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Abstract

Empiric antibiotics are often used in combination with mechanical debridement to treat

patients suffering from periodontitis and to eliminate disease-associated pathogens. Until

now, only a few next generation sequencing 16S rDNA amplicon based publications with

rather small sample sizes studied the effect of those interventions on the subgingival micro-

biome. Therefore, we studied subgingival samples of 89 patients with chronic periodontitis

(solely non-smokers) before and two months after therapy. Forty-seven patients received

mechanical periodontal therapy only, whereas 42 patients additionally received oral admin-

istered amoxicillin plus metronidazole (500 and 400 mg, respectively; 3x/day for 7 days).

Samples were sequenced with Illumina MiSeq 300 base pairs paired end technology (V3

and V4 hypervariable regions of the 16S rDNA). Inter-group differences before and after

therapy of clinical variables (percentage of sites with pocket depth� 5mm, percentage of

sites with bleeding on probing) and microbiome variables (diversity, richness, evenness,

and dissimilarity) were calculated, a principal coordinate analysis (PCoA) was conducted,

and differential abundance of agglomerated ribosomal sequence variants (aRSVs) classi-

fied on genus level was calculated using a negative binomial regression model. We found

statistically noticeable decreased richness, and increased dissimilarity in the antibiotic, but

not in the placebo group after therapy. The PCoA revealed a clear compositional separation

of microbiomes after therapy in the antibiotic group, which could not be seen in the group

receiving mechanical therapy only. This difference was even more pronounced on aRSV

level. Here, adjunctive antibiotics were able to induce a microbiome shift by statistically
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noticeably reducing aRSVs belonging to genera containing disease-associated species,

e.g., Porphyromonas, Tannerella, Treponema, and Aggregatibacter, and by noticeably

increasing genera containing health-associated species. Mechanical therapy alone did not

statistically noticeably affect any disease-associated taxa. Despite the difference in micro-

biome modulation both therapies improved the tested clinical parameters after two months.

These results cast doubt on the relevance of the elimination and/or reduction of disease-

associated taxa as a main goal of periodontal therapy.

Introduction

The oral cavity provides a unique eco-system with different niches for microbial organisms

harboring a diverse microbiota with approximately 700 different prokaryote species [1]. These

microbes live in the human hosts and play important roles in health and disease. A mutual

dependence exists between the host and the microbiome. Perturbations in this equilibrium

can lead to a dysbiosis and consequently to a diseased host [2]. In case of the periodontium

a dysbiosis of the complex subgingival microbiome leads to the formation of periodontal pock-

ets and destruction of tooth supporting tissue in most cases without notification of the host.

Approximately 50% of the adult population suffer from moderate or severe forms of periodon-

titis in the United States [3].

Previous research on periodontal therapy focused on identifying bacterial species within

the subgingival microbiome that are associated with periodontitis and to develop strategies to

eradicate these pathogens. In a fundamental work by the group of Socransky and Haffajee [4]

a microbial succession was postulated describing green, yellow and purple complex bacteria

associated with periodontal health, to an orange and ultimately a red complex with pathogens,

i.e., Porphyromonas ginigvalis, Treponema denticola, and Tannerella forsythia frequently found

in periodontitis. Reduction of these pathogens after mechanical therapy can be improved by

adjunctive systemic antibiotics, e.g., amoxicillin and metronidazole and even elimination of

other key-pathogens as Aggregatibacter actinomycetemcomitans can be achieved [5,6]. For

decades dentists used empiric antibiotics to treat periodontitis by eliminating those periodon-

tal pathogens although strong clinical evidence is missing [7]. A recent large multi-center ran-

domized controlled trial (ABPARO study) showed that the additional benefit of empiric

adjunctive antibiotics was of questionable clinical relevance [8,9].

Next generation sequencing (NGS) greatly expanded periodontal microbial community

analyses because it is not limited to cultivated pathogens or pre-selection of targeted species

and allows for a deeper understanding of the whole microbiome dynamics after periodontal

therapy [10]. By using 16S ribosomal DNA (rDNA) sequence analysis we documented that not

only pathogenic taxa were eliminated in the antibiotics group, but the entire microbiome

shifted after therapy [11]. However, in this study only 4 patients of the ABPARO study were

investigated using the Ion Torrent Personal Genome Machine (PGM), which had limited read

length and a relative high homopolymer related sequencing error rate [12]. Other amplicon

NGS studies on periodontal therapy using the 454-pyrosequencing technology with similar

homopolymer error rates had also rather limited sample sizes [13–15] and did not include an

adjunctive antibiotic group [13,14].

