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Abstract

Endothelial dysfunction is one of the main pathological changes in Obstructive sleep apnoea

(OSA). The Rho kinase (ROCK) pathway is associated with endothelial dysfunction. How-

ever, the interaction between ROCK and nuclear factor of activated T cells isoform c3

(NFATc3) in the development of this pathological response under chronic intermittent hyp-

oxia (CIH) is unclear. To simulate the OSA model, we established a moderate CIH rat model

by administering the fraction of inspired O2 (FiO2) from 21% to 9%, 20 times/h, 8 h/day for 3

weeks. Fasudil (ROCK inhibitor, 8 mg/kg/d, i.p.) was administrated in the rats exposed to

CIH for 3 weeks. Our results demonstrated that CIH caused significantly endothelial dys-

function, accompanying with increased ET-1 level, decreased eNOS expression and NO

production, which reduced ACh-induced vascular relaxation responses. Moreover, RhoA/

ROCK-2/NFATc3 expressions were up-regulated. Fasudil significantly improved CIH

induced endothelial dysfunction. Data suggested that the ROCK activation is necessary for

endothelial dysfunction during CIH.

Introduction

Obstructive sleep apnoea (OSA) is a complete or partial airway obstruction, resulting in signif-

icant physiological disturbance with multiple clinical influences [1]. The aetiology of OSA is

multifactorial, and it’s reported the patients exhibited snoring at night, headache while waking

up, sleepiness in the daytime and decreasing cognitive performance in clinically [2]. Recent

epidemiological studies have revealed that the OSA prevalence was approximately 3–7% in

men and 2–5% in women [3, 4]. Studies have shown that OSA could increase the prevalence

and incidence of cardiovascular diseases [5, 6], such as atherosclerosis, coronary heart disease,

heart failure, arrhythmia and hypertension.

There may be many possible influencing factors linking OSA with cardiovascular diseases;

however, the specific mechanism has not been fully elucidated. Some studies have shown that

endothelial dysfunction, as part of the pathogenesis of cardiovascular diseases, was
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significantly correlated with OSA [7]. The vascular endothelium participates in the release of

multiple vasoactive factors, including the vasodilator nitric oxide (NO) and the vasoconstrictor

endothelin-1 [8], which played a major role in the pathogenesis of cardiovascular problems

such as atherosclerosis, systemic and pulmonary hypertension, and cardiomyopathies [9].

OSA is characterized by chronic intermittent hypoxia (CIH) and CIH could trigger systemic

endothelial dysfunction, which suggested that regulating the ability of vascular tone and repair

capacity in the endothelium were weakened [10]. In rats exposed to CIH, the circulating

endothelin-1 (ET-1) level and the susceptibility of vasoconstriction to ET-1 were enhanced

[11, 12], and vascular NO bioavailability was decreased [10].

The small GTP-binding protein RhoA and its downstream target, Rho kinase (ROCK),

have recently been studied in the cardiovascular field. Activated ROCK was associated with

atherosclerosis and arterial hypertension in experimental rat models [13, 14] and clinical

patients [15, 16]. Studies have shown that the ROCK inhibitor (fasudil) treatment could

decrease the atherosclerosis lesions through decreasing the thickness of arterial intima medial

and macrophage accumulation [17]. On the other hand, nuclear factor of activated T cells iso-

form c3 (NFATc3) belongs to the NFAT transcription factors family that have the nature of

calcineurin-dependent nuclear translocation. It is important to note that the activation of Rho/

ROCK is involved with pathways that regulate NFAT activity [18]. Some studies have demon-

strated that NFATc3 was related to pulmonary hypertension induced by CIH in mice [19, 20],

however, the mechanism by which RhoA/ROCK/NFATc3 mediates CIH-induced endothelial

dysfunction has not been fully clarified.

