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Abstract

It was recently reported that men self-cite >50% more often than women across a wide vari-

ety of disciplines in the bibliographic database JSTOR. Here, we replicate this finding in a

sample of 1.6 million papers from Author-ity, a version of PubMed with computationally dis-

ambiguated author names. More importantly, we show that the gender effect largely disap-

pears when accounting for prior publication count in a multidimensional statistical model.

Gender has the weakest effect on the probability of self-citation among an extensive set of

features tested, including byline position, affiliation, ethnicity, collaboration size, time lag,

subject-matter novelty, reference/citation counts, publication type, language, and venue.

We find that self-citation is the hallmark of productive authors, of any gender, who cite their

novel journal publications early and in similar venues, and more often cross citation-barriers

such as language and indexing. As a result, papers by authors with short, disrupted, or

diverse careers miss out on the initial boost in visibility gained from self-citations. Our data

further suggest that this disproportionately affects women because of attrition and not

because of disciplinary under-specialization.

Introduction

Citing one’s own work is common practice, an essential part of scientific communication [1]

that reflects the accumulative nature of research [2, 3], but it can be viewed negatively and is

commonly discounted or penalized in impact metrics [4, 5]. The bibliometrics literature is

rich in barriers and motivations for citation preferences [6–8], many of which overlap for self-

citations [9] and vary e.g., by collaboration size [10]. Yet, what encourages authors to self-cite

is not well understood. A recent study in particular [11–13] has gained high profile attention

[14–17] in reporting that men self-cite >50% more often than women, an effect that is consis-

tent across a wide variety of disciplines and has grown over time, reaching its peak of 70% in

recent years. These effects are indeed jaw-dropping, align with gender stereotypes [18, 19], and

imply that women may be severely disadvantaged because self-citations are not just additive

but also attract other citations [20]. King et. al [13] offer a list of five possible explanations and

“. . .consider it likely that several may contribute to the gender gap. . .” but are unable to test
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any of them for JSTOR. However, they confirm that, number 4 on their list, “Men publish

more papers, particularly earlier in their career, and therefore have more to cite.” explains the

gender-gap in its entirity for the Social Science Research Network (SSRN) pre-print repository,

with the caveat that SSRN authors “. . .are not representative of academics, more generally.”.

It is well known that gender is often subject to confounding as in the pay-gap [21, 22] and

productivity-gap [23], and that gender distributions in science vary dramatically across subject

matter [24], geography [25], career length, position and productivity [26], and time [27, 28].

The effect of gender on self-citation could become negligible or even reverse after accounting

for confounding factors. The reversal of an effect would be evidence of Simpson’s paradox [29,

30], of which the study of gender bias in UC Berkeley’s graduate admissions serves as a classic

example [31]. A case study of archeology [32] found that author age has a strong effect on self-

citation while gender is weak, in a carefully crafted sample of 285 articles analyzed using linear

regression. Furthermore, the methods for citation parsing [33], identifying self-citations, and

imputing gender are nontrivial and introduce errors, if not bias, into the overall analysis. For

example, King et al.’s [13] analysis is US-centric (e.g., all English and Italian Andrea’s are

labeled female while all Shubhanshu’s and Vetle’s are excluded), and Larivière et al. [25]

reported highly assymetric error rates (� 13% errors for their female labels versus� 1% for

male labels) in an effort to cover names worldwide.

Here, we try to replicate this gender effect in PubMed, covering biomedicine broadly, while

accounting for potential confounds and assessing the robustness of recently developed tech-

niques for worldwide gender imputation [27, 34, 35]. We present a probabilistic model of self-

citation based on over 1.6 million papers with 2 or more authors in PubMed during 2002-

2005, with nearly 41.6 million citations of which 5.5 million (13.2%) are self-citations by at

least one of the authors. The model captures the extent to which gender influences self-cita-

tions while controlling for other features of the papers and their disambiguated authors [36,

37].

Materials and methods

Two citation datasets with imputed gender: First and last authors

The contributions of each author on a multi-author paper systematically vary with their byline

positions. Typically the first-listed author has less experience and does the most work, while

the last-listed author has more experience and acts in a supervisory role, particularly in bio-

medicine. In order to account for this variability, we created two separate datasets: one for all

first-listed authorships and one for all last-listed authorships. Each dataset is based on the 1.6

million PubMed papers with 2 or more authors published during 2002-2005 and with one or

more references extracted from PubMed Central, Thomson Reuters’ Web of Science MED-

LINE version, or Microsoft Academic Graph. The temporal restriction greatly improves gen-

der imputation and author name disambiguaton because the National Library of Medline

(NLM) started recording authors’ first names in MEDLINE in 2002. Overall, each dataset con-

tains 41.6 million citation instances, of which 2.0 million (4.9%) are self-citations by the first

author and 3.6 million (8.6%) are self-citations by the last author. There are 824 thousand

unique first authors (with an average of 1.9 papers/author) and 539 thousand unique last

authors (with an average of 3.0 papers/author) according to the Author-ity 2009 dataset, which

has an overall disambiguation accuracy of 98% [36–38]. Disambiguation helps distinguish self-

citations from other citations (even when an author has published under variant names, and

when different authors with the same name cite each other), characterize each author’s publi-

cation history, and it improves the coverage of gender imputations because their first name

need only be present on one of their papers. This paper focuses on first and last authors but
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includes a partial analysis of a third, slightly smaller dataset for middle authors, represented by

all second-listed authors on the subset of papers with three or more authors, to confirm that

the overall results do not differ significantly.

Gender is imputed as Male, Female, or Unknown using Genni 2.0 + Ethnea [27, 34, 35]

which covers names worldwide and is ethnicity-sensitive. That is, it can make accurate predic-

tions even for names that are rare in the USA but common elsewhere (such as Shubhanshu
and Vetle) and it makes use of Ethnea’s ethnicity prediction to resolve genders for some names

that are unisex worldwide but gender-specific regionally (e.g., English Andrea’s are labeled

female and Italian Andrea’s are labeled male). Table 1 shows the improved coverage and poten-

tial bias-reduction compared to US Social Security Administration (SSA) data based gender

assignment across a variety of ethnicities. Only the top 13 most common ethnicities (and

UNKNOWN) are included while the remaining ethnicities were pooled and labeled OTHER.

Overall, Genni and SSA predictions rarely disagree except for French and Italian names,

where they disagree on more than 3% of authorships. As expected, Genni has higher coverage

(e.g., 88.6% vs. 74.6% of all last authorships), more so for non-English names such as Nordic

(96.3% vs. 65.7%) or Indian (68.3% vs. 45.0%) and less so for English names (95.4% vs. 91.7%).

The lack of overall coverage is largely due to a large number of Chinese names that are difficult

to classify (67.2% of 150k Chinese first authorships are labeled Unknown). Genni provides a

slightly lower estimate of the overall Female proportion (33.0% of first authorships and 19.2%

of last authorships) compared to SSA’s (34.8% of first authorships and 20.7% of last author-

ships). However, these proportions vary dramatically across byline position and ethnicities

(ranging from 6.1% Japanese Female last authorships to 44.5% Slav Female first authorships).

Taken together, this suggests that ethnicity and byline position are important covariates of

gender in bibliometric studies broadly. In the spirit of data sharing and encouraging reproduc-

ibility, the Author-ity Exporter [39] web-interface was created to permit any user to search,

Table 1. Comparison of gender proportions by using SSA data (with a 95% cut-off) versus Genni 2.0, aggregated by ethnicity. U denotes the percentage of authorships

labelled Unknown, %F denotes the percentage of female authorships among male and female authorships, and G = SSA denotes the percentage of male and female SSA

predictions that match the Genni predictions.

Ethnicity First Author Last Author

Proportion Total Genni SSA G = SSA Proportion Total Genni SSA G = SSA

U %F U %F U %F U %F

ENGLISH 25.4 411,560 5.7 33.5 9.5 33.2 100.0 32.9 532,957 4.6 20.2 8.3 19.9 100.0

GERMAN 10.1 163,416 3.7 26.9 16.7 28.2 100.0 11.0 178,641 3.0 13.1 16.7 13.8 100.0

HISPANIC 7.7 124,765 7.2 43.4 16.2 42.6 99.6 6.7 109,191 6.8 28.6 16.5 28.0 99.4

CHINESE 9.3 150,709 67.2 29.2 82.4 33.2 99.5 6.0 97,880 63.6 22.5 81.2 24.5 98.8

JAPANESE 8.7 140,021 12.2 16.8 39.2 21.3 99.6 8.5 138,282 13.4 6.1 42.6 7.8 99.7

SLAV 4.1 66,162 7.8 44.5 26.9 48.0 99.2 3.1 49,543 8.8 30.6 30.4 33.2 98.8

FRENCH 6.7 108,456 5.3 37.1 17.5 42.3 96.1 7.0 113,352 4.0 20.6 18.5 30.9 90.5

ITALIAN 5.4 87,438 3.0 37.7 10.2 41.1 96.9 5.1 82,474 3.0 21.5 10.7 24.2 97.4

INDIAN 4.3 69,373 29.6 31.0 50.7 35.9 99.6 3.1 49,801 31.7 21.5 55.0 26.0 99.6

NORDIC 3.8 62,213 4.9 44.0 30.4 48.0 98.0 4.2 68,099 3.7 22.4 34.3 26.2 98.3

ARAB 3.0 48,540 17.2 22.5 34.8 22.9 99.6 1.9 30,980 17.1 16.7 36.0 17.0 99.6

DUTCH 2.9 46,419 9.5 35.3 33.5 38.6 99.3 3.2 52,106 7.6 13.6 36.1 15.8 99.6

KOREAN 2.2 36,143 52.6 36.3 85.7 36.8 98.3 1.7 27,018 59.7 22.5 84.3 23.7 99.1

UNKNOWN 0.2 3,440 19.4 43.2 25.7 44.6 99.9 0.2 2,976 15.4 28.7 23.0 29.2 100.0

OTHER 6.1 99,344 16.0 31.2 40.2 29.9 99.3 5.2 84,699 13.3 21.0 37.5 19.7 99.3

OVERALL 100.0 1,617,999 15.0 33.0 29.0 34.8 99.2 100.0 1,617,999 11.4 19.2 25.4 20.7 98.9

https://doi.org/10.1371/journal.pone.0195773.t001
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browse, and export data from the annotated authors and papers in the Author-ity dataset. Fur-

thermore, the subset of data based on PubMed Central is also shared [40].