The aim of this study was to explore the short-term effects of mechanical periodontal ther-

apy with or without adjunctive amoxicillin and metronidazole on the subgingival microbiome
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using Illumina MiSeq sequencing technology in a large subgroup of non-smoking patients

from the ABPARO study.

Material and methods

Patient cohort and sampling procedure

Specimens from the ABPARO study—a multicenter randomized, double-blinded, parallel

group, and placebo-controlled study—were used (ISRCTN: 64254080, Clinical Trials.gov

NCT00707369). Here, patients with untreated chronic periodontitis (localized: <30% and gen-

eralized:�30% of teeth with moderate:�3mm to<5mm and severe:�5mm attachment loss

[16]) were recruited, who received mechanical debridement plus 500 mg amoxicillin and 400

mg metronidazole three times daily for 7 days (antibiotic) or mechanical debridement and pla-

cebo (placebo). All mechanical debridement was performed in up to two sessions on two con-

secutive days with hand instruments and/or machine-driven scalers. Supportive periodontal

therapy was performed in three months intervals over a 24-months period [17].

For this study, 96 non-smoking patients (CO-level in exhaled air <7 ppm) from the per-

protocol collective of the ABPARO study (270 patients; 11.5% with localized severe, 51.1%

with localized severe and generalized moderate, and 37.4% with generalized severe chronic

periodontitis) were chosen [8]. Patients were selected randomly with respect to represent the

observed allocation of therapy groups, gender, and severity of periodontitis in the ABPARO

study. Patients of this selection had to be anonymized again and only subgingival samples

taken before and two months after intervention (short-term) were analyzed here [18].

Subgingival specimens for microbiological analysis were taken from four teeth with a

pocket probing depth of�6 mm, one in each quadrant. Detailed teeth selection has been

described previously [19]. At the four sample sites supragingival plaque was gently removed,

teeth were air-dried and isolated with cotton rolls. One sterile paper point (ISO45, Roeko Den-

tal, Langenau, Germany) was inserted for 10 seconds in each site and all paper points were

removed and pooled in one sterile collection tube. Samples were stored at −20˚C until further

use. The study database was anonymized. This study was approved by the Medical Ethics

Committee of the University of Muenster (ref: 2016-505-f-S).

DNA extraction, 16S rDNA amplification, and amplicon sequencing

Bacterial genomic DNA was isolated and purified with the QiaAmp Mini DNA-Isolation Kit

(Qiagen, Hilden, Germany). The protocol followed the manufacturer’s instructions with

minor modifications, i.e., i) after addition of lysis buffer ATL samples were sonicated in an

ultrasonic water bath (Sonotex RK 82, Bandelin Electronic AG, Berlin, Germany) for 5 min to

elute the collected plaque from the paperpoints, and ii) the pretreatment step with proteinase

K (20 mg/ml) at 56 ˚C was carried out overnight. The purified DNA was eluted in 200 μl of

elution buffer. DNA concentration was estimated with the Qubit 2.0 instrument applying the

Qubit dsDNA HS Assay (Life Technologies, Invitrogen division, Darmstadt, Germany). For

NGS library preparation, the recommended protocol for preparing 16S ribosomal RNA gene

amplicons for the Illumina MiSeq system was used [20]. The suggested universal bacterial

primers were utilized for amplifying the V3 and V4 hypervariable regions of the bacterial 16S

rRNA gene with polymerase chain reaction (PCR) using the KAPA Hifi HotStart Ready Mix

(Roche Diagnostics Deutschland, Mannheim, Germany). Purity and exact fragment size of

amplicons was determined with the Caliper GX system using the HT DNA High Sensitivity

LabChip Kit (PerkinElmer, Rodgau, Germany). In a second PCR sample-specific “barcode”-

primers and adapter sequences were attached. Up to 96 libraries were normalized and pooled
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for an Illumina MiSeq sequencing run using the MiSeq Reagent Kit version (v.) 3 with margin-

ally overlapping 300 base pairs (bp) paired end reads.

