Number of patients with malignant pathologies.

Malignant Pathologies Sample size, n

Ductal carcinoma in situ 5

Invasive ductal carcinoma (IDC) 76

Invasive lobular carcinoma (ILC) 14

Invasive mammary carcinoma (IMC) 28

Lymphoma 1

Serous carcinoma 1

Metaplastic carcinoma 1

https://doi.org/10.1371/journal.pone.0195816.t002

Table 3. Number of patients with benign pathologies.

Benign Pathologies Sample size, n

Cellular fibroepithelial lesion 2

Clustered apocrine cysts 7

Cyst 3

Fat necrosis 9

Fibroadenoma 52

Fibrocystic changes 12

Fibrosis 9

Hyperplasia 2

Others 19

Papilloma 16

Parenchyma 6

Pseudoangiomatous stromal hyperplasia 3

Sclerosis 2

https://doi.org/10.1371/journal.pone.0195816.t003

Automated and real-time breast mass segmentation using CNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0195816 May 16, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0195816.t002
https://doi.org/10.1371/journal.pone.0195816.t003
https://doi.org/10.1371/journal.pone.0195816


Fig 1. Architecture of (a) Original U-net algorithm, (b) Multi U-net algorithm used to segment suspicious breast masses. Multi U-net consists of 10 models

architecturally similar to original U-net followed by majority voting to have a single binary segmentation mask.

https://doi.org/10.1371/journal.pone.0195816.g001

Table 4. Parameters for deep learning algorithms.

Parameter Multi U-net Orignal U-net

Convolution size, stride, padding 3x3,1x1, zero padding 3x3, 1x1, no padding

Maximum pooling size, stride, padding 2x2, 2x2, zero padding 2x2, 2x2, no padding

Dropout 0.6 0.5

Up sampling size 2x2 2x2

Optimizer, learning rate RMSprop [28], 5x10-6 SGD, momentum = 0.99

Loss function Negative Dice coefficient Categorical crossentropy

Number of filters for convolutional layer 2(5 + layer number) 2(5 + layer number)

Layer initialization LeCun uniform [29] Xavier normal

Cropping size per edge (layer#) None 88(1), 40(2), 16(3), 4(4)

Image size 208x208 572x572

https://doi.org/10.1371/journal.pone.0195816.t004

Automated and real-time breast mass segmentation using CNN
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While augmenting data these US features must be preserved. Thus, horizontal flipping and

equal axis zooming are the only data augmentation techniques used.

Post-processing

Post-processing was used to improve performance of the network. Equally weighted binary

pixels from the ten-fold cross-validated Multi U-net models were averaged and a threshold

was used to implement majority voting. A majority voting threshold of 0.5 was used, as justi-

fied later in the discussion section. Majority voting removes uncertainty of finding the minima

associated with random initialization of the individual U-nets.

Segmentation evaluation

The proposed algorithm was evaluated using the Dice coefficient (similarity index), true posi-

tive fraction (TPF), and false positive fraction (FPF). All three parameters range between 0 and

1; values closer to 1 are better for the Dice coefficient and TPF, and values closer to 0 are better

for FPF. Box plot distributions showing the performance of the above mentioned three param-

eters against different pathologies and BI-RADS were also examined. The dominant patholo-

gies of benign and malignant cases were additionally analyzed separately (i.e., fibroadenoma

and invasive ductal carcinoma (IDC), respectively).

Comparison with conventional seeded algorithm and original U-

net algorithm

To compare the performance of Multi U-net algorithm with conventional seeded algorithm, a

distance regularized level set segmentation (DRLS) algorithm [19] was implemented. Similar

to Multi U-net algorithm the clinical images were down sampled to 208 by 208 pixels. The ini-

tial seed was created by eroding the true mask by either 4 or 8 pixels depending on the size of

the lesion. Lesions having less than 500 pixels in total were eroded by 4 and lesions having

greater than 500 pixels were eroded by 8. To best estimate the parameters of the algorithm an

initial random search was performed followed by a finer grid search in the neighborhood of

the best performing parameters. The optimal parameters obtained from the search were

lambda = 0.5, alpha = -0.75, epsilon = 0.5; as defined by Chunming Li et al. [19]. To highlight

the difference between the original U-net [26] and the Multi U-net algorithm the images are

also segmented using the original U-net with the parameters as mentioned in Table 4.