Explanatory features modeled

Each observation (instance) in the datasets captures features about a particular citation and

the paper in which it appears. More concretely, features include aspects of (a) a given paper,

(b) the paper it cites, (c) similarity or nearness between the paper and the cited paper, and

(d) the first or last author, namely professional age, gender, ethnicity, and country of affiliation

(inferred using MapAffil [41, 42]). The features used for modeling are listed in Table 2. The

distribution of instances in the two datasets for a select group of categorical features are shown

in Table 3.

Several of these features capture known motivations for self-citation narrowly, and citation

broadly: (a) prior citations: authors tend to cite papers that have previously received citations;

(b) time: one cannot (typically) cite papers that do not yet exist and self-citations might appear

Table 2. Descriptions of all the explanatory features.

Feature Description

gender is the gender of the author in question as predicted by Genni 2.0 [27, 34, 35]. Each author is

labeled as one of the following: Female, Male, or Unknown.

age(pub count) is the age of the author as measured by the number of papers published in the years prior to the

article in question.

ethnicity is the ethnicity of the author as predicted by Ethnea [34]. Each author can have one (or a mixture

of two, equally weighted) of the following ethnicities: ARAB, CHINESE, DUTCH, ENGLISH,

FRENCH, GERMAN, HISPANIC, INDIAN, ITALIAN, JAPANESE, KOREAN, NORDIC,

OTHER, SLAV, and UNKNOWN.

country is the country of affiliation of the first-listed author on the article in question, as inferred by

MapAffil [41, 42]. Each article is assigned one of the following countries: Australia, Canada,

China, France, Germany, India, Italy, Japan, Netherlands, Other, Spain, Sweden, UK, Unknown,

or USA.

collabortion size is the number of authors on the article in question, capped at 20.

language is 1 if the article was written in English as tagged in MEDLINE [43], 0 otherwise.

reference count is the total number of references listed on the article in question.

MeSH count is the number of MeSH terms (and all their unique ancestors in the MeSH tree structure) as

assigned in MEDLINE.

novelty score is the number of prior papers for the youngest MeSH term assigned to the article in question (the

so-called “volume novelty” in [44, 45]).

pub type is the publication type(s) of the referenced article as tagged in MEDLINE [43]. Each article can

have one or more of following: “journal article”, “case report”, “review article”, and “letter/

editorial/comment”.

venue is encoded by indicating whether the article and its reference were published in the same or

similar journal as captured by the exact name match and the implicit journal score [46] which is

similar to author odds ratio [47].

timelag is the difference in publication years between the articles in question and its reference

ref. language is 1 if the referenced article was written in English as tagged in MEDLINE [43], 0 otherwise.

ref. citation
count

is the number of citations received by the referenced article prior to the citation in question.

ref. MeSH count is the number of MeSH terms (and all their unique ancestors in the MeSH tree structure) assigned

to the referenced article.

ref. novelty score is the number of prior papers for the youngest MeSH term assigned to the referenced article (the

so-called “volume novelty” in [44, 45]).

ref. pub type is the publication type of the referenced article as tagged in MEDLINE [43]. Each article can have

one or more of following: “journal article”, “case report”, “review article”, and “letter/editorial/

comment”.

https://doi.org/10.1371/journal.pone.0195773.t002
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sooner [48]; (c) publication count: an author cannot self-cite if they don’t have any published

(or working) papers; (d) language [43]: one is less likely to cite papers that one cannot under-

stand [49]; (e) disciplinary barriers and topical diversity (encoded by indicating whether the

article and its reference were published in the same or similar journal as captured by the exact

name match and the implicit journal score [46] which is similar to author odds ratio [47]): aca-

demic careers often depend on intra- vs. inter-disciplinary citations and scientists who jump

from one topic to another are less likely to cite themselves; (e) accessibility and discoverability:

what one cites may be limited by how easy it is to find and obtain physically [50]; (f) publica-

tion type [43]: one may cite writing, not necessarily research; literature reviews tend to cited

more often; (g) novelty or topical narrowness: articles on young topics tend to be cited more

often [44]; (h) collaboration size: as the number of co-authors increases, the individual oppor-

tunity for self-citation may decrease.

Results

Simple characterizations of age-normalized self-citation rates

Before presenting the full model, we start with simple characterizations of self-citation as a

function of author age and gender using focused subsets of the datasets. First, the data are

restricted to papers with 10 to 60 references, which will focus the characterization on primary

research articles and exclude papers with unusual citation patterns such as short comments

and letters, as well as long review papers. Second, the data are restricted to instances where the

gender is known (labeled Male or Female). This leaves 26.2 million first author references, and

27.5 million last author references.

The bottom panels in Fig 1 show that women tend to be younger (as measured by prior

publication count) both as first-listed and last-listed authors, and thus have fewer opportuni-

ties for self-citation. The top panels in Fig 1 show the overall relationships between self-citation

rate and author age where the self-citation rate is modeled as a logistic regression function of

gender and author age (pub count). The horizontal lines show that overall self-citation rates

differ dramatically between women and men. Men self-cite 46% more often than women as

first authors (5.79% vs. 3.95%), and 27% more often as last authors (9.93% vs. 7.83%). How-

ever, the logistic regression curves that account for authors’ prior publication counts are nearly

identical. It appears that the age-normalized self-citation rate among men is about 1.9%

Table 3. Distribution (in percentage) of 41.6 million references (from 1.6 million articles with 2 or more authors

published during 2002-2005) across select categorical features.

Features First Author Last Author

language = English 98.2 98.2

pub type = Journal Article 98.6 98.6

pub type = Review 21.7 21.7

pub type = Case Report 3.5 3.5

pub type = Letter/Editorial/Comment 1.4 1.4

ref. language = English 99.5 99.5

ref. pub type = Journal Article 98.2 98.2

ref. pub type = Review 14.2 14.2

ref. pub type = Case Report 3.3 3.3

ref. pub type = Letter/Editorial/Comment 1.8 1.8

same journal 7.8 7.8

is self–citation 4.9 8.6

https://doi.org/10.1371/journal.pone.0195773.t003
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(SE = 0.2%) higher as first authors, but 2.1% (SE = 0.2%) lower as last authors. However, these

differences are within the error rates of the techniques used to disambiguate author names and

predict gender, so we cannot say for sure that these differences are real. This preliminary char-

acterization reveals that there are more important factors than gender that govern self-citation.

S1 Fig shows that the gender effect for middle authors, as represented by the second author

on papers with three or more authors, is similar to that of last authors. The age-normalized

self-citation rate among men is about 2.2% (SE = 0.2%) lower than among women. Middle

authors self-cite less overall (4.67% for men and 3.32% for women) compared to first and last

authors. However, this effect can be explained, at least partly, by the fact that the first and last

author datasets include two-author papers, where they tend to self-cite more. Excluding the

two author papers reduced the dataset from 1.6 to 1.3 million papers and 41.6 to 34.0 million

references.

For a secondary part of this simple characterization, the top-most prolific journals were

selected (each with at least 20,000 references). These journals capture variations within and

between three broad subject areas: general science, biology, medicine as shown in Table 4. In

general, the journal-subsetting yields bigger effects but much less statistical significance. It

should also be noted that the sample sizes appear large because each reference is counted

Fig 1. Self-citation rates as functions of author age as measured by prior publication count (top panels). The horizontal lines show the

overall self-citation rates. The bottom panels show the cumulate distributions of author age.

https://doi.org/10.1371/journal.pone.0195773.g001
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separately. The total number of articles is much smaller than the total number of references (a

typical paper has about 30 references), and the number of unique female (or male) authors of a

given age is a fraction of the number articles. In other words, the degrees of freedom are

inflated and the reported p-values are likely underestimated. The high variability between

observed proportions versus model expectations is illustrated in the S2 Fig (science journals),

S3 Fig (biology journals), and S4 Fig (medicine journals). After adjusting for age, men tend to

self-cite more as first authors but less as last authors, in the majority of the journals, a finding

that is consistent with Fig 1. The majority individual journal effects are statistically insignifi-

cant (with p-value> 0.05), particularly among medical journals. After adjusting for age, there

is one journal where men self-cite more as both first and last authors (Biochem J), and one

journal (Cancer Res) where women self-cite more as both first and last authors. These effects

may be the result of additional confounding factors not considered in this preliminary analysis

but are presented next.