In the study, we imitated OSA using a rat model of CIH to investigate the role of ROCK,

and detected whether CIH might affect RhoA/ROCK/NFATc3 mediated endothelial dysfunc-

tion in aortas. Therefore, in this study we hypothesized that the fasudil treatment could inhibit

the CIH-induced endothelial dysfunction in rats. Further, we investigated if fasudil would

restore endothelial dysfunction induced by CIH and its mechanisms.

Materials and methods

Experimental animals

Ethical approval. All procedures were performed based on the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and were authorized by the Animal

Care and Use Committee of Medical Ethics of Hebei University of Chinese Medicine

(approval number: HEBUCM-2014-07; approval date: July 01, 2014). Adult male Sprague-

Dawley rats (190–220g) were purchased from the Hebei Experimental Animal Center (Shijia-

zhuang, China). All rats were given free access to food and water, housed under constant tem-

perature and controlled illumination. All rats were allowed to adapt to their living conditions

for at least 7 days before experiment.

The test of fasudil. To assess the effect of fasudil on the endothelial function, an experi-

ment was firstly performed. Fasudil was purchased from Cheng Tian Heng Chuang Biological

Technology Company. Twelve rats were randomly divided into control group and fasudil

group. Rats in fasudil group were administered with fasudil (8 mg/kg/day, i.p., once a day, at 9

a.m.) for 4 weeks. While, the rats in control group were received an equal volume of normal

saline. All rats were observed daily for general status, behaviour, morbidity and mortality.

Body weight (BW), tail-cuff systolic blood pressure (SBP) and heart rate (HR) were measured

at the beginning of the study and once a week thereafter. Food consumption was recorded

weekly. 24 h after the last administration of the drug, two groups of rats were sacrificed. Their

blood samples were used for blood biochemistry, and their aortas were dissected for histopath-

ological analysis.
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Experimental grouping and CIH model. SD rats (n = 36) were randomly divided into

three groups (n = 12, for each group): normoxia control group (Normoxia), CIH model group

(CIH) and fasudil-treated CIH model group (CIH + Fa). These rats were housed in special hyp-

oxic chambers with a controlled gas delivery system that monitored the flow of air, nitrogen

and oxygen into the chambers. The fraction of inspired oxygen (FiO2) provided to the chambers

for the CIH and the CIH + Fa groups declined from 21% to 9% for 90 s, and then gradually

increased to 21% with re-oxygenation in the subsequent 90 s period. The exposure cycle was

repeated every 3 min for 8 h/day, for 3 weeks. In addition, the rats in the CIH + Fa group were

also successively given fasudil (8 mg/kg/day, i.p., once a day) for 3 weeks. Rats in the Normoxia

and CIH groups were injected with an equal volume of normal saline at the same time points.

Tissue and blood sample processing. After 21 days, the rats were fasted for one night.

They were weighed and anaesthetized with pentobarbital (100 mg/kg, i.p.). Half of the rats in

each group (n = 6, for each group) were used for the ACh-induced vascular relaxation

responses study, and the other half of rats in each group (n = 6, for each group) were used for

blood and tissue determination. Blood samples were obtained from the femoral aorta, and the

serum was separated and collected for biochemical analysis. At the same time, thoracotomy

and thoracic aorta tissues were collected. Collected thoracic aorta tissues were used for western

blot analysis, nitrate reductase method detection and histological analysis.

Evaluation of vasodilator responses

The isolation of aortic vessels. The thoracic aortas were excised and immediately placed

in 4˚C physiological saline solution (PSS, pH 7.4, 133.1 mM NaCl, 4.7 mM KCl, 0.61 mM

MgSO4, 1.3 mM NaH2PO4, 16.7 mM NaHCO3, 2.5 mM CaCl2, 7.6 mM Glucose). The thoracic

aortas were carefully isolated and cut into 3 mm rings. Then, vessel endothelia were stripped

mechanically by inserting watchmaker’s forcep tips into the vascular lumen and the vessel was

repeatedly rotated on saline-saturated filter paper [21].