Results

The mean and standard deviation value of the Dice coefficient, TPF, and FPF achieved during

testing is presented in Table 5. Fig 2 shows the performance of the three parameters for Multi

U-net and DRLS algorithm against the benign and malignant pathologies along with fibroade-

noma and invasive ductal carcinoma, which are the two predominant pathologies in their

class. More detailed graphs visualizing all pathologies with more than 10 samples for multi U-

net and DRLS algorithm are available in S2 Fig. The same sets of parameters are visualized

against different BI-RADS for both Multi U-net and DRLS in Fig 3. Fig 4 depicts the variation

in mean value of the Dice coefficient against the majority voting threshold value. A two-tailed

P value of P< 0.0001 was obtained for the comparison between multi U-net and original U-

net algorithm, showing significant improvement over the original U-net algorithm. To show-

case the strengths and weakness of the algorithm, six review cases are presented.

Automated and real-time breast mass segmentation using CNN
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Review of selected cases

The results of 6 different cases are reviewed to demonstrate the ability and the limitations of

the algorithm.

Case 1: The suspicious mass from Fig 5(a) shows the B-mode image of a benign-cellular

fibroepithelial mass. The mass has typical smooth boundaries of a benign mass and is oval in

shape. Fig 5(b) shows the manually segmented boundary in red, Multi U-net predicted bound-

ary in blue and DRLS predicted boundary in green. Dice coefficient for Multi U-net algorithm

was 0.94 and for DRLS algorithm was 0.90. Performance of original U-net algorithm is at par

with Multi U-net algorithm with a Dice coefficient of 0.94. Typical benign cases are easily seg-

mented by the Multi U-net algorithm; however, the Multi U-net algorithm overestimates the

boundary size in comparison to DRLS algorithm. DRLS algorithm does not select the hypere-

choic region however; it also underestimates the hypoechoic region.

Case 2: The suspicious mass from Fig 6(a) depicts the B-mode image for benign fat necrosis

with dystrophic calcifications. Notice the posterior acoustic shadowing beneath the benign

mass, which is an unusual feature for benign masses. Fig 6(b) shows the ability of the Multi U-

Table 5. Mean and standard deviation values for different metrics of the test cases of Multi U-net algorithm (MU). Same metrics for DRLS algorithm (DRLS) and

original U-net (OU) are also shown.

Metrics All cases (n = 61) Benign (n = 39) Malignant (n = 22) IDC (n = 14) Fibroadenoma (n = 23)

Dice coefficient MU 0.82±0.10 0.81±0.11 0.83±0.09 0.81±0.10 0.84±0.09

DRLS 0.84±0.09 0.82±0.10 0.87±0.07 0.87±0.06 0.84±0.06

OU 0.52±0.27 0.48±0.28 0.57±0.24 0.55±0.28 0.48±0.27

TPFa MU 0.84±0.15 0.80±0.16 0.89±0.11 0.90±0.13 0.80±0.14

DRLS 0.79±0.12 0.76±0.12 0.83±0.12 0.83±0.12 0.77±0.10

OU 0.61±0.06 0.55±0.06 0.70±0.05 0.68±0.07 0.57±0.04

FPFb MU 0.01±0.02 0.01±0.02 0.02±0.02 0.02±0.02 0.01±0.01

DRLS 0.01±0.02) 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.01

OU 0.31±0.06 0.31±0.05 0.27±0.07 0.29±0.09 0.32±0.04

aTrue positive fraction
bFalse positive fraction

https://doi.org/10.1371/journal.pone.0195816.t005

Fig 2. Boxplot showing the performance of Multi U-net and DRLS algorithm for (a) Dice Coefficient, (b) TPF, and (c) FPF for benign, fibroadenoma,

malignant, and invasive ductal carcinoma. TPF indicates true positive fraction; FPF indicates false positive fraction.

https://doi.org/10.1371/journal.pone.0195816.g002
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net algorithm to differentiate the posterior shadowing from the suspicious mass (Dice coeffi-

cient of 0.88), although the size of the boundary is overestimated. The DRLS algorithm (Dice

coefficient of 0.88) overestimates by including some of the posterior acoustic shadowing

region while doing a better job in estimating the anterior part of the suspicious mass. Perfor-

mance of original U-net algorithm is poorer than Multi U-net algorithm with a Dice coeffi-

cient of 0.64.