Table 4. Gender effects for selected journals using a simple model with author age (pub count) only.

Category Journal First Author Last Author

references βF−M SE p-val references βF−M SE p-val

Science PNAS 298,356 -0.067 0.020 0.001 334,968 -0.016 0.015 0.297

Ann N Y Acad Sci 52,540 -0.035 0.033 0.288 54,224 0.214 0.034 0.000

Nature 46,138 -0.162 0.054 0.003 50,625 0.028 0.044 0.531

Science 41,328 -0.154 0.053 0.004 45,043 0.066 0.041 0.107

Biology J Biol Chem 676,859 -0.095 0.013 0.000 758,553 0.009 0.010 0.348

Biochemistry 182,433 -0.036 0.024 0.143 204,527 0.030 0.017 0.084

J Virol 155,081 -0.063 0.025 0.013 172,265 0.024 0.018 0.185

Biochim Biophys Acta 104,434 -0.028 0.029 0.344 110,138 0.003 0.025 0.915

J Bacteriol 102,012 -0.020 0.032 0.535 109,737 0.082 0.022 0.000

Nucleic Acids Res 98,322 -0.107 0.035 0.002 104,933 -0.051 0.027 0.061

FEBS Lett 94,021 -0.086 0.031 0.005 99,364 0.007 0.027 0.805

Biochem J 91,576 -0.176 0.034 0.000 97,174 -0.075 0.026 0.004

Mol Cell 33,538 -0.090 0.067 0.182 39,524 -0.203 0.045 0.000

Cell 32,399 -0.200 0.076 0.008 37,042 -0.089 0.050 0.073

Adv Exp Med Biol 21,625 -0.081 0.053 0.124 22,072 0.101 0.056 0.070

Bioinformatics 20,756 -0.080 0.103 0.437 23,014 0.009 0.082 0.912

Medicine J Immunol 208,354 -0.021 0.024 0.389 228,129 -0.017 0.017 0.324

Blood 140,887 -0.041 0.028 0.140 152,394 0.000 0.022 0.984

Cancer Res 131,329 0.056 0.029 0.057 149,313 0.051 0.022 0.018

Brain Res 100,389 -0.071 0.031 0.025 108,379 0.004 0.028 0.882

Circulation 92,220 -0.020 0.036 0.575 98,741 -0.051 0.035 0.143

Clin Cancer Res 91,687 0.057 0.035 0.101 96,551 0.050 0.031 0.113

J Clin Oncol 61,722 0.069 0.041 0.093 62,049 0.056 0.041 0.176

J Am Coll Cardiol 50,523 -0.070 0.061 0.248 52,579 0.124 0.057 0.030

J Urol 49,314 0.274 0.063 0.000 50,379 0.099 0.063 0.113

JAMA 33,674 0.164 0.050 0.001 34,651 -0.012 0.055 0.825

Gut 31,027 0.000 0.065 1.000 32,663 0.028 0.069 0.683

N Engl J Med 30,970 0.068 0.061 0.270 31,971 0.030 0.065 0.637

Lancet 26,344 -0.074 0.059 0.209 26,301 -0.061 0.065 0.348

BMJ 23,987 0.170 0.065 0.009 24,438 0.123 0.073 0.091

https://doi.org/10.1371/journal.pone.0195773.t004
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A probabilistic model of self-citation

The observed citations were modeled using logistic regression

Prðis self citation ¼ 1Þ ¼
1

1þ e� b0 � b1x1� b2x2 :::� bnxn

where

x1; x2; :::; xn

denote the explanatory features described in Table 2 and the binary outcome indicates whether

or not an observation is a self-citation. The use of logistic regression as the modeling frame-

work is justified by the fits shown in S5 Fig, particularly the linearity assumption. Local inter-

cepts, indicators, and polynomials were introduced to capture non-linearities and facilitate a

closer fit to the data. The complete models of self-citation for first authors and last authors are

detailed in Table 5. Although the model is inadequate for predicting whether any given citation

was a self-citation or not, given its low precision and recall (S6 Fig), prediction was not the aim

of this study. Rather, the purpose is to measure the degree to which each of the encoded fea-

tures influence self-citations, as captured by the effects (or weights) listed in this table. Note

that one of columns includes simple models of individual categories for first authors, to be

compared to the full first author model so that the degree of confounding can be assessed.

A few additional aspects of the data and its encoding as well as model specification and

model interpretation deserve mention:

• Because language, ethnicity, and affiliation are tightly correlated, given the multi-ethnic

composition of modern societies, our approach to language is simplistic. For example, we

test only whether the language of the citing or cited papers are English, including transla-

tions. Thus, the results of this study cannot be the basis for a claim that one ethnicity self-

cites more than another, although the results may offer clues about culture categorically.

Among other features, journal similarity captures author links between journals; the higher

the score, the more likely self-citation, reflecting a broad rather than narrow pattern of

citation.

• The novelty of an article or reference is determined by the relative frequency of its associated

MeSH terms [44, 45]. The novelty scores score and ref. score follow a similar encoding, where

lower scores indicate more novel papers.

• Due to the indexing policies of the National Library of Medicine (NLM) about PubMed for

the period considered, only the first author’s affiliation is retained and, for this study,

assigned to the last author as well. Thus, for the model of last authors, affiliation (country)

and ethnicity, which is dependent to a degree on affiliation, is less accurate and not as tightly

coupled with ethnicity and language as for the model of first authors.

Gender effect

A gender-effect does exist but its magnitude and relative importance depend on what other

factors a model includes (see Fig 2). For first authors, when considering gender only, males

self-cite� 54% more often than females, a percentage congruent with the findings of [11, 51].

However, when controlling for other factors, the difference becomes negligible (Table 5; exp

(0.451 − 0.021) = 1.54 vs. exp(−0.04 + 0.03) = 0.99). Sign flips between the individual model

of gender and the complete model provides evidence of extreme confounding (Simpson’s

Self-citation is the hallmark of productive authors, of any gender

PLOS ONE | https://doi.org/10.1371/journal.pone.0195773 September 26, 2018 8 / 21

https://doi.org/10.1371/journal.pone.0195773


Table 5. Models of self-citation behavior of first and last authors based on 41.6 million references from 1.6 million articles with 2 or more authors published during

2002-2005.

Predictor† First author effects, simple models‡ First author effects, complete model Last author effects, complete model

Intercept — -1.957 (0.031) -2.790 (0.027)

gender (vs. Unknown)

Female 0.021 (0.003) -0.029 (0.003) 0.026 (0.003)

Male 0.451 (0.002) -0.039 (0.003) -0.002 (0.003) X

age

log10(pub count + 1) 1.440 (0.007) 1.610 (0.007) 2.172 (0.008)

log10(pub count + 1)2 -0.119 (0.002) -0.091 (0.003) -0.340 (0.002)

pub count = 0 -1.375 (0.009) -1.421 (0.009) -1.232 (0.016)

pub count = 1 -0.210 (0.005) -0.236 (0.005) -0.187 (0.011)

ethnicity (vs. ENGLISH)

ARAB -0.470 (0.006) -0.055 (0.006) -0.085 (0.006)

CHINESE -0.444 (0.003) 0.046 (0.004) 0.034 (0.004)

DUTCH -0.068 (0.004) 0.030 (0.007) -0.004 (0.005) X

FRENCH -0.205 (0.003) -0.074 (0.004) -0.038 (0.003)

GERMAN -0.056 (0.003) -0.014 (0.004) 0.062 (0.003)

HISPANIC -0.261 (0.003) 0.053 (0.004) 0.082 (0.003)

INDIAN -0.418 (0.004) -0.064 (0.005) 0.020 (0.005)

ITALIAN 0.084 (0.003) -0.060 (0.006) 0.026 (0.004)

JAPANESE 0.018 (0.003) -0.102 (0.006) -0.048 (0.006)

KOREAN -0.656 (0.007) -0.187 (0.007) -0.076 (0.006)

NORDIC 0.037 (0.004) 0.136 (0.005) 0.070 (0.004)

OTHER -0.362 (0.004) -0.181 (0.004) -0.057 (0.003)

SLAV -0.103 (0.004) 0.044 (0.005) 0.032 (0.004)

UNKNOWN -0.318 (0.017) 0.013 (0.018) X -0.046 (0.014)

country (vs. USA)

Australia 0.004 (0.005) 0.088 (0.005) -0.099 (0.004)

Canada -0.121 (0.004) -0.004 (0.004) X -0.069 (0.003)

China -0.751 (0.009) -0.412 (0.010) -0.432 (0.007)

France -0.133 (0.004) -0.044 (0.005) -0.116 (0.004)

Germany 0.029 (0.003) 0.024 (0.004) -0.169 (0.003)

India -0.359 (0.009) -0.044 (0.011) -0.206 (0.008)

Italy 0.268 (0.003) -0.101 (0.007) -0.298 (0.005)

Japan 0.154 (0.003) 0.267 (0.006) -0.093 (0.006)

Netherlands -0.022 (0.005) 0.068 (0.007) -0.179 (0.005)

Other -0.124 (0.002) -0.064 (0.003) -0.213 (0.002)

Spain -0.002 (0.005) -0.122 (0.006) -0.184 (0.005)

Sweden 0.113 (0.005) 0.107 (0.007) -0.083 (0.005)

UK -0.050 (0.003) -0.005 (0.003) X -0.090 (0.002)

Unknown 0.091 (0.006) -0.045 (0.006) -0.159 (0.005)

author count

author count > 20 0.018 (0.014) 0.000 (0.015) X -0.050 (0.013)

log10(author count) -1.347 (0.016) 0.082 (0.018) -0.444 (0.014)

log10(author count)2 0.941 (0.012) -0.256 (0.013) 0.067 (0.010)

language

ref. English -0.456 (0.009) -0.185 (0.010) -0.031 (0.009)

English 0.488 (0.007) 0.649 (0.008) 0.701 (0.007)

(Continued)
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paradox), which means that conclusions drawn from analysis of the individual model are unre-

liable [29, 30].