Detection of vasodilator responses. Rings of arteries were suspended horizontally in

organ chambers filled with 6 ml PSS sustained at 37˚C and inflated with 95% O2 and 5% CO2.

Two stainless steel wires passed through the vessel ring lumen; one was fixed to the bottom of

the organ chamber, and the other was attached to a strain gauge. Isometric tension was mea-

sured with a Power-Lab/8sp recording and analysis system (Model ML785; AD Instruments,

Castle Hill, NSW, Australia).

Each vascular ring was progressively extended to its optimal resting tension until the con-

traction force of the vascular ring in 70 mM KCl reached a plateau; the optimal resting tension

of rat thoracic aortas was 1.5 g. Each ring was equilibrated for 1 hour. After equilibration, via-

bility was verified by contraction with 10−6 M phenylephrine (PE, Sigma Chemical, St. Louis,

MO), and vasodilator responses to vasodilator acetylcholine (ACh, Sigma, 10−6 M) and sodium

nitroprusside (SNP, Sigma, 10 −6 M) were tested.

Endothelium denudation was confirmed as a< 5% relaxation response to 10−6 M ACh in

rings preconstricted with 10−6 M PE. To determine whether CIH affected vasodilator

responses, basal aortic tone was tested by pre-incubating the rings with 10−6 M PE and examed

relaxation responses to 10−6 M ACh and 10−6 mol/L SNP. Relaxation responses to ACh and

SNP are expressed as a percentage of the PE-induced tone.

Measurement of ET-1 levels in serum

The serum ET-1 concentration was measured by radioimmunoassay (RIA) as per the instruc-

tions of the kit (SenBeiJia Biological Technology, Nanjing, China). By using the non-equilib-

rium method, we made a standard curve and the content of samples was calculated.
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Measurement of NO content in aortic tissue and serum

The NO content was defined by measuring total nitrate and nitrite concentrations (Nitric

Oxide Assay Kit: Nanjingjiancheng Biological Engineering Institute, Nanjing, China). This

assay determined total content of NO based on the enzymatic conversion of nitrate to nitrite

by nitrate reductase. The reaction was followed by the colourimetric detection of nitrite as an

azo dye product of the Griess reaction. The absorbance of the compound at 550 nm was

detected with a microplate reader.

Histological analysis

The aortic tissues removed from all rats were fixed in 4% paraformaldehyde for 48 h. After fix-

ation, the tissues were dehydrated in alcohol gradient and embedded in paraffin. Tissue slices

were cut at 5 μm thickness and stained with haematoxylin and eosin (H&E) for histological

analysis. Each section was observed under 10 × 40 light microscopic fields with an optical

microscope (Olympus Japan Co., Tokyo, Japan).

Western blot

Frozen thoracic aortic samples were homogenized and lysed using RIPA lysis buffer with a mixture

of protease inhibitors. The homogenates were centrifuged at 12,000 g at 4˚C for 20 min, and the

supernatant was collected. The total protein concentration was measured with a BCA Protein Assay

Kit (Aidlab Biotechnologies Company, China). Then, 40 μg of protein was added into sodium

dodecyl sulfonate (SDS)-polyacrylamide gels and transferred to polyvinylidene difluoride mem-

branes (Millipore, Billerica, MA, USA). After blocking with non-fat milk, the blots were incubated

overnight at 4˚C with primary antibodies for ET-1 (Abcam, ab2786, 1:600), ROCK-2 (Abcam,

ab71598, 1:600), anti-eNOS (Abcam, ab50010, 1:600), anti-p-eNOS Ser1177 (Abcam, ab195944,

1:600), anti-RhoA (Abcam, ab187027, 1:3000), anti-MYPT (Cell Signaling, 2634p, 1:1000), anti-p-

MYPT (Cell Signaling, 4563p, 1:1000), anti-NFATc3 (Novus, NB100-92190, 1:500) and anti-β-actin

(Sigma, A5316, 1:1000). MYPT and p-MYPT protein were measured to indirectly determine the

activation of ROCK-2. ROCK activity was determined by assaying the amount of phospho-Thr853

in the myosin phosphatase target subunit 1 (MYPT1) of myosin light chain (MLC) phosphatase.