Case 3: The suspicious mass from Fig 7(a) was pathologically confirmed as a malignant

invasive/infiltrating ductal carcinoma, grade III. The irregular boundaries of the mass are typi-

cal of malignant masses and are usually challenging cases for segmentation algorithms. Fig 7

(b) shows how the Multi U-net algorithm is capable of capturing majority of the intricate

details belonging to the irregular boundaries (Dice coefficient of 0.88). The performance of

Fig 3. Boxplot showing the performance of Multi U-net and DRLS algorithm for (a) Dice coefficient, (b) TPF, and (c) FPF for BI-RADS 3, 4 and 5. BI-RADS

indicate Breast Imaging Reporting and Data System. TPF indicates true positive fraction; FPF indicates false positive fraction.

https://doi.org/10.1371/journal.pone.0195816.g003

Fig 4. Dice coefficient values for different majority voting thresholds along with error bars.

https://doi.org/10.1371/journal.pone.0195816.g004
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DRLS (Dice coefficient of 0.95) is comparable to Multi U-net however; the posterior and left

side boundaries are smoother when compared to Multi U-net. Performance of original U-

net algorithm is slightly better than Multi U-net algorithm with a Dice coefficient of 0.96.

Case 4: The suspicious mass from Fig 8(a) was confirmed as a fibroadenoma with mild

usual ductal hyperplasia and apocrine cysts. The suspicious mass covers the majority of the

field of view and has a hypoechoic part on the left side of the image, and a hyperechoic part on

the right-hand side. As seen in Fig 8(b), the Multi U-net algorithm identifies the apocrine cysts

but fails to identify the mild usual ductal hyperplasia which can be seen as the hyperechoic

mass on the right, resulting in a Dice coefficient of 0.44. DRLS algorithm has an edge over the

Multi U-net algorithm (Dice coefficient of 0.85) due to the initial seed, which is just an eroded

version of the correct mask, and is able to identify majority of the mild usual ductal

Fig 5. (a) B-mode Image of benign-cellular fibroepithelial Mass. (b) The manually segmented boundary is shown in

red, the Multi U-net predicted boundary is shown in blue, the DRLS predicted boundary is shown in green and

original U-net is shown in cyan.

https://doi.org/10.1371/journal.pone.0195816.g005

Fig 6. (a) B-mode Image of benign fat necrosis. (b) Manually segmented boundary is shown in red, Multi U-net

predicted boundary is shown in blue, the DRLS predicted boundary is shown in green and original U-net is shown in

cyan.

https://doi.org/10.1371/journal.pone.0195816.g006

Automated and real-time breast mass segmentation using CNN
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hyperplasia. Performance of original U-net algorithm is slightly better than Multi U-

net algorithm with a Dice coefficient of 0.49.

Case 5: The suspicious mass from Fig 9(a) was confirmed as invasive mammary carcinoma

with mixed ductal and lobular features, grade I-II. Perineural invasion is also identified. Fig 9

(b) depicts how the Multi U-net algorithm predicts the hypoechoic region as part of the suspi-

cious mass but fails to select the hyperechoic halo (Dice coefficient of 0.64). The performance

of DRLS algorithm (Dice coefficient of 0.87) is better than Multi U-net algorithm along with

partial identification of the hyperechoic halo. Performance of original U-net algorithm is

slightly lower than Multi U-net algorithm with a Dice coefficient of 0.52.

Case 6: The suspicious mass from Fig 10(a) was pathologically confirmed as clustered apo-

crine cysts, with proliferative fibrocystic changes including usual ductal hyperplasia. Fig 10(b)

shows that the Multi U-net algorithm fails to segment the sharp extension of the cyst but

Fig 7. (a) B-mode Image of invasive/infiltrating ductal carcinoma. (b) Manually segmented boundary is shown in red,

Multi U-net predicted boundary is shown in blue, the DRLS predicted boundary is shown in green and original U-net

is shown in cyan.

https://doi.org/10.1371/journal.pone.0195816.g007

Fig 8. (a) B-mode Image of fibroadenoma with mild usual ductal hyperplasia and apocrine cysts. (b) Manually

segmented boundary is shown in red, Multi U-net predicted boundary is shown in blue, the DRLS predicted boundary

is shown in green and original U-net is shown in cyan.

https://doi.org/10.1371/journal.pone.0195816.g008
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PLOS ONE | https://doi.org/10.1371/journal.pone.0195816 May 16, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0195816.g007
https://doi.org/10.1371/journal.pone.0195816.g008
https://doi.org/10.1371/journal.pone.0195816


detects the central region of the cyst, along with the hypoechoic region surrounding it (Dice

coefficient of 0.78). DRLS algorithm (Dice coefficient of 0.74) also fails to identify the sharp

extension of the cyst and performs poorer than Multi U-net due to the initial seed, which did

not include the cystic extension. Performance of original U-net algorithm is lower than Multi

U-net algorithm with a Dice coefficient of 0.56. The original U-net algorithm identifies an iso-

lated region beneath the suspicious mass. However, the Multi U-net algorithm is able to avoid

that as this outlying region may exist in only a few U-nets and the majority voting can remove

such outlying regions.