16S rDNA sequence processing

MiSeq paired end reads were screened for matching forward and reverse amplification primers

(forward primer 5’-CCTACGGGNGGCWGCAG-3’, reverse primer 5’-GACTACHVGGGTATC
TAATCC-3’), using Cutadapt v.1.8.1 [21] with anchor flags (’-g^’ for forward and ’-G^' for

reverse primer), a minimum overlap of ten bases, and a maximum error rate of 0.2. Matched

primers were trimmed and reads that did not contain the adapter sequence or where it could

not be identified were completely removed from the output file. Primer trimmed reads were

submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/ena/) of EMBL Euro-

pean Bioinformatics Institute under the study accession number PRJEB18651.

Raw reads were then processed using the R language environment v.3.4.3 [22] and RStudio

v.1.0.153 [23], following the DADA2 workflow described by Callahan et al. [24]. Reads were

truncated (forward reads at position 260 and reverse reads at position 195 onwards) and fil-

tered (maximum of 2 expected errors per read) on paired ends jointly. Reads were de-repli-

cated and combined with the corresponding abundance and a summary of the quality

information associated with this sequence pattern. Sequence variants in each sample were

inferred using the high-resolution DADA2 method, which relies on a parameterized model

of substitution errors to distinguish sequencing errors from real biological variation [25].

Denoised forward and reverse reads were then merged requiring at least 15 bp overlap and chi-

meras were subsequently removed from the data set. To those ribosomal sequence variants

(RSV) taxonomic labels were assigned with a naive Bayesian classifier using the Silva v.128

training set [26]. For quality control reasons rarefaction curves were generated for each sample

individually. Samples below 10,000 total reads and/or with a rarefaction curve that did not

reach a plateau phase were rejected.

After multiple alignment of RSVs with the command decipher::AlignSeqs from the R-pack-

age DECIPHER [27] a neighbor-joining tree [28] was created using the phangorn package

[29]. Utilizing the R-package phyloseq v.1.19.1 [30] the following sample specific details were

combined: I) all non-chimeric RSVs along with their classification down to genus-level and

their abundance (S1 Table); ii) the phylogenetic tree; and iii) the patient identifier, treatment

group (antibiotics or placebo), and treatment time point (before or after therapy; S2 Table). To

remove spurious RSVs all variants occurring in two or less samples were removed from the

data set with phyloseq::prune_taxa. To compensate for possible sequencing errors closely-

related RSVs were tree-based agglomerated using single-linkage clustering. Thereby, all tips of

the phylogenetic tree, which were separated by a cophenetic distance smaller than h = 0.03,

were agglomerated with phyloseq::tip_glom. Those agglomerated RSVs are designated as

aRSVs hereinafter.

Statistical analysis of clinical and microbial variables

All inferential statistics were intended to be exploratory instead of confirmatory. P-values

were considered statistically noticeable if p�0.05. Statistical analysis of demographic and

clinical variables was performed using the SAS System for Windows (SAS Institute, Cary,

NC, USA). Available demographic variables were age and gender. For clinical variables, the

proportion of tooth sites per patient with periodontal pocket depth� 5 mm (%PPD5mm),

the proportion of tooth sites per patient with further relative attachment loss after baseline�

1.3 mm (%RAL1.3mm), and the proportion of tooth sites per patient with bleeding on prob-

ing (%BOP) were used. Continuous variables were reported as mean ± standard deviation
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and median (25% quantile, 75% quantile). Differences between antibiotic and placebo

group were tested using Fisher’s exact test for categorical variables, i.e., age and gender, and

two-sided Mann-Whitney U tests for all continuous variables. Wilcoxon signed-rank tests

were performed to analyze the change of continuous variables between before and after

treatment.

Microbial variables were analyzed using the R-package phyloseq. To visualize the distri-

bution of read counts per aRSV over all samples a bar plot was created (data not shown). To

allow for comparison of alpha diversity measurements between samples, reads were ran-

domly sub-sampled to the level of the sample with the least number of reads, i.e., 11,763,

with the command phyloseq::rarefy_even_depth. For measurement of richness, the number

of observed aRSVs and for diversity the Shannon index in each sample was determined [31]

by using the command phyloseq::estimate_richness. The Pielou index was used to measure

community evenness, i.e., dividing the Shannon index by the natural logarithm of observed

aRSVs for each sample [32]. For beta-diversity a Bray-Curtis distance matrix was created

with the command phyloseq::distance. All diversity indices and their changes were compared

between both treatment groups by applying Mann-Whitney U tests. Wilcoxon signed-rank

tests were performed to analyze the change of each diversity index between before and

after treatment in the respective treatment group. To explore community structure and

reduce dimensionality, a principal coordinates analysis (PCoA) was done with the Bray-

Curtis dissimilarity matrix by eliciting the commands: phyloseq::ordinate and phyloseq::

plot_ordination.