Western blot detection of p-MYPT1 and t-MYPT1(total MYPT1) were carried out to evaluate the

activity of ROCK in the aortas. The membranes were then washed with PBS (pH 7.4, containing

0.1% Tween 20) and incubated with a horseradish peroxidase-conjugated goat anti-rabbit second-

ary antibody (1:5000, Amersham Biosciences, Piscataway, NJ, USA) for 2 h at room temperature.

Finally, blots were visualized and quantified with an enhanced chemiluminescence (ECL) system

(Fuji, Tokyo, Japan). All experiments were conducted at least three times. Relative light densities of

the positive bands were calculated and expressed as a ratio to β-actin.

Statistical analysis

Results are presented as the mean ± SE. For vasodilator responses studies, statistical analysis was

carried out using two-way ANOVA tests followed by Bonferroni’s post hoc analysis. For other

data, statistical analysis was carried out using a one-way ANOVA followed by Tukey’s post hoc

test. The significance level was set at 0.05. All analyses were carried out using SPSS 19.0 software.

Results

The fasudil has no effect on endothelial function

Rats received fasudil (8 mg/kg, i.p.) did not show any effects on body weight, behaviour and

mortality during the four-week observation period. There were no remarkable differences in

RhoA/ROCK/NFATc3 pathway involved in chronic intermittent hypoxia
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related biochemical indicators, systolic blood pressures and heart rate (Table 1), and there

were no obvious histological changes of the aorta in the fasudil group, compared to the control

group (Fig 1).

Fasudil improved histopathological change of vascular endothelium in

aortas

H&E stain presented the integrity of the vascular endothelium, consisting of an unbroken

endothelial monolayer with regularly shaped and arranged endothelial cells in the Normoxia

group (Fig 2). However, the endothelial layer exhibited remarkable histopathological changes

in the CIH group, showing cellular oedema and partial exfoliation of endothelial cells (Fig 2).

The histopathological change of vascular endothelium was improved in the CIH + Fa group

compared with the CIH group (Fig 2).

Fasudil improved vasodilator responses dysfunction in rats exposed to CIH

To determine whether CIH affected endothelium-dependent or endothelium- independent

vasodilation in rat aorta, we examined relaxation responses to ACh and SNP in endothelium-

intact and endothelium-denuded aortas from rats in Normoxia, CIH and CIH + Fa group.

The results showed that relaxation responses induced by ACh in the endothelium-intact CIH

group decreased significantly compared with the Normoxia group and, fasudil significantly

inhibited the decreased ACh-induced relaxation responses of the endothelium-intact CIH

group (P< 0.05) (Fig 3A and 3C). However, ACh-induced relaxation responses showed no

significant differences in all endothelium-denuded groups (Fig 3B and 3C). ACh-induced

relaxation responses of all endothelium-denuded groups were significantly lower than that of

all endothelium-intact groups (Fig 3C). The relaxation responses induced by SNP was not sig-

nificantly different in all groups (Fig 3A and 3B and 3D).

Table 1. Effects of fasudil on blood biochemistry and body weight, systolic blood pressures, heart rate in normal

rats.