In the presence of confounding factors, the models show that gender has little affect on self-

citation after-all. Gender is the least explanatory of all the features modeled for both first and

last authors when factors are ranked by contribution (Table 6). For first authors, a plot of the

self-citation odds-ratio of male and female gender with respect to the unknown gender shows

Table 5. (Continued)

Predictor† First author effects, simple models‡ First author effects, complete model Last author effects, complete model

references

log10(count) -1.977 (0.028) -1.647 (0.034) -2.221 (0.031)

log10(count)2 0.742 (0.020) 0.820 (0.023) 1.463 (0.022)

log10(count)3 -0.125 (0.004) -0.229 (0.005) -0.387 (0.005)

count = 1 -0.390 (0.019) -0.300 (0.022) -0.405 (0.021)

MeSH

log1010(ref. count + 1) 0.832 (0.004) -0.168 (0.006) -0.092 (0.004)

ref. count = 0 1.978 (0.009) -0.093 (0.015) 0.005 (0.011) X

log1010(count + 1) -0.693 (0.004) -0.170 (0.006) -0.251 (0.004)

count = 0 -0.812 (0.009) -0.667 (0.013) -0.892 (0.010)

novelty

log1010(ref. score + 1) -0.329 (0.003) 0.095 (0.008) 0.048 (0.005)

log1010(ref. score + 1)2 0.079 (0.001) -0.028 (0.001) -0.022 (0.001)

log1010(score + 1) -0.062 (0.001) -0.106 (0.001) -0.139 (0.001)

pub type

ref = Case Report -0.423 (0.006) -0.637 (0.006) -0.731 (0.005)

ref = Journal 0.103 (0.011) 0.328 (0.011) 0.324 (0.009)

ref = Letter -0.044 (0.011) -0.284 (0.011) -0.292 (0.009)

ref = Review -0.723 (0.003) -0.783 (0.003) -0.641 (0.002)

Case Report -0.892 (0.006) -0.940 (0.007) -0.948 (0.005)

Journal -0.219 (0.011) 0.266 (0.011) 0.229 (0.010)

Letter 0.468 (0.011) -0.430 (0.011) -0.343 (0.010)

Review 0.080 (0.002) -0.079 (0.003) -0.249 (0.002)

venue

same journal 0.492 (0.003) 0.457 (0.003) 0.534 (0.002)

log10(journal similarity + 1) 0.214 (0.009) 0.063 (0.010) 0.126 (0.008)

log10(journal similarity + 1)2 0.050 (0.003) 0.006 (0.003) � -0.050 (0.003)

journal similarity = 0 -0.178 (0.008) -0.281 (0.008) -0.296 (0.006)

time lag

time lag< 0 -1.884 (0.015) -0.556 (0.016) -0.383 (0.015)

log10(time lag + 1) -2.099 (0.013) 0.539 (0.015) 1.232 (0.011)

log10(time lag + 1)2 -0.275 (0.009) -1.281 (0.010) -1.402 (0.007)

time lag = 0 0.016 (0.005) 0.538 (0.006) 0.735 (0.005)

ref. citation

log10(count + 1) -0.769 (0.006) -0.443 (0.006) -0.079 (0.004)

log10(count + 1)2 -0.199 (0.002) -0.170 (0.003) -0.169 (0.002)

count = 0 0.161 (0.004) 0.127 (0.004) 0.240 (0.003)

†Format: logit (SE) signif., where X = p� 0.05, � = p< 0.05, . = p< 0.01, and p< 0.001 otherwise.
‡Each category represents a simple model (with only one predictor); intercepts not shown.

https://doi.org/10.1371/journal.pone.0195773.t005

Self-citation is the hallmark of productive authors, of any gender

PLOS ONE | https://doi.org/10.1371/journal.pone.0195773 September 26, 2018 10 / 21

https://doi.org/10.1371/journal.pone.0195773.t005
https://doi.org/10.1371/journal.pone.0195773


Fig 2. Change in effect of gender at each model-fitting step. The sub-figures show the contribution of gender at each step in the iterative

process of fitting and evaluating combinations of factors; only the model at the final step is the best-fitting among them. In both models,

confounding factors ultimately minimize the effect of gender in self-citation; the most influential of them is author’s publication count (note

Table 6). Y-axis is on log scale.

https://doi.org/10.1371/journal.pone.0195773.g002

Table 6. Fit statistics for individual and accretive models of self-citation based on 41.6 million references from 1.6 million articles with 2 or more authors published

during 2002-2005. The best-performing model at each step is the one with the largest log-likelihood (LL); only the highest-ranking of which are shown in steps 2 and fol-

lowing. Models comprise the predictors from the best-performing models in all previous steps along with the newly added category indicated by the plus sign (+). AUC

(Area Under the receiver operating characteristic Curve), given as a percentage, roughly measures the accuracy of estimated probabilities. The number of terms in the

model is denoted by nf, excluding intercept.

First authors Last authors

Step Feature LL(105) nf AUC Feature LL(105) nf AUC

1 ref. citation count -74.1 3 72.9 time lag -117.4 4 65.1

age (pub count) -74.5 4 71.9 ref. citation count -117.8 3 64.6

time lag -74.9 4 71.4 age (pub count) -118.4 4 62.5

venue -78.8 4 61.7 venue -119.9 4 60.0

pub type -80.0 8 55.4 pub type -120.8 8 57.7

reference count -80.2 4 56.3 reference count -121.8 4 53.7

gender -80.3 2 55.2 MeSH count -122.0 4 54.8

MeSH count -80.3 4 55.1 country -122.2 14 53.5

ethnicity -80.4 14 54.8 ethnicity -122.2 14 53.4

country -80.6 14 52.9 gender -122.2 2 53.0

novelty -80.6 3 53.5 novelty -122.3 3 53.3

author count -80.7 3 51.6 language -122.3 2 50.6

language -80.7 2 50.3 author count -122.5 3 51.3

2 + age (pub count) -67.7 7 82.2 + age (pub count) -113.3 8 70.1

3 + pub type -66.5 15 83.2 + pub type -111.2 16 72.5

4 + time lag -65.4 19 84.2 + venue -109.6 20 74.0

5 + venue -64.6 23 84.8 + ref. citation count -108.3 23 75.2

6 + reference count -64.0 27 85.2 + reference count -107.9 27 75.6

7 + country -63.9 41 85.3 + country -107.7 41 75.7

8 + novelty -63.9 44 85.3 + novelty -107.6 44 75.9

9 + language -63.8 46 85.3 + author count -107.5 47 75.9

10 + author count -63.8 49 85.4 + language -107.4 49 76.0

11 + ethnicity -63.8 63 85.4 + MeSH count -107.3 53 76.0

12 + MeSH count -63.7 67 85.4 + ethnicity -107.3 67 76.1

13 + gender -63.7 69 85.4 + gender -107.3 69 76.1

https://doi.org/10.1371/journal.pone.0195773.t006
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that the known gender’s influence effectively disappears after inclusion of (a) prior citation

count of the reference before being cited by the paper, (b) author’s publication count before

source paper’s published year, and (c) publication type; for last authors, time lag (the number

of years between the source and the cited paper). Factoring in author’s publication count

results in the largest reduction of the gender effect (Fig 2). Moreover, the relationship between

male and female self-citing behavior is effectively identical when affiliation is added for first

authors (step 7) and when journals is added for last authors (step 4); the relationship reverses

and diverges thereafter, suggesting that females self-cite more often than males when all else is

equal. However, the effect is negligible and probably below the level detectable using our

methods.

Factors affecting self-citation

The features that explain the most self-citation in both first author and last author models have

more to do with opportunity, accessibility, and visibility than gender and culture (ethnicity,

language, affiliation). The former aspects are illustrated in Fig 3, while the latter are illustrated

in Fig 4, using related coefficients from the complete models detailed in Table 5.

Opportunity is a major factor driving self-citation. An author cannot legitimately self-cite

without having produced work to cite; and a paper on a novel topic will have fewer papers to

reference. The choice among citeable papers is bounded. Thus, the more self-authored papers

one has available, the more opportunity one has for self-citation. The model captures this

effect. Going from none to one prior paper increases the odds of self-citation 4-fold, while the

increase is 5-fold going from 1 to 10 prior papers (Fig 3 and Table 5). Note that it is possible to

self-cite with no prior papers, e.g., when the cited paper is published simultaneously or in the

same year. Although rare, some cited papers are even published in future years e.g., due to

extensive journal back-logs or review processes. When a paper has few references, each is

more likely to be a self-citation compared to those with normal or a high number of references.

Fig 3. Change in odds with respect to mentioned values (in parentheses) of self-citation for select predictors of models of first and last

authors. Shaded regions indicate 95% confidence intervals. Y-axis is on log scale.

https://doi.org/10.1371/journal.pone.0195773.g003
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Furthermore, the odds of self-citation are highest for first and last authors on 2-author papers;

suggesting some limits in self-citing in the presence of more authors on the source paper.