The analysis of differential abundance of aRSVs was done with the R-package DESeq2

v.1.18.1 [33] using non-normalized aRSV read counts as input with the command deseq2::

phyloseq_to_deseq2. This package uses a negative binomial distribution and accounts for

overdispersion with varying aRSV read counts. The overdispersion parameter is estimated by

comparing the mean aRSV-abundance over all samples. As part of the DESeq2 model the

default independent filtering was used to increase the detection rate of differentially abun-

dant aRSVs after false discovery correction [31,33]. To account for dependencies between

multiple samples within one patient, it was first tried to specify a model including the patient

as a fixed effect. Because of only two sampling time points per patient, before and after ther-

apy, and too many patient parameters to be estimated, this model was over-specified and

could not be fitted. To the best of our knowledge, for the DESeq2 package and other common

R-packages the option to include a random effect for the patient is not possible. So we

decided to regard the repeated samples within each patient as independent, which might lead

to biased variance estimates of the log2-fold regression parameters [33,34]. The fitted design

formula of this second model was used for further calculations. It contained the main effects

of treatment group and time point, and the interaction between both variables as fixed effects.

The betaPrior parameter was set to false and a local dispersion fit was selected. The false dis-

covery rate was set to 0.05 and controlled by applying the Benjamini-Hochberg procedure to

adjust the p-values [35]. Effects on the counts of an aRSV were considered as noticeable if

adjusted p-value (padj)�0.05. Noticeably differential abundant aRSVs were taxonomically

labeled on genus level when possible. If such genera included species previously described by

Socransky et al. [4], this genus was allocated to the given complex. The two genera harboring

species present in more than one complex, namely, Streptococcus (one orange and six yellow

complex associated species) and Campylobacter (one green and three orange complex associ-

ated species) were allocated to the complex of higher conformity (Streptococcus to the yellow

and Campylobacter to the orange complex, respectively). All figures were created with the R-

package ggplot2 [36].

Antibiotic periodontal therapy and subgingival microbiome
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Results

Out of 192 samples initially processed from patients suffering from chronic periodontitis 24

samples did not satisfy quality criteria. These samples were re-introduced into an additional

sequencing run. After repetition, still 6 post-treatment samples and 1 pre-treatment sample

showed an insufficient quality and were thus removed from further analysis. To maintain pair-

wise comparisons, the related 7 paired samples were also excluded from further analysis, so

that 178 samples from 47 placebo and 42 antibiotic patients remained for statistical analysis.

There were no noticeable demographic differences between the two treatment groups in the

categories age (1)<45years (y), (2)�45y and<55y, (3)�55y (placebo: (1) n = 8, (2) n = 14,

(3) n = 25; antibiotics: (1) n = 4, (2) n = 16, (3) n = 22; p = 0.507) and gender (placebo: n = 23

females (55%), and antibiotics: n = 19 females (45%); p = 0.832). Moreover, no noticeable dif-

ferences of the clinical variables %PPD5mm (p = 0.164) and %BOP (p = 0.083) could be

observed between both groups before therapy. Two months after periodontal therapy clinical

parameters %PPD5mm and %BOP showed a decreased proportion in both groups, but were

not noticeably different between the antibiotic and placebo group (p = 0.194 and p = 0.101,

respectively) (Table 1). After therapy, the proportion of further relative attachment loss (%

RAL1.3mm) since baseline was also not statistically noticeably different between the antibiotic

and placebo group (p = 0.752).

After processing the raw reads with DADA2 we found 6,596 non-chimeric unique RSVs

over all samples. By removing all RSVs occurring in two or less samples this number was

reduced to 1,964 RSVs. Tree-based agglomeration of the remaining RSVs resulted in 379

aRSVs, which included 17 aRSVs belonging to eukaryotes and 2 aRSVs without taxonomic

Table 1. Clinical and microbial variables for the placebo and antibiotic group at baseline and 2 months after therapy.