Variables Control group Fasudil group

Initial BW (g) 200.81 ± 3.95 206.04 ± 4.67

Final BW (g) 237.67 ± 3.92 244.51 ± 4.81

Serum GLU (mmol/L) 6.46 ± 0.48 5.86 ± 0.35

Serum TC (mmol/L) 1.34 ± 0.05 1.37 ± 0.04

Serum TG (mmol/L) 0.55 ± 0.04 0.47 ± 0.03

Serum LDL (mmol/L) 1.09 ± 0.13 1.01 ± 0.11

Serum HDL (mmol/L) 0.62 ± 0.01 0.63 ± 0.02

Serum ALT (U/L) 37.03 ± 2.74 37.71 ± 2.25

Serum AST (U/L) 94.67 ± 3.88 93.98 ± 4.23

Serum CREA (μmol/L) 42.67 ± 3.22 38.68 ± 2.21

SBP (mmHg) 124.33 ± 4.94 123.33 ± 4.82

HR (bpm) 356.33 ± 19.37 356.17 ± 21.51

Control group: rats received normal saline solution; Fasudil group: rats received fasudil (8 mg/kg/day). BW: body

weight. TC: total cholesterol. TG: triglyceride. LDL: low-density lipoprotein. HDL: high-density lipoprotein. ALT:

alanine transferase. AST: aspartate transferase. CREA: creatinine. SBP: systolic blood pressures. HR: heart rate. Data

were expressed as the mean ± SE (n = 6 in each group).

https://doi.org/10.1371/journal.pone.0195604.t001
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Fasudil increased NO in serum and aortic tissue in rats exposed to CIH

NO generated by endothelial cell played an important role in maintaining vascular microenvi-

ronment [22]. The total NO levels in serum and the aorta were dramatically reduced in CIH

rats compared with the Normoxia group (P< 0.05), whereas the level of NO significantly

increased in the CIH + Fa group compared with the CIH group (P< 0.05) (Fig 4A and 4B).

We also studied the effects of CIH on endothelial cell generating NO, and measured the

marker of eNOS activity, eNOS (Ser1177) phosphorylation. The phosphorylation of eNOS

(Ser1177) could accelerate NO production and dephosphorylation would decrease NO pro-

duction [23]. As shown in Fig 4C and 4D, the levels of eNOS and p-eNOS (Ser1177) signifi-

cantly decreased in CIH aortas compared with the Normoxia group, however, the levels of

eNOS and p-eNOS were both increased with fasudil treatment (P< 0.05), comparing to CIH

group.

Fasudil decreased ET-1 in serum and aortic tissue in rats exposed to CIH

The level of ET-1 in serum showed a marked increase in the CIH group compared with the

Normoxia group (Fig 5A), and western blot results revealed the ET-1protein level in aorta tis-

sue also raised (Fig 5B). While, treatment with fasudil significantly prevented ET-1 increases

in the serum and aorta tissue induced by CIH (P < 0.05) (Fig 5A and 5B).

Fig 1. Fasudil has no effect on endothelial morphology of aorta. Representative microscopic photographs of aorta sections

stained with H&E stain (scale bar = 30 μm; n = 6). The magnified image in the right.

https://doi.org/10.1371/journal.pone.0195604.g001
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RhoA/ROCK/NFATc3 pathway mediated improving effect of fasudil on

CIH

However, which signal pathway did regulate the level of NO in the endothelium-intact aortas

during CIH? We firstly detected the RhoA protein level in the aortas tissue. Fig 6A showed the

level of RhoA was higher in CIH group (P< 0.05) than that in the Normoxia group. And the

level of ROCK-2 was also elevated (P< 0.05) in the CIH group (Fig 6B). While, fasudil treat-

ment could decrease the expression of RhoA and ROCK-2 protein, comparing to the CIH

group (Fig 6A and 6B).

As shown in Fig 6C, p-MYPT1/t-MYPT1 was significantly elevated in the CIH group com-

pared with the Normoxia group (P< 0.05). However, treatment with fasudil significantly

decreased p-MYPT1/t-MYPT1 compared with the CIH group (Fig 6C).

Fig 2. Histopathological changes in aortas when subjected to CIH. The aorta samples from different groups were

analysed histochemically. Representative aorta histology in the Normoxia, CIH, and CIH + Fa groups were shown

(magnification, 400 ×).

https://doi.org/10.1371/journal.pone.0195604.g002
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NFATc3 is considered a downstream substrate of ROCK and may be involved in CIH-

induced endothelial dysfunction. Results showed that the expression of NFATc3 protein

increased in the CIH group compared with the Normoxia group (P< 0.05). Treatment with

fasudil inhibited the increases of expression of NFATc3 compared with the CIH group (Fig 7).