Discussion

The paper presents the performance of Multi U-net segmentation algorithm for suspicious

breast masses. The Multi U-net algorithm segments the test images in real time with a mean

Fig 9. (a) B-mode Image of invasive mammary carcinoma. (b) Manually segmented boundary is shown in red, Multi

U-net predicted boundary is shown in blue, the DRLS predicted boundary is shown in green and original U-net is

shown in cyan.

https://doi.org/10.1371/journal.pone.0195816.g009

Fig 10. (a) B-mode Image of clustered apocrine cysts. (b) The manually segmented boundary is shown in red, Multi

U-net predicted boundary is shown in blue, the DRLS predicted boundary is shown in green and original U-net is

shown in cyan.

https://doi.org/10.1371/journal.pone.0195816.g010
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Dice coefficient of 0.82, which is on par with other seed-based segmentation algorithms

(DRLS, Dice coefficient of 0.84). The performance of original U-net algorithm is significantly

poorer than Multi U-net algorithm even though the image size used in training of original U-

net algorithm is larger than Multi U-net algorithm. Unlike its contemporary seeded algo-

rithms, the Multi U-net algorithm does not require an initial seed and could be used in appli-

cations requiring minimum user interaction. The abilities and the limitations of the algorithm

are exhibited through the help of selected review cases. The complexity in a deep learning algo-

rithm does not depend on the algorithm itself, but in the data that is used to train the algo-

rithm. Deep learning algorithm’s performance increases as the algorithm is trained on more

diverse and unique cases. The data gathered from the past and futures studies can be further

used to improve the performance of the algorithm.

As shown in Table 1, the majority of the data used for training the algorithm falls under

BI-RADS 4 category. BI-RADS 4 consists of suspicious cases with a high variability in malig-

nancy rate (3%-94%) [31]. Cases that fall under the category of BI-RADS 4 are challenging for

segmentation compared to BI-RADS 2, 3, and 5, which are more well-defined cases. The algo-

rithm was trained mostly on the features of BI-RADS 4 cases, which may limit its ability to

learn the typical characteristics of benign or malignant masses. This was one of the major limi-

tations for training the algorithm. A wider variety of BI-RADS cases would enable the algo-

rithm to learn characteristics of typical benign and malignant pathologies, thus enabling better

performance.

From Fig 2(a) and 2(b), we observed that the median Dice coefficient and TPF are higher

for malignant pathologies compared to benign pathologies; however, FPF was higher for

malignant pathologies compared to benign pathologies (Fig 2(c)), which implies that the algo-

rithm overestimated the suspicious boundary for malignant masses, whereas the algorithm

underestimated the benign masses. Benign masses are usually easier to segment than malig-

nant masses however, the lower Dice value for benign masses stems from the fact that the

training data had very few typical benign cases as the patient pool consists of patients undergo-

ing biopsy. The performance of two dominant pathologies (i.e., fibroadenoma and invasive

ductal carcinoma) closely follows their respective biopsy classes. When comparing the Multi

U-net algorithm performance to DRLS algorithm the median value of Dice coefficient is com-

parable for benign cases and not malignant cases however; the spread in Dice values for DRLS

algorithm is always smaller than Multi U-net algorithm. The TPF and FPF for DRLS algorithm

is always lower than Multi U-net, implying that DRLS is always underestimating the suspicious

mass whereas Multi U-net is overestimating.

From Fig 3(a) and 3(b), it is evident that the performance of the Multi U-net algorithm was

better for BI-RADS 3 and 4 compared to BI-RADS 5. Suspicious masses with irregular shapes

and margins are usually assigned BI-RADS 5, and are difficult cases for the algorithm to cap-

ture the intricate details. Similar to our observation from Fig 2 we observe that the TPF for

DRLS algorithm is higher or comparable to Multi U-net algorithm. However, the FPF for

DRLS is lower than Multi U-net algorithm which implies the overestimation of suspicious

mass by Multi U-net and under estimation by DRLS.