Accessibility and visibility are surely driving forces of citations generally, and as such,

might counteract self-citations. After all, our model is designed to distinguish self-citations

from citations by others. The journal publication type has a 40% higher odds of self-citation

than a review, while a reference to a journal article is 80% more likely to be a self-citation than

a review article (see Fig 4). One is not likely to cite work that one cannot understand (due to

language or discipline) or that is otherwise inaccessible (due to indexing issues or economic

barriers such as pay-walls or firewalls). Culture and language both act as a barriers in this

regard, limiting what can be cited by a particular audience. Language also reflects social

norms, which are much more difficult to discern but tightly correlated with ethnicity and

geography. A non English reference has 20% higher odds of being a self-citation, while an

English paper has 90% higher odds of including a self-citation. The odds of self-citation for a

first author in Japan are 30% higher than that in USA, while the odds for an first author in

Italy are 10% less. Similarly, a first author with a Japanese name has 10% lower odds of self-

citation compared to an author with an English name, while an author with an Italian name

has 6% lower odds. Authors of with Nordic names self-cite more than any other ethnicity,

Fig 4. Change in odds with respect to mentioned values of self-citation for select predictors of models of first and last authors. Error bars

indicate 95% confidence intervals. Among other interesting points, note that the likelihood of self-citation is least for last authors with non-USA

affiliation, implying that self-citing is customary among USA authors. X-axis is on log scale.

https://doi.org/10.1371/journal.pone.0195773.g004
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regardless of gender—a behavior that would contravene Janteloven [52] if construed as self-

promotion or an attempt to “game the system”; but perhaps language is a barrier for the Nordic

too.

Citations increase the visibility of a paper and presumably the visibility of its author(s). This

is self-evident; and so the result that prior citations of the reference is the most influential in

the first author model is unsurprising. For first authors, a reference paper published in the

same year as the paper citing it increases the odds of self-citation by 70%; for last authors, the

same publication year doubles the odds. The effect of a multi-year difference is strongly tem-

pered, meaning only recent references are more likely to be self-citations. What makes these

particular results interesting is that, for both first and last authors, references with any prior

citations decrease the odds of self-citation, more for first authors than last authors. Thus, for

both first and last authors, the odds of self-citation increases when the reference is recent and

has few if any citations. This corroborates the finding of Aksnes et. al [2], which states that

most of the early citations of an article are self-citations; and might point towards the opportu-

nistic nature of authors of bootstrapping the initial citations of their prior work through

means of self-citations. The effect of gender is reduced when accounting for these additional

factors, as evident from the dramatic change in odds of self-citation (Fig 2). This probabilistic

model suggests that self-citation is more about opportunity, accessibility, and visibility than

culture or gender. These results in the self-citation model vary only sightly when the analysis is

conducted on a filtered data set where the country of affiliation is USA, ethnicity is ENGLISH,

source language is ENGLISH, number of references is at least 10 (and at-max 100 for first

authors and 50 for last authors), and source publication type is JOURNAL. The coefficient for

female gender remains same, while the coefficient for male authors increases slightly for both

first and last authors while becoming non-significant (p >0.05). This indicates that the results

are robust under the consideration of the largest portion of the data set (See Table 7).

Discussion

The takeaways from the present study are threefold. First, models that lack sufficient controls

jeopardize the conclusions drawn from them, potentially with adverse effects on public percep-

tion and public policy. Human social behavior is complex and, thus, unlikely to be explained

adequately without a diverse set of controls. The concern becomes clear when we consider the

dramatic change in gender’s effect in this study with the introduction of confounding factors.

MacRoberts et al. [53] asserted the following: “Today, in spite of an overwhelming body of evi-
dence to the contrary, citation analysts continue to accept the traditional view of science as a priv-
ileged enterprise free of cultural bias and self-interest and accordingly continue to treat citations
as if they were culture free measures.”. If cultural bias and self-interest influence self-citations,

they are perhaps more charitably regarded as aspects of opportunity, accessibility, and visibil-

ity. First and last author positions on a byline enhance the visibility of the authors who occupy

them, even if the position itself indicates nothing about the relative contribution of the author

[54]. However, if we assume that authors in the most prominent positions on a byline have

more influence over citations in the manuscript, we should not have difficulty imagining that

particular positions offer increased opportunity for self-citation. From the results herein, the

opportunities likely depend on a reference’s accessibility (physical, economic) as well as the

degree to which the citation enhances the cited’s visibility (in terms of the work’s topical rele-

vance, despite specialization, or the author’s prominence).

Second, self-citation is the hallmark of highly productive authors, of any gender, who cite

their novel journal publications early in similar venues. As a result, papers by authors with

short, disrupted, or diverse careers lack the initial boost in visibility gained from self-citations.
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Table 7. Comparison of full model (based on all 41.6 million references from 1.6 million articles with 2 or more authors published during 2002-2005) with filtered

models (26.2 million references for first authors, and 27.5 million for last authors).

First Author† Last Author†

Full Filtered Full Filtered

Intercept -1.96 (0.031) -3.54 (0.482) -2.79 (0.027) -0.49 (0.695) X

ref. citation

count = 0 0.13 (0.004) 0.16 (0.011) 0.24 (0.003) 0.29 (0.009)

log10(count + 1) -0.44 (0.006) -0.14 (0.016) -0.08 (0.004) 0.22 (0.012)

log10(count + 1)2 -0.17 (0.002) -0.18 (0.006) -0.17 (0.002) -0.20 (0.004)

age

pub count = 0 -1.42 (0.009) -1.24 (0.030) -1.23 (0.016) -1.24 (0.054)

pub count = 1 -0.24 (0.005) -0.16 (0.017) -0.19 (0.011) -0.19 (0.035)

log10(pub count + 1) 1.61 (0.007) 1.91 (0.020) 2.17 (0.008) 2.47 (0.022)

log10(pub count + 1)2 -0.09 (0.002) -0.16 (0.006) -0.34 (0.002) -0.40 (0.006)

pub type

Journal 0.27 (0.011) - 0.23 (0.010) -

Review -0.08 (0.003) - -0.25 (0.002) -

Case Report -0.94 (0.007) - -0.95 (0.005) -

Letter -0.43 (0.011) - -0.34 (0.010) -

ref = Journal 0.33 (0.011) 0.50 (0.032) 0.32 (0.009) 0.58 (0.027)

ref = Review -0.78 (0.003) -0.64 (0.007) -0.64 (0.002) -0.64 (0.006)

ref = Case Report -0.64 (0.006) -0.86 (0.017) -0.73 (0.005) -1.05 (0.014)

ref = Letter -0.28 (0.011) -0.45 (0.031) -0.29 (0.009) -0.37 (0.026)

time lag

timelag < 0 -0.56 (0.016) -0.33 (0.041) -0.38 (0.015) -0.39 (0.044)

timelag = 0 0.54 (0.006) 0.58 (0.015) 0.74 (0.005) 0.75 (0.013)

log10(timelag + 1) 0.54 (0.015) 0.15 (0.038) 1.23 (0.011) 0.86 (0.029)

log10(timelag + 1)2 -1.28 (0.010) -0.86 (0.023) -1.40 (0.007) -1.16 (0.017)

venue

same journal 0.46 (0.003) 0.50 (0.007) 0.53 (0.002) 0.62 (0.005)

journal similarity = 0 -0.28 (0.008) -0.16 (0.022) -0.30 (0.006) -0.19 (0.017)

log10(journal similarity + 1) 0.06 (0.010) 0.26 (0.027) 0.13 (0.008) 0.36 (0.022)

log10(journal similarity + 1)2 0.01 (0.003)� -0.06 (0.008) -0.05 (0.002) -0.14 (0.007)

references

count = 1 -0.30 (0.022) - -0.41 (0.021) -

log10(count) -1.65 (0.034) -7.40 (0.816) -2.22 (0.031) -17.48 (1.420)

log10(count)2 0.82 (0.023) 5.40 (0.550) 1.46 (0.021) 13.42 (1.039)

log10(count)3 -0.23 (0.005) -1.39 (0.122) -0.39 (0.005) -3.42 (0.251)

country (vs. USA)

Unknown -0.04 (0.006) - -0.16 (0.005) -

UK -0.01 (0.003) X - -0.09 (0.002) -

Japan 0.27 (0.006) - -0.09 (0.006) -

Germany 0.02 (0.004) - -0.17 (0.003) -

France -0.04 (0.005) - -0.12 (0.004) -

Italy -0.10 (0.007) - -0.30 (0.005) -

Canada 0.00 (0.004) X - -0.07 (0.003) -

China -0.41 (0.010) - -0.43 (0.007) -

Australia 0.09 (0.005) - -0.10 (0.004) -

Spain -0.12 (0.006) - -0.18 (0.005) -

(Continued)
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This disproportionately affect women who tend to leave (and enter) science at higher rates

than men (see Table 8), and have different career trajectories for a variety of reasons [55].