Discussion

OSA, a worldwide sleep-breathing disease, is known as an independent dangerous factor for

cardiovascular diseases [24]. OSA elicited CIH, which contributed to endothelial dysfunction

and cardiovascular diseases [25]. In the present study, a CIH rat model was established by sim-

ulating the OSA state. The results of our study showed that CIH-induced endothelial dysfunc-

tion associated with increased ET-1 and decreased NO in rat aorta. Fasudil attenuated

endothelial dysfunction induced by CIH through inhibiting ROCK activation. Thus, RhoA

and ROCK activity played an important role in the pathogenesis of CIH by mediating a potent

vasoconstrictor response. Furthermore, we demonstrated that increased RhoA/ROCK/

NFATc3 pathway and ROCK activity were associated with a functional decrease in endothe-

lium dependent vasodilation in aortas, which contributes to the pathogenesis of CIH-induced

dysfunction of endothelium.

Fig 3. Vasodilator responses in endothelium-intact and endothelium-denuded aortas. (A) Results were expressed as an

isometric tension in endothelium-intact rat aortas. (B) Results were expressed as an isometric tension endothelium-denuded

in rat aortas. (C) Relaxation responses to ACh expressed as a percentage of PE-induced pre-contraction. (D) Relaxation

responses to SNP expressed as a percentage of PE-induced pre-contraction. Values were the mean ± SE. � p< 0.05, CIH group

vs Normoxia group; # p< 0.05, CIH + Fa group vs CIH group (n = 6 for each group).

https://doi.org/10.1371/journal.pone.0195604.g003
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The vascular endothelium plays an important role in the regulation of various vascular

functions and homeostasis [26]. The damage and/or malfunction of the artery endothelium

might be associated with various cardiovascular diseases. Endothelial dysfunction is consid-

ered an early marker of vascular abnormalities before clinically obvious cardiovascular disease

[27–29]. Damage to the artery endothelium might cause abnormal release of vasoactive factors,

disrupting the balance of its own regulation system, such as up-regulating ET-1 levels and

down-regulating NO production.

Fig 4. Levels NO in the serum and aorta. (A) NO content was measured in serum from the Normoxia, CIH and CIH + Fa

groups by the Griess assay. (B) NO production was measured in aortas isolated from the Normoxia, CIH and CIH + Fa groups

with a Griess assay. (C) eNOS protein was measured in aortas isolated from the Normoxia, CIH and CIH + Fa groups by

Western blotting. (D) p-eNOS (Ser1177) protein was measured in aortas isolated from the Normoxia, CIH and CIH + Fa

groups by Western blotting. The results were expressed as the mean ± SE. � p< 0.05, CIH group vs Normoxia group; # p< 0.05,

CIH + Fa group vs CIH group (n = 6 for each group).

https://doi.org/10.1371/journal.pone.0195604.g004

RhoA/ROCK/NFATc3 pathway involved in chronic intermittent hypoxia

PLOS ONE | https://doi.org/10.1371/journal.pone.0195604 April 11, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0195604.g004
https://doi.org/10.1371/journal.pone.0195604


RhoA/ROCK/NFATc3 pathway involved in chronic intermittent hypoxia

PLOS ONE | https://doi.org/10.1371/journal.pone.0195604 April 11, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0195604


Fig 5. Levels ET-1 in the serum and aorta when subjected to CIH. (A) ET-1 content was measured in serum from

the Normoxia, CIH and CIH+Fa groups by radioimmunoassay. (B) ET-1 protein levels were measured in aortas

isolated from the Normoxia, CIH and CIH + Fa groups by western blot. The results were expressed as the mean ± SE.
�p< 0.05, CIH group vs Normoxia group; # p< 0.05, CIH + Fa group vs CIH group (n = 6 for each group).