Placebo (n = 47) Antibiotic (n = 42)

Baseline 2 months after therapy P-value Baseline 2 months after therapy P-value

Clinical variables

%PPD5mm# 17.9 ± 12.0 10.4± 9.5 <0.001 20.9 ± 14.0 7.7 ± 6.9 <0.001

14 (11, 21) 8 (5, 13) 19 (12, 25) 6 (2, 13)

%BOP# 34.4 ± 18.6 18.0 ± 13.2 <0.001 41.5 ± 22.8 13.7 ± 11.9 <0.001

27 (20, 52) 15 (7, 27) 37 (28, 58) 10 (5, 20)

%RAL1.3mm# 3.8 ± 4.1 3.9 ± 5.0

2 (1, 6) 2 (1, 5)

Microbiome variables

Richness 103.21 ± 40.57 98.80 ± 41.93 0.122 108.49 ± 30.85 83.89 ± 29.69 <0.001

99 (86, 128) 94 (68, 126) 112 (85, 131) 81 (63, 103)

Evenness# 0.73 ± 0.07 0.73 ± 0.07 0.863 0.72 ± 0.05 0.73 ± 0.08 0.214

0.75 (0.69, 0.78) 0.75 (0.71, 0.78) 0.73 (0.69, 0.75) 0.74 (0.70, 0.77)

Diversity# 3.32 ± 0.54 3.30 ± 0.56 0.822 3.34 ± 0.41 3.20 ± 0.51 0.057

3.33 (3.02, 3.67) 3.30 (2.99, 3.67) 3.45 (3.12, 3.61) 3.30 (3.02, 3.50)

Dissimilarity# 0.69 ± 0.05 0.70 ± 0.05 0.193 0.69 ± 0.05 0.74 ± 0.05 <0.001

0.69 (0.66, 0.72) 0.69 (0.67, 0.73) 0.67 (0.66, 0.71) 0.73 (0.71, 0.75)

%PPD5mm, percentage of tooth sites with pocket depth�5 mm; %BOP, percentage of tooth sites with bleeding on probing; %RAL1.3mm, percentage of tooth sites with

further relative attachment loss of �1.3mm between baseline and 2 months after therapy; Richness, number of aRSVs; Evenness, Pielou index; Diversity, Shannon-

index; Dissimilarity, Bray-Curtis index. All variables are shown as mean ± standard deviation and median (25% quantile, 75% quantile). P-values are derived from

Wilcoxon signed-rank tests comparing the variables between before and after treatment within each group.
# Skewed distributed variables.

https://doi.org/10.1371/journal.pone.0195534.t001
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assignment on kingdom level. For further analysis only the 360 bacterial aRSVs were selected

that were categorized into 15 uniquely named taxa on phylum level and 120 on genus level.

Read counts per aRSV were logarithmically distributed, with only few high abundant and

many low abundant aRSVs (S3 Table). No differences between richness (p = 0.401), evenness

(p = 0.217), diversity (p = 0.887), and dissimilarity (p = 0.444) could be observed between both

groups before therapy. The most frequently found genera were Fusobacterium with 16.44%

mean relative read count before therapy (MRRCb) over both groups, Porphyromonas (9.52%

MRRCb), Tanerella (5.08% MRRCb), and Fretibacterium (3.33% MRRCb). For inter-sample

comparisons of alpha diversity only, reads were randomly sub-sampled to the level of the sam-

ple with the least number of reads, which reduced the mean number of aRSVs over all samples

from 101.9 to 98.7 aRSVs. To describe possible changes in richness of the microbial commu-

nity, the number of observed aRSVs in each sample was counted (Table 1). Only in the antibi-

otic group richness decreased statistically noticeable after therapy (p<0.001). To investigate

general changes in aRSV abundances, the Pielou and the Shannon index were calculated. The

Pielou index measures the evenness of aRSV abundances with a maximum value of 1 if all

aRSV abundances are equally distributed. Evenness did not change noticeably in both groups.

The Shannon index, a diversity metric that takes both richness and evenness of the microbial

distribution into account, did neither change noticeably in the placebo nor in the antibiotic

group after therapy. The Bray-Curtis dissimilarity measures the degree of difference between

microbiomes. It is low, if microbiomes show a high aRSV conformity (minimum 0) and high

if microbiomes are highly dissimilar to each other (maximum 1). After periodontal therapy

dissimilarity increased in both groups, but only in the antibiotic group this increase was statis-

tically noticeable (p<0.001).