The performance of DRLS algorithm is highly dependent on the initial seed as shown in

case 4 and case 6. The DRLS algorithm has leverage over the Multi U-net algorithm in our

implementation because the initial seed was just an eroded version of the manually segmented

expert’s mask. This was intentionally done to highlight the performance of Multi U-

net algorithm when the seed has been selected by a user with good knowledge about the suspi-

cious mass. However, the initial seed may not work in favor of DRLS algorithm when the size

of the suspicious mass is too small or if the mass has spiculations, narrow extensions or irregu-

lar boundaries.
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The better performance of original U-net algorithm for case 3 and case 4 can be attributed

to the larger image size used in training the algorithm compared to Multi U-net which has a

coarser resolution, as the contours are scaled to the original image size before overlaying on

the B-mode image. For majority of the review cases the performance of original U-net is

poorer than Multi U-net algorithm. This improvement in Dice coefficient can be mainly

attributed to ten-fold cross validation and majority voting technique.

Selection of majority voting threshold is important for optimizing the performance of ten

cross fold validated Multi U-net algorithm. Since, the initialization for all the ten U-nets is ran-

dom they converge to different local minima’s, resulting in ten unique maps for the same

image. At lower values of majority voting threshold the algorithm is overestimating the suspi-

cious mass region resulting in low Dice coefficient values as seen in Fig 4. At higher values of

majority voting threshold the algorithm is underestimating the suspicious mass again resulting

in low Dice coefficient values as seen in Fig 4. A balance between overestimating and underes-

timating the suspicious mass is observed at 0.5 majority voting threshold.

The advantage of using ten-fold cross-validated Multi U-net models over original U-net

can be seen in Fig 11(a). The Dice coefficient for original U-net is 0.54 which is low compared

to the ten folds of Multi U-net. Each fold of the Multi U-net has been repeated 5 times to show

the error bar in Fig 11(a). The variance of each fold is very small as seen in Fig 11(a). An

increase of nearly 0.20 Dice coefficient can be observed for each individual fold of Multi U-net

when compared to the original u-net. The performance can be further increased by using mul-

tiple cross folds followed by majority voting as shown in Fig 11(b). The Dice coefficient

increases from 0.75 to 0.81 as the number of models used for majority voting increases from

two to ten. A majority threshold criterion of 0.5 is used for all the folds.

The original U-net is prone to predicting a larger region than the actual lesion. The penulti-

mate output of the U-net algorithm assigns probability (probability that the pixel belongs to

the lesion) to each pixel which is then converted into a binary probability using the sigmoid

classifier. The center of the segmented part is predicted with higher probability. However, the

periphery pixels have lower probability thus lower confidence and are prone to be spurious.

Using multi U-net enables to increase the probability of the pixels on the periphery by trim-

ming the periphery based on a majority voting threshold. The performance of original U-net is

poor compared to multi U-net algorithm. However, the performance of original U-

net algorithm with the same hyper parameters as multi U-net algorithm improves as seen in

model 1 to 10 from Fig 11(a). The dice coefficient of original U-net with same hyper parameter

is 0.76±0.02. The incremental improvement from original U-net with same hyper parameters

as multi U-net algorithm can be seen in Fig 11(b).

Hypoechoic suspicious masses are sometimes surrounded with hyperechoic boundaries.

There is an ongoing deliberation on the selection of these hyperechogenic regions as part of a

suspicious mass [32], as seen in Fig 9(a). The decision to include the hyperechoic region as a

part of the suspicious mass is taken after reviewing the suspicious mass from different angles

and orientations. Acquiring more images of the same mass can enable the algorithm to better

segment the suspicious mass. Fig 8(a) is a similar case, with a hyperechoic region on the right-

hand side of the image. The hyperechoic mass is a mild usual ductal hyperplasia. The poor per-

formance of Multi U-net algorithm can be explained due to the limited training size of clus-

tered apocrine cysts (maximum of 7 cases, the word maximum is used as it is unknown how

may samples are in training and validation set for each crossfold) and hyperplasia (maximum

of 2 cases). Apocrine cysts usually have more contrast and have features which are shared with

other pathologies. However, the hyperplasia has lower contrast and may have textural features

which are not shared with other pathologies. Adding more cases of ductal hyperplasia will help

in improving the performance of Multi U-net algorithm. The Multi U-net algorithm fails to
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properly segment the cystic mass, shown in Fig 10. Cysts are usually characterized with a

hypoechoic mass in the middle. The cyst presented in Fig 10 is unique as it has an irregular

boundary. The algorithm latches onto the hyperechoic region on the top right side of the cyst

and estimates that region to be the boundary of the cyst.