Prior work has found that men specialize more than women and therefore can publish more

[56]. However, in our dataset we find that men and women have the same age-normalized

expertise, on average (Fig 5). In other words, attrition is the most likely driver of overall

Table 7. (Continued)

First Author† Last Author†

Full Filtered Full Filtered

Netherlands 0.07 (0.007) - -0.18 (0.005) -

Sweden 0.11 (0.007) - -0.08 (0.005) -

India -0.04 (0.010) - -0.21 (0.008) -

Other -0.06 (0.003) - -0.21 (0.002) -

novelty

log10(score + 1) -0.11 (0.001) -0.11 (0.004) -0.14 (0.001) -0.16 (0.003)

log10(ref. score + 1) 0.09 (0.008) 0.16 (0.021) 0.05 (0.005) 0.20 (0.014)

log10(ref. score + 1)2 -0.03 (0.001) -0.04 (0.004) -0.02 (0.001) -0.05 (0.002)

language

English 0.65 (0.007) - 0.70 (0.007) -

ref. English -0.18 (0.010) 3.63 (0.268) -0.03 (0.009) 3.96 (0.268)

author count

author count > 20 0.00 (0.015) X -0.05 (0.034) X -0.05 (0.013) -0.04 (0.032) X

log10(author count) 0.08 (0.018) 0.30 (0.045) -0.44 (0.014) -0.18 (0.035)

log10(author count)2 -0.26 (0.013) -0.35 (0.033) 0.07 (0.010) -0.09 (0.026)

ethnicity (vs. ENGLISH)

GERMAN -0.01 (0.004) - 0.06 (0.003) -

HISPANIC 0.05 (0.004) - 0.08 (0.003) -

CHINESE 0.05 (0.004) - 0.03 (0.004) -

JAPANESE -0.10 (0.006) - -0.05 (0.006) -

SLAV 0.04 (0.005) - 0.03 (0.004) -

FRENCH -0.07 (0.004) - -0.04 (0.003) -

ITALIAN -0.06 (0.006) - 0.03 (0.004) -

INDIAN -0.06 (0.005) - 0.02 (0.004) -

NORDIC 0.14 (0.005) - 0.07 (0.003) -

ARAB -0.05 (0.006) - -0.09 (0.006) -

DUTCH 0.03 (0.007) - 0.00 (0.005) X -

KOREAN -0.19 (0.007) - -0.08 (0.006) -

UNKNOWN 0.01 (0.018) X - -0.05 (0.014). -

OTHER -0.18 (0.004) - -0.06 (0.003) -

MeSH

count = 0 -0.67 (0.013) -0.63 (0.036) -0.89 (0.010) -0.91 (0.028)

ref. count = 0 -0.09 (0.015) -0.16 (0.044) 0.01 (0.011) X -0.11 (0.030)

log10(count + 1) -0.17 (0.005) -0.15 (0.014) -0.25 (0.004) -0.24 (0.011)

log10(ref. count + 1) -0.17 (0.006) -0.26 (0.015) -0.09 (0.004) -0.23 (0.011)

gender (vs. Unknown)

Female -0.03 (0.003) -0.03 (0.012). 0.03 (0.003) 0.03 (0.011).

Male -0.04 (0.003) -0.01 (0.012) X 0.00 (0.003) X 0.01 (0.010) X

†Format: logit (SE) signif., where X = p� 0.05, � = p< 0.05, . = p< 0.01, and p< 0.001 otherwise.

https://doi.org/10.1371/journal.pone.0195773.t007
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differences in self-citation rates, not topical specialization or citation strategies. Reducing attri-

tion and achieving a more gender-balanced scientific workforce [57] is essential to improving

scientific progress. It should help increase self-citation, a signal that more research is followed-

up by the scientists best situated to do so.

Table 8. Percentage of authorships, on the 1.6 million articles with 2 or more authors published between 2002-2005, by authors who (a) started, (b) ended, and (c)

started as well as ended their career in during period. Note that career start and end years were determined based on the full 2009 Author-ity dataset.

Ethnicity First Author Last Author

Started Ended Started—Ended Started Ended Started—Ended

U F M U F M U F M U F M U F M U F M

ENGLISH 44.1 33.1 22.9 36.7 20.6 13.9 24.5 10.9 6.4 33.2 17.4 7.2 38.4 16.8 8.7 26.5 9.3 3.6

GERMAN 50.7 33.1 18.8 50.4 19.4 10.5 34.0 9.6 4.2 38.0 13.1 4.4 48.1 13.1 5.9 31.8 6.3 1.7

HISPANIC 56.5 34.6 26.1 48.6 17.4 11.9 33.9 9.4 6.1 43.9 15.9 8.5 52.8 13.1 8.2 35.1 7.3 3.7

CHINESE 45.2 43.4 41.0 14.9 16.1 13.6 8.8 9.0 7.6 23.6 22.7 17.6 11.9 12.6 8.1 7.4 7.3 4.6

JAPANESE 25.3 31.8 19.7 18.7 23.1 13.8 9.1 10.3 5.1 9.2 15.5 5.0 13.8 16.3 7.7 6.2 7.6 2.1

SLAV 35.8 29.4 22.1 35.7 16.1 10.0 20.0 7.7 4.1 33.9 19.4 8.6 43.5 17.9 8.5 24.6 9.4 3.3

FRENCH 44.0 30.6 21.1 38.7 16.0 9.8 24.6 7.4 4.0 25.5 9.0 4.0 34.4 9.6 5.6 19.6 4.0 1.6

ITALIAN 45.6 19.3 11.8 46.2 9.9 6.0 29.6 4.1 2.2 37.9 11.0 4.3 49.5 9.4 5.5 31.4 4.3 1.6

INDIAN 41.8 41.2 35.1 23.9 19.0 13.3 15.1 10.6 7.0 20.9 20.7 12.5 20.6 14.9 8.4 11.8 8.6 3.8

NORDIC 42.9 31.8 21.1 36.0 18.6 11.4 23.2 8.0 4.4 26.3 8.8 3.9 33.1 9.8 5.6 22.0 4.3 1.7

ARAB 46.3 42.9 32.8 33.0 22.2 15.2 22.1 12.4 7.7 38.5 31.9 17.8 37.2 24.5 13.8 27.3 16.0 7.5

DUTCH 41.1 33.4 20.8 30.4 15.9 9.8 17.8 6.2 3.6 16.1 9.3 3.1 22.2 9.6 4.4 12.9 4.4 1.4

KOREAN 41.5 38.3 35.2 15.6 13.0 9.6 10.1 7.8 5.2 17.0 19.2 14.5 10.2 9.3 6.2 6.2 6.4 3.2

UNKNOWN 55.5 41.5 28.0 40.6 24.5 16.7 29.9 14.8 7.2 36.3 19.7 10.1 46.1 18.6 12.1 29.4 11.6 5.3

OTHER 38.8 32.3 22.2 25.2 14.7 8.5 16.1 7.8 3.8 28.1 19.5 9.4 28.0 13.6 7.7 17.8 7.6 3.0

OVERALL 43.0 32.6 22.9 23.6 18.0 11.9 14.8 9.1 5.2 24.9 15.8 6.8 23.0 14.3 7.5 14.5 7.6 2.8

https://doi.org/10.1371/journal.pone.0195773.t008

Fig 5. Author expertise as a function of prior publication count. Expertise of an author on a given paper is measured by the proportion of

subjects (MeSH; a paper typically has a dozen or so terms) on which the author has previously published. Expertise naturally grows with age but

never reaches 100% because authors tend to publish on some topics that are new to them.

https://doi.org/10.1371/journal.pone.0195773.g005
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Third, the scientometric practice of discounting self-citations has the adverse effects of

penalizing so-called lines of research and reducing the impact of some important papers

already suffering from lower discoverability and accessibility because of non-English language,

lack of bibliographic indexing, and so on. Authors most likely to be affected by such a penalty

are perhaps the most dependent on sponsorship and patronage in science [58, 59]. Citations

reflect potentially many different authorial attitudes: to credit the source of inspiration; to aid

the understanding of the reader; to assert authority in a field [48]; but self-citations acknowl-

edge an individual’s line of research. One might worry about “salami-slicing” [60] and disci-

plinary “siloing” [61] but one should also hope that scholars conduct research in the way that

is effective for them individually. Tempering labels like being “your own favorite expert” [17]

would be a good start. After all, a persistent lack of (self-)citations likely reflects dead-ends and

orphans not even nurtured by the scholars with a vested interest.
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S1 Fig. Self-citation rates as functions of author age as measured by prior publication

count (top panels) for the second-listed authors on papers with three or more authors. The

horizontal lines show the overall self-citation rates. The bottom panels show the cumulate dis-

tributions of author age.

(PDF)
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The horizontal lines show the overall self-citation rates.
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S3 Fig. Self-citation rates as functions of author age for journals from biology category.

The horizontal lines show the overall self-citation rates.

(PDF)

S4 Fig. Self-citation rates as functions of author age for journals from medicine category.

The horizontal lines show the overall self-citation rates.

(PDF)

S5 Fig. Plots of empirical vs. fitted values for select predictors from the complete models

for (a) first and (b) last author data. For each plot, empirical data are represented by bubbles,

the size of which are proportional to the number of data points each contains; bubble color

reflects the number of actual self-citations denoted in the accompanying legend. Red lines

show the fit for a predictor given all terms in the complete model. The alignment of bubbles

and lines provides evidence that the chosen modeling framework (logistic regression, a linear

model) is appropriate.

(PDF)

S6 Fig. Receiver Operating Curve (ROC) and Precision Recall Curves (PRC) for complete

first and last author models. A model that fit the data perfectly would hug the upper left and

upper right corners of the ROC and PRC plots, respectively. A model no better than random

would hug the thin gray diagonal line.