A PCoA was performed to ordinate multivariate microbiome dissimilarities based on a

Bray-Curtis matrix. Ordination techniques, such as PCoA, reduce the dimensionality of

microbiome data sets so that a summary of the beta diversity relationships can be visualized in

scatterplots. Long distances between dots in the scatterplot visualize a high dissimilarity of

microbiomes, whereas microbiomes with a similar composition are clustered together. In the

antibiotic group a clear separation of microbiomes before and after treatment could be

observed whereas in the placebo group such a distinct separation was not detected (Fig 1).

26.8% and 9.8% of the total variance found in the data set could be explained by the first and

second axis of the PCoA scatterplots, respectively.

To describe abundance changes for single microbial taxa (aRSV and genus level, respec-

tively) the DESeq2 package was used that does not need to sub-sample reads, thus allowing for

the consideration of all identified aRSVs [31]. Only 1 aRSV found in total were noticeably dif-

ferently abundant between placebo and antibiotic group before therapy (data not shown). This

aRSV, belonged to a low abundant unclassified genus with 0.04% MRRCb, and was taxonomi-

cally labeled on phylum level as Saccharibacteria. After therapy, the number of differently

abundant aRSVs increased to 110. In the placebo group only 3 aRSVs were noticeably differ-

ently abundant after therapy that also changed in the antibiotic group. In the antibiotic group

40 aRSVs were noticeably higher and 70 aRSVs were noticeably lower abundant after therapy

(Fig 2). Fourteen of the 110 differently abundant aRSVs after therapy (all belonging to the anti-

biotic group) remained unclassified on genus level.

The 19 high-abundant aRSVs with a minimal baseline abundance of 1% MRRCb repre-

sented 55% of all reads. In the placebo group MRRCb values of 14 of high-abundant aRSVs

decreased and 5 increased, but none were statistically noticeably differently abundant after

therapy (S3 Table). In the antibiotic group 17 of the high abundant aRSVs showed a statisti-

cally noticeably different abundance after therapy (only 2 aRSVs taxonomically labeled as Sele-
nomonas and Prevotella exhibited no noticeable difference). Of those 17 high-abundant
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Fig 1. PCoA scatterplots of Bray-Curtis dissimilarities for placebo and antibiotic samples before and after periodontal therapy. For each

treatment modality samples are visualized by dots, which are colored red when taken before or blue when taken after therapy. The ordination was

constructed using a Bray-Curtis distance matrix. Principal component 1 (Axis 1) and principal component 2 (Axis 2) are plotted on the x- and y-axes,

respectively. The percentage of variation explained by the plotted principal coordinates is indicated on the axes.

https://doi.org/10.1371/journal.pone.0195534.g001

Fig 2. Bubble chart of aRSV abundance changes after periodontal therapy classified on genus level for the antibiotic group based on a negative

binomial regression model. Bubbles represent 110 aRSVs belonging to 52 uniquely named genera (x-axis) that showed statistically noticeably changes

(y-axis) in the antibiotic group after therapy on a log2-scale. All aRSVs unclassified on genus level are grouped together in an unclassified genus bin

(NA). The sizes of the bubbles represent the mean relative aRSV abundance over all samples before therapy. Those aRSVs with� 10 log2fold and� -10

log2fold changes were marked as triangles on their respective y-axis section. All aRSVs belonging to a genus that includes species previously described

by Socransky and colleagues [4] are colored according to their complex affiliation.

https://doi.org/10.1371/journal.pone.0195534.g002
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aRSVs, 15 decreased and 2 increased after antibiotic therapy. Ten of the decreasing aRSVs in

the antibiotic group belonged to genera containing species associated with periodontitis (red-

complex: 3 aRSVs from the genus Treponema, 2 aRSVs Porphyromonas, 1 aRSV Tannerella;

orange-complex: 1 aRSV each from Prevotella, Campylobacter, Fusobacterium, Parvimonas) as

described by Socransky and colleagues. Four noticeably decreased aRSVs not allocated to a

Socransky complex belonged to the genera: Fretibacterium (2 aRSVs with MRRCb 3.33%,

1.22%), Filifactor (MRRCb 2.39%), and Oceanivirga (MRRCb 1.53%). Finally, one noticeably

decreased aRSV was unclassified on genus level (family: Porphyromonadaceae, MRRCb

1.75%). The two high-abundant and noticeably increasing aRSVs were assigned to genera

belonging to the yellow and purple Socransky complexes associated with periodontal health,

i.e., Streptococcus (MRRCb 2.79%) and Veillonella (MRRCb 2.44%).