The training time for the algorithm was 172 seconds per epoch on Tesla K40C. Table 6

shows the inference time per image in milliseconds. The small processing time for inferencing

location of the suspicious mass allows the algorithm to be used in live imaging. Modern US

machines with plane wave imaging capability use GPUs for beamforming as the data size is

large. The preinstalled GPUs on US machines can be leveraged to segment the suspicious mass

in live imaging. The testing time can be further reduced to provide live imaging by reducing

the number of filters. Using GPUs with higher single precision Tflops can further increase the

number of images inferenced in a second. Titan xp which has higher single precision Tflops

than Tesla k40c performs nearly four times faster as shown in Table 6.

Advancements in suspicious mass segmentation offer potential benefits in their classifica-

tion. Additionally, deep learning techniques that seek to diagnose suspicious masses are

heavily dependent on accurate segmentation to capture boundary-related features. Improved

accuracy in real-time automatic segmentation will enable the development of live automatic

classification of suspicious masses. Unlike classification algorithms, which need bigger data

sizes, segmentation algorithm can work with smaller data size as the sample size of the data is

not just the number of images but the number of images multiplied by image size as each pixel

is individually classified into normal or suspicious mass.

Fig 11. (a) Bar plot comparing Dice coefficient between original U-net and ten folds of Multi U-net. Each fold is evaluated 5 times to show the variance within

each fold. (b) Error bars showing the increasing performance of U-net as more models are included in majority voting. Five different U-nets models are evaluated

to show the variance.

https://doi.org/10.1371/journal.pone.0195816.g011

Table 6. Inference time in milliseconds for different GPU’s.

GPU Inference time per image in ms

Tesla k40c 55.29

Titan xp 13.83

GTX 960 831.64

https://doi.org/10.1371/journal.pone.0195816.t006
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Limitations

Clinical 2D US images provide only a planar view of the in-vivo tissue. The planar view of the

tissue varies with angle, orientation and pre-compression. The same mass appears different,

depending on how the above mentioned parameters are changed. The manual segmentation

masks were created by a sonographer who had access to live imaging and thus viewed the sus-

picious mass by sweeping over it in real time as well as rocking, heeling, and toeing to view it

from different angles, orientations, and at different pre-compression levels. Pre-compression

changes the contrast of the mass with respect to the surrounding tissue. The angle of inclina-

tion changes the posterior acoustic shadowing and enhancement. Orientation changes the

cross-section that is being examined. The Multi U-net algorithm has access to only a single

frame, which limits the ability of the algorithm to better delineate the boundaries of the suspi-

cious mass. Also, currently the algorithm treats the images from different cross-sections of the

same suspicious mass as independent cases; thus, the information from different cross-sections

is not combined. More images of the same suspicious mass acquired with different imaging

parameters can improve the performance of the algorithm further. Unique pathologies which

can be mixture of two different pathologies are not readily available in the small training set

and are hard to segment as shown in case 4. A larger training set inclusive of various patholo-

gies can further improve the performance of segmentation algorithms.

Conclusion

The Multi U-net algorithm can segment suspicious breast masses in real time without the need

for an initial seed, and performs on par with contemporary seeded algorithms (DRLS). A sig-

nificant improvement is obtained over original U-net by using the multi U-net algorithm. The

increment is due to combined contribution of better hyper parameter selection and use of ten-

fold cross validation technique. The performance of the algorithm can be further improved

with a bigger dataset and can be extended to diagnosis of suspicious masses in the future. The

algorithm is independent of US machine and can be used in any commercially available clini-

cal system.

Supporting information

S1 Fig. Schematic diagram showing the ten-fold cross validation technique for splitting

data into training, validation and testing set. The testing set is never used for training and

validation. The training and validation set are split into ten different parts with validation set

being different for each of the ten U-net models.

(TIF)

S2 Fig. Boxplot showing the performance of Multi U-net and DRLS algorithm for (a) Dice

Coefficient, (b) TPF, and (c) FPF for benign, fibroadenoma, fibrocystic changes, papilloma.

(d) Dice Coefficient, (e) TPF, and (f) FPF for Malignant, Invasive Ductal Carcinoma, Invasive

Lobular Carcinoma, Invasive Mammary Carcinoma. TPF indicates true positive fraction; FPF

indicates false positive fraction.

(TIF)
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