https://doi.org/10.1371/journal.pone.0195604.g005

Fig 6. Expression of RhoA, ROCK-2, p-MYPT1, and t-MYPT1 proteins in aortas when subjected to CIH. (A-B) RhoA and

ROCK-2 protein levels were measured in aortas from Normoxia, CIH and CIH + Fa groups by Western blot. (C) p-MYPT1

(Thr853) and t-MYPT1 protein levels were measured in aortas isolated from the Normoxia, CIH and CIH + Fa groups by

Western blotting. The results were expressed as the mean ± SE. � p< 0.05, CIH group vs Normoxia group; # p< 0.05, CIH + Fa

group vs CIH group (n = 6 for each group).

https://doi.org/10.1371/journal.pone.0195604.g006
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In the past few decades, a large body of evidence had indicated that the endothelial cell was

capable of releasing vasoactive substances. The imbalance between ET-1 and NO levels of

serum greatly contributed to the risk of cardiovascular diseases [30]. Previous studies have

shown that vascular endothelial dysfunction occurred in the CIH model prior to the develop-

ment of cardiovascular diseases, which suggested that systematic endothelial dysfunction was

the starting phase of cardiovascular diseases by CIH [31]. Our study provided direct evidence

of vascular endothelial dysfunction in CIH rats. NO content was significantly lower and ET-1

levels were significantly higher in CIH rats. These changes was improved by treatment with

fasudil. The results suggested that vascular endothelial dysfunction was the earliest cardiovas-

cular abnormality in OSA and contributed to the subsequent development or progression of

OSA-related cardiovascular disease [32].

Both ACh and SNP are common vasodilators. It is well known that vasodilatation caused

by ACh involves the release of endothelium-derived NO, and relaxation caused by SNP does

not involve NO [21]. Previous studies have shown that the vascular reaction to ACh was medi-

ated by NO released from the vascular endothelium of skeletal muscle and cerebrum of rats

[32], and it was reported that the ACh-induced vasodilatation in two types of arteries was dam-

aged in CIH [33]. Study showed that even mild OSA was accompanied by decreased endothe-

lium-dependent vascular dilation [34]. NO, as a main vasodilator, was synthesized in the

vascular endothelium and decreased in the plasma of patients with OSA [35, 36]. It has been

shown that endothelial dysfunction induced by CIH is a systemic pathological condition of the

vascular endothelium, not just the peripheral vascular but also the aorta. Aortic endothelial

dysfunction could promote the occurrence of cardiovascular events in OSA patients [37, 38].

To evaluate whether CIH affected endothelium-dependent vasodilation function, vasodilator

responses to SNP and ACh were examined in the aorta. Our results showed that CIH exposure

impaired endothelium-intact relaxation responses to ACh, and fasudil significantly alleviated

the impaired ACh-induced relaxation responses. However, CIH exposure did not affect endo-

thelium-intact aortic vasodilator responses to SNP. These data implied that endothelium-

derived vasodilation was impaired by CIH. In addition, these results further supported that

ROCK involved with the CIH-induced endothelial dysfunction.

As an important biomarker of endothelial function, NO was synthesized from its precursor

L-Arginine by a family of NOS. eNOS might mediate endothelial NO generation and release

[39]. Production of NO in endothelial cells by eNOS was modulated by phosphorylation of

Fig 7. Expression of NFATc3 protein in aortas when subjected to CIH. NFATc3 protein levels were measured in aortas from

Normoxia, CIH and CIH + Fa groups by Western blotting. The results were expressed as the mean ± SE. � p< 0.05, CIH group vs

Normoxia group; # p< 0.05, CIH + Fa group vs CIH group (n = 6 for each group).