(TIF)

Acknowledgments

Research reported in this publication was supported in part by the National Institute on Aging

of the NIH (Award Number P01AG039347) and the Directorate for Education & Human

Self-citation is the hallmark of productive authors, of any gender

PLOS ONE | https://doi.org/10.1371/journal.pone.0195773 September 26, 2018 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195773.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195773.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195773.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195773.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195773.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195773.s006
https://doi.org/10.1371/journal.pone.0195773


Resources of the NSF (Award Number 1348742). The content is solely the responsibility of the

authors and does not necessarily represent the official views of the NIH or the NSF. The

authors would also like to thank Daniel Maliniak, Jevin West, and other anonymous reviewers

who gave valuable feedback on the earlier drafts of this work.

Author Contributions

Conceptualization: Vetle I. Torvik.

Data curation: Shubhanshu Mishra.

Formal analysis: Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, Vetle I. Torvik.

Funding acquisition: Vetle I. Torvik.

Investigation: Shubhanshu Mishra, Brent D. Fegley, Vetle I. Torvik.

Methodology: Shubhanshu Mishra, Brent D. Fegley, Vetle I. Torvik.

Resources: Vetle I. Torvik.

Software: Shubhanshu Mishra.

Supervision: Jana Diesner, Vetle I. Torvik.

Validation: Shubhanshu Mishra, Vetle I. Torvik.

Visualization: Shubhanshu Mishra.

Writing – original draft: Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, Vetle I. Torvik.

Writing – review & editing: Shubhanshu Mishra, Vetle I. Torvik.

References
1. Wolfgang G, Bart T, Balázs S. A bibliometric approach to the role of author self-citations in scientific

communication. Scientometrics. 2004; 59(1):63–77. https://doi.org/10.1023/B:SCIE.0000013299.

38210.74

2. Aksnes DW. A macro study of self-citation. Scientometrics. 2003; 56(2):235–246. https://doi.org/10.

1023/A:1021919228368

3. Costas R, van Leeuwen TN, Bordons M. Self-citations at the meso and individual levels: Effects of dif-

ferent calculation methods. Scientometrics. 2010; 82(3):517–537. https://doi.org/10.1007/s11192-010-

0187-7 PMID: 20234766

4. Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci U S A.

2005; 102(46). https://doi.org/10.1073/pnas.0507655102

5. Ioannidis JPA. A generalized view of self-citation: Direct, co-author, collaborative, and coercive induced

self-citation. Journal of Psychosomatic Research. 2015; 78(1):7–11. https://doi.org/10.1016/j.

jpsychores.2014.11.008 PMID: 25466321

6. Smith LC. Citation analysis. Library Trends. 1981; 30(1):83–106.

7. Garfield E. Citation indexing: Its theory and application in science, technology, and humanities. vol. 8.

Wiley New York; 1979.

8. Tahamtan I, Afshar AS, Ahamdzadeh K. Factors affecting number of citations: A comprehensive review

of the literature. Scientometrics. 2016; 107(3):1195–1225. https://doi.org/10.1007/s11192-016-1889-2

9. Hartley J. To cite or not to cite: Author self-citations and the impact factor. Scientometrics. 2012; 92

(2):313–317. https://doi.org/10.1007/s11192-011-0568-6

10. Glänzel W, Debackere K, Thijs B, Schubert A. A concise review on the role of author self-citations in

information science, bibliometrics and science policy. Scientometrics. 2006; 67(2):263–277. https://doi.

org/10.1007/s11192-006-0098-9

11. King MM, Correll SJ, Jacquet J, Bergstrom CT, West JD. Men set their own cites high: Gender and self-

citation across fields and over time. In: American Sociological Association Annual Meeting; 2015. Avail-

able from: http://convention2.allacademic.com/one/asa/asa/.

Self-citation is the hallmark of productive authors, of any gender

PLOS ONE | https://doi.org/10.1371/journal.pone.0195773 September 26, 2018 19 / 21

https://doi.org/10.1023/B:SCIE.0000013299.38210.74
https://doi.org/10.1023/B:SCIE.0000013299.38210.74
https://doi.org/10.1023/A:1021919228368
https://doi.org/10.1023/A:1021919228368
https://doi.org/10.1007/s11192-010-0187-7
https://doi.org/10.1007/s11192-010-0187-7
http://www.ncbi.nlm.nih.gov/pubmed/20234766
https://doi.org/10.1073/pnas.0507655102
https://doi.org/10.1016/j.jpsychores.2014.11.008
https://doi.org/10.1016/j.jpsychores.2014.11.008
http://www.ncbi.nlm.nih.gov/pubmed/25466321
https://doi.org/10.1007/s11192-016-1889-2
https://doi.org/10.1007/s11192-011-0568-6
https://doi.org/10.1007/s11192-006-0098-9
https://doi.org/10.1007/s11192-006-0098-9
http://convention2.allacademic.com/one/asa/asa/
https://doi.org/10.1371/journal.pone.0195773


12. King MM, Bergstrom CT, Correll SJ, Jacquet J, West JD. Men set their own cites high: Gender and self-

citation across fields and over time; 2016. Available from: http://arxiv.org/abs/1607.00376.

13. King MM, Bergstrom CT, Correll SJ, Jacquet J, West JD. Men Set Their Own Cites High: Gender and

Self-citation across Fields and over Time. Socius: Sociological Research for a Dynamic World. 2017;

3:237802311773890. https://doi.org/10.1177/2378023117738903

14. Wilson R. Lowered Cites. Chronicle of Higher Education. 2014; 60(27):A24–A28.

15. Benderly BL. Men have a greater tendency to cite themselves, study says. Science. 2015;

16. Chawla DS. Men cite themselves more than women do. Nature. 2016; 535. PMID: 27414239

17. Ingraham C. New study finds that men are often their own favorite experts on any given subject. The

Washington Post. 2016;.

18. Rudman LA. Self-promotion as a risk factor for women: the costs and benefits of counterstereotypical

impression management. Journal of personality and social psychology. 1998; 74(3):629. https://doi.org/

10.1037/0022-3514.74.3.629 PMID: 9523410

19. Moss-Racusin CA, Rudman LA. Disruptions in women’s self-promotion: the backlash avoidance model.

Psychology of Women Quarterly. 2010; 34(2):186–202. https://doi.org/10.1111/j.1471-6402.2010.

01561.x

20. Fowler JH, Aksnes DW. Does self-citation pay? Scientometrics. 2007; 72(3):427–437. https://doi.org/

10.1007/s11192-007-1777-2

21. Blau FD, Kahn LM. The Gender Wage Gap: Extent, Trends, and Explanations. National Bureau of Eco-

nomic Research; 2016. 21913. Available from: http://www.nber.org/papers/w21913.

22. Buffington C, Cerf B, Jones C, Weinberg BA. STEM Training and Early Career Outcomes of Female

and Male Graduate Students: Evidence from UMETRICS Data Linked to the 2010 Census. The Ameri-

can economic review. 2016; 106(5):333–338. https://doi.org/10.1257/aer.p20161124 PMID: 27231399

23. Cameron EZ, White AM, Gray ME. Solving the Productivity and Impact Puzzle: Do Men Outperform

Women, or are Metrics Biased? BioScience. 2016; 66(3). https://doi.org/10.1093/biosci/biv173

24. West JD, Jacquet J, King MM, Correll SJ, Bergstrom CT. The role of gender in scholarly authorship.

PloS one. 2013; 8(7):e66212. https://doi.org/10.1371/journal.pone.0066212 PMID: 23894278

25. Larivière V, Ni C, Gingras Y, Cronin B, Sugimoto CR. Bibliometrics: Global gender disparities in science.

Nature. 2013; 504(7479):211–213. https://doi.org/10.1038/504211a PMID: 24350369

26. Rørstad K, Aksnes DW. Publication rate expressed by age, gender and academic position—A large-

scale analysis of Norwegian academic staff. Journal of Informetrics. 2015; 9(2):317–333. https://doi.

org/10.1016/j.joi.2015.02.003

27. Smith BN, Singh M, Torvik VI. A Search Engine Approach to Estimating Temporal Changes in Gender

Orientation of First Names. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital

Libraries. JCDL’13; 2013. p. 199–208.

28. Sugimoto CR, Ni C, West JD, Larivière V. The academic advantage: Gender disparities in patenting.

PloS one. 2015; 10(5):e0128000. https://doi.org/10.1371/journal.pone.0128000 PMID: 26017626

29. Simpson EH. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical

Society Series B (Methodological). 1951; 13(2):238–241.

30. Blyth CR. On Simpson’s Paradox and the Sure-Thing Principle. Journal of the American Statistical

Association. 1972; 67(338):364–366. https://doi.org/10.1080/01621459.1972.10482387

31. Bickel PJ, Hammel EA, O’Connell JW. Sex Bias in Graduate Admissions: Data from Berkeley. Science.

1975; 187(4175):398–404. https://doi.org/10.1126/science.187.4175.398 PMID: 17835295

32. Hutson SR. Self-Citation in Archaeology: Age, Gender, Prestige, and the Self. Journal of Archaeological

Method and Theory. 2006; 13(1):1–18. https://doi.org/10.1007/s10816-006-9001-5

33. Councill IG, Giles CL, Kan MY. ParsCit: an Open-source CRF Reference String Parsing Package. In:

LREC. vol. 8; 2008. p. 661–667.