https://doi.org/10.1371/journal.pone.0195604.g007
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eNOS, and eNOS ser1177 phosphorylation leads to NO production increases. Down-regula-

tion of vascular eNOS and reduced activation of eNOS were characteristic of vascular endothe-

lial dysfunction [22]. NFAT could play a potential role in endothelial dysfunction and

inhibition eNOS [40]. A previous study showed that NFATc3 might contribute to arterial

remodeling associated with hypoxia-intermittent hypoxia [41], and NFAT was a novel mecha-

nism causing endothelial dysfunction under hyperglycaemia [42]. In the present study, expo-

sure to CIH reduced the generation of NO, inhibited eNOS protein expression, reduced eNOS

activation and increased NFATc3 protein expression in rat aortas, which were improved by

fasudil treatment. These data suggested that increased NFATc3 expression played a role in

CIH-induced endothelial dysfunction. Therefore, it is possible that ROCK is associated with

NFATc3/eNOS pathway in the CIH condition.

Studies demonstrated that RhoA/ROCK activation played an important role in various car-

diovascular diseases [43], and acted as a convergent node in the pathogenesis of vascular dis-

eases [44]. Inhibition of this signalling pathway could reduce the risk of adverse cardiovascular

events and provided pharmacological tools for vascular studies [45–49]. More evidence

showed that eNOS expression and activity were regulated by RhoA/ROCK [50], and RhoA/

ROCK negatively regulated eNOS (Thr495) and eNOS (Ser1177) and decreased vasodilation

[26]. RhoA/ROCK decreased eNOS expression through down-regulation of eNOS mRNA sta-

bility, and decreased eNOS activity through inhibition of eNOS phosphorylation at Ser1177

via the PI3-kinase/Akt pathway and acceleration of eNOS phosphorylation at Thr495 [51]. In

hypertensive profilin1 transgenic mice, activation of the RhoA/ROCK pathway significantly

inhibited eNOS expression and phosphorylation (Ser1177) in the mesenteric arteries [52].

ROCK blockers, which block ROCK activity, can prolong the eNOS mRNA biological half-life

and increase eNOS expression in vascular disease. MYPT1 is a major downstream target of

ROCK. In recent studies, measurement of p- MYPT/t- MYPT was used as an indirect method

for assessing ROCK activity [53]. Thus, MYPT and p-MYPT proteins were measured to indi-

rectly determine the activation of ROCK-2 in our study. Our results showed that CIH signifi-

cantly elevated p-MYPT1/t-MYPT1 and increased RhoA and ROCK protein expression.

Previous study has showed that ROCK inhibition prevents intermittent hypoxia-induced

NFATc3 activation in mouse mesenteric arteries both in vivo and ex vivo [41]. Our results

demonstrated that CIH up-regulated NFATc3 expression in rat aorta arteries, which was

dependent on RhoA/ROCK pathway. Acting as the downstream target of RhoA/ROCK,

whether NFATc3 was involved in the regulation of eNOS expression via the RhoA/ROCK

pathway was not clear. Our study showed that CIH increased RhoA/ROCK-2/NFATc3 protein

expression and ROCK-2 activation, and inhibited eNOS expression and phosphorylation

(Ser1177), and reduced NO production. The results suggested that the pathway of RhoA/

ROCK/NFATc3 contributed to endothelial dysfunction by CIH. In the present study, inhibi-

tion of the RhoA/ROCK/NFATc3 pathway by fasudil in CIH rats increased eNOS and NO lev-

els, and decreased ET-1 levels and maintained the balance of ET-1 and NO. These data further

suggested that the RhoA/ROCK/NFATc3 pathway could mediate endothelial dysfunction by

CIH in aortas (Fig 8).

Conclusions

In conclusion, this study demonstrates that CIH-induced endothelial dysfunction in OSA is

mediated by eNOS/NO reduction through RhoA/ROCK/NFATc3 pathway activation. ROCK

inhibited by fasudil significantly improves CIH induced endothelial dysfunction in rats. Thus,

fasudil might be a feasible therapeutic option to the progression to cardiovascular diseases in

OSA.
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