34. Torvik VI, Agarwal S. Ethnea—an instance-based ethnicity classifier based on geo-coded author

names in a large-scale bibliographic database; 2016. Available from: http://hdl.handle.net/2142/88927.

35. Torvik VI. Genni + Ethnea for the Author-ity 2009 dataset; 2018. Available from: https://doi.org/10.

13012/B2IDB-9087546_V1.

36. Torvik VI, Smalheiser NR. Author name disambiguation in MEDLINE. ACM Trans Knowl Discov Data.

2009; 3(3):1–29. https://doi.org/10.1145/1552303.1552304

37. Torvik VI, Smalheiser NR. Author-ity 2009—PubMed author name disambiguated dataset; 2018. Avail-

able from: https://doi.org/10.13012/B2IDB-4222651_V1.

Self-citation is the hallmark of productive authors, of any gender

PLOS ONE | https://doi.org/10.1371/journal.pone.0195773 September 26, 2018 20 / 21

http://arxiv.org/abs/1607.00376
https://doi.org/10.1177/2378023117738903
http://www.ncbi.nlm.nih.gov/pubmed/27414239
https://doi.org/10.1037/0022-3514.74.3.629
https://doi.org/10.1037/0022-3514.74.3.629
http://www.ncbi.nlm.nih.gov/pubmed/9523410
https://doi.org/10.1111/j.1471-6402.2010.01561.x
https://doi.org/10.1111/j.1471-6402.2010.01561.x
https://doi.org/10.1007/s11192-007-1777-2
https://doi.org/10.1007/s11192-007-1777-2
http://www.nber.org/papers/w21913
https://doi.org/10.1257/aer.p20161124
http://www.ncbi.nlm.nih.gov/pubmed/27231399
https://doi.org/10.1093/biosci/biv173
https://doi.org/10.1371/journal.pone.0066212
http://www.ncbi.nlm.nih.gov/pubmed/23894278
https://doi.org/10.1038/504211a
http://www.ncbi.nlm.nih.gov/pubmed/24350369
https://doi.org/10.1016/j.joi.2015.02.003
https://doi.org/10.1016/j.joi.2015.02.003
https://doi.org/10.1371/journal.pone.0128000
http://www.ncbi.nlm.nih.gov/pubmed/26017626
https://doi.org/10.1080/01621459.1972.10482387
https://doi.org/10.1126/science.187.4175.398
http://www.ncbi.nlm.nih.gov/pubmed/17835295
https://doi.org/10.1007/s10816-006-9001-5
http://hdl.handle.net/2142/88927
https://doi.org/10.13012/B2IDB-9087546_V1
https://doi.org/10.13012/B2IDB-9087546_V1
https://doi.org/10.1145/1552303.1552304
https://doi.org/10.13012/B2IDB-4222651_V1
https://doi.org/10.1371/journal.pone.0195773


38. Torvik VI, Weeber M, Swanson DR, Smalheiser NR. A probabilistic similarity metric for MEDLINE rec-

ords: A model for author name disambiguation. J Am Soc Inf Sci Technol. 2005; 56(2):140–158. https://

doi.org/10.1002/asi.20105

39. Tuomela MS, Fegley BD, Torvik VI. Introducing the Author-ity Exporter, and a case study of geo-tempo-

ral movement of authors. In: METRICS Workshop ASIST Annual Meeting 2016; 2016. Available from:

http://hdl.handle.net/2142/91612.

40. Mishra S, Fegley BD, Diesner J, Torvik VI. Self-citation analysis data based on PubMed Central subset

(2002-2005); 2018. Available from: https://doi.org/10.13012/B2IDB-9665377_V1.

41. Torvik VI. MapAffil: A bibliographic tool for mapping author affiliation strings to cities and their geocodes

worldwide. D-Lib Magazine. 2015; 21(11/12). https://doi.org/10.1045/november2015-torvik PMID:

27170830

42. Torvik VI. MapAffil 2016 dataset—PubMed author affiliations mapped to cities and their geocodes

worldwide; 2018. Available from: https://doi.org/10.13012/B2IDB-4354331_V1.

43. MEDLINE/PubMed Data Element (Field) Descriptions;. https://www.nlm.nih.gov/bsd/mms/

medlineelements.html.

44. Mishra S, Torvik VI. Quantifying conceptual novelty in the biomedical literature. D-Lib Magazine. 2016

in press; 22(11/12). PMID: 27942200

45. Mishra S, Torvik VI. Conceptual novelty scores for PubMed articles; 2018. Available from: https://doi.

org/10.13012/B2IDB-5060298_V1.

46. Torvik VI. Author-implicit journal, MeSH, title-word, and affiliation-word pairs based on Author-ity 2009;

2018. Available from: https://doi.org/10.13012/B2IDB-4742014_V1.

47. D’Souza JL, Smalheiser NR. Three journal similarity metrics and their application to biomedical journals.

PLoS ONE. 2014; 9(12).

48. Bonzi S, Snyder HW. Motivations for citation: A comparison of self citation and citation to others. Scien-

tometrics. 1991; 21(2):245–254. https://doi.org/10.1007/BF02017571

49. Garfield E. English–An International language for science. The Information Scientist, Dec. 1967; 76:19–

20.

50. Evans JA. Electronic Publication and the Narrowing of Science and Scholarship. Science. 2008; 321

(5887):395–399. https://doi.org/10.1126/science.1150473 PMID: 18635800

51. Maliniak D, Powers R, Walter BF. The Gender Citation Gap in International Relations. International

Organization. 2013; 67:889–922. https://doi.org/10.1017/S0020818313000209

52. Booth M. The almost nearly perfect people: The truth about the Nordic miracle. London, UK: Jonathan

Cape; 2014.

53. MacRoberts MH, MacRoberts BR. Problems of citation analysis. Scientometrics. 1996; 36(3):435–444.

https://doi.org/10.1007/BF02129604

54. Zuckerman HA. Patterns of name ordering among authors of scientific papers: A study of social symbol-

ism and its ambiguity. American Journal of Sociology. 1968; 74:276–291. https://doi.org/10.1086/

224641

55. Ceci SJ, Ginther DK, Kahn S, Williams WM. Women in academic science A changing landscape. Psy-

chological Science in the Public Interest. 2014; 15(3):75–141. https://doi.org/10.1177/

1529100614541236 PMID: 26172066

56. Leahey E. Gender differences in productivity: Research specialization as a missing link. Gender & Soci-

ety. 2006; 20(6):754–780. https://doi.org/10.1177/0891243206293030

57. Smith KA, Arlotta P, Watt FM, Solomon SL, Arlotta P, Bargmann C, et al. Seven Actionable Strategies

for Advancing Women in Science, Engineering, and Medicine. Cell Stem Cell. 2015; 16(3):221–224.

https://doi.org/10.1016/j.stem.2015.02.012 PMID: 25748929

58. Lorber J. Women physicians: Careers, status, and power. New York, NY: Tavistock; 1984.

59. Leahey E. Not by Productivity Alone: How Visibility and Specialization Contribute to Academic Earn-

ings. American Sociological Review. 2007; 72(4):533–561. https://doi.org/10.1177/

000312240707200403

60. Norman G. Data dredging, salami-slicing, and other successful strategies to ensure rejection: twelve

tips on how to not get your paper published. Advances in Health Sciences Education. 2014; 19:1–5.

https://doi.org/10.1007/s10459-014-9494-8 PMID: 24473751

61. Valenta A, Brooks I, Laureto R, Ramaprasad A. Breaking the silo. Using informatics to support clinical

and translational science. Journal of healthcare information management: JHIM. 2006; 21(4):15–17.

Self-citation is the hallmark of productive authors, of any gender

PLOS ONE | https://doi.org/10.1371/journal.pone.0195773 September 26, 2018 21 / 21

https://doi.org/10.1002/asi.20105
https://doi.org/10.1002/asi.20105
http://hdl.handle.net/2142/91612
https://doi.org/10.13012/B2IDB-9665377_V1
https://doi.org/10.1045/november2015-torvik
http://www.ncbi.nlm.nih.gov/pubmed/27170830
https://doi.org/10.13012/B2IDB-4354331_V1
https://www.nlm.nih.gov/bsd/mms/medlineelements.html
https://www.nlm.nih.gov/bsd/mms/medlineelements.html
http://www.ncbi.nlm.nih.gov/pubmed/27942200
https://doi.org/10.13012/B2IDB-5060298_V1
https://doi.org/10.13012/B2IDB-5060298_V1
https://doi.org/10.13012/B2IDB-4742014_V1
https://doi.org/10.1007/BF02017571
https://doi.org/10.1126/science.1150473
http://www.ncbi.nlm.nih.gov/pubmed/18635800
https://doi.org/10.1017/S0020818313000209
https://doi.org/10.1007/BF02129604
https://doi.org/10.1086/224641
https://doi.org/10.1086/224641
https://doi.org/10.1177/1529100614541236
https://doi.org/10.1177/1529100614541236
http://www.ncbi.nlm.nih.gov/pubmed/26172066
https://doi.org/10.1177/0891243206293030
https://doi.org/10.1016/j.stem.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25748929
https://doi.org/10.1177/000312240707200403
https://doi.org/10.1177/000312240707200403
https://doi.org/10.1007/s10459-014-9494-8
http://www.ncbi.nlm.nih.gov/pubmed/24473751
https://doi.org/10.1371/journal.pone.0195773