The 341 low abundant aRSVs (<1% of MRRCb) represented 95% of all classified aRSVs,

but comprised 45% of the total reads, only. Of those aRSVs, 3 changed statistically noticeably

in the placebo and 93 in the antibiotic group. All of the aRSVs that noticeably changed in the

placebo group also changed noticeably in the antibiotic group, i.e., Rothia (MRRCb 0.49%;

2.22 log2fold), Pyramidobacter (MRRCb 0.18%; -20.72 log2fold), and Kingella (MRRCb

0.12%; 2.89 log2fold). In the antibiotic group 38 aRSVs with a low abundance at baseline

noticeably increased and 55 noticeably decreased after therapy. Roughly half of the aRSVs

(16/38), which noticeably increased in the antibiotic group could be associated to a Socransky

complex. Most of those aRSVs are linked to periodontal health, i.e., Capnocytophaga (green),

Actinomyces, Veillonella, and Selenomonas (purple). However, also some aRSVs of Porphyro-
monas and Tannerella from the red complex and Campylobacter and Prevotella from the

orange complex noticeably increased in the antibiotic group. The 22 noticeably increasing

aRSVs that could not be allocated to a Socransky complex belonged mostly to gram-positive

phyla like Firmicutes and Actinobacteria. For the 55 noticeably decreasing low abundant

aRSVs in the antibiotic group about one third could be assigned to a Socransky complex

(21/55). Here several aRSVs belonging to the genus Treponema of the red and Prevotella of

the orange complex decreased noticeably. Also, of note is a single aRSV identified as member

of the genus Aggregatibacter that showed a fairly strong noticeable decrease of -25.34 log2-

fold and on case level, even got eradicated after antibiotic therapy. Furthermore, aRSVs

belonging to the genera Capnocytophaga and Eikenella associated with the green complex

and Selenomonas from the purple complex decreased noticeably. The remaining two third of

low abundant aRSVs were not assigned to a Socransky complex (34/55). This group consists

mostly of aRSVs belonging to the phyla Firmicutes (19 aRSVs), Bacteriodetes (5 aRSVs), and

Proteobacteria (5 aRSVs).

Discussion

In this study we used the Illumina MiSeq technology with paired end 300 bp sequencing reads

to analyze the subgingival microbiomes of 89 untreated chronic periodontitis patients before

and 2 months after periodontal therapy with or without antibiotic use. Two months after ther-

apy the subgingival microbiome shifted noticeably to a decreased richness and an increased

dissimilarity in the antibiotic, but not in the placebo group (Table 1). The PCoA analysis

revealed a general compositional separation of microbiomes in the antibiotic group and an

absence of such a clear compositional separation in the placebo group (Fig 1). Differences

between both treatment groups after therapy became even more apparent on genus and aRSV

level (Fig 2) demonstrating the influence of adjunctive antibiotics in initiating a shift of the

subgingival periodontal microbiome composition. In contrast, the placebo group therapy did

not uniformly affect specific taxa to a statistically noticeable degree, with the exception of only
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few and low abundant aRSVs. An improvement of clinical variables was noted in both groups

after therapy independently of the difference in microbial changes.

In our microbial community analysis, we observed overall 120 unique genera and detected

on average 103.21 ± 40.57 aRSVs per sample in the placebo and 108.49 ± 30.85 aRSVs per sam-

ple in the antibiotic group before therapy. Compared to our present study other groups exam-

ining subjects with aggressive [13], as well as chronic periodontitis [37] reported similar

numbers of aRSVs per sample. Additionally, our Shannon and Pielou indices at baseline are in

concordance with other studies focusing on subjects with chronic periodontitis [11,15,37–39].

We found a statistically noticeable decrease in richness only in the antibiotic group after

therapy. However in a metagenomic study of chronic periodontitis patients a decreased rich-

ness after mechanical periodontal therapy without antibiotics was observed [40]. We found no

noticeable changes in the Pielou and Shannon indices after therapy in both groups, which is in

concordance with several previous studies including both groups, antibiotic and placebo [15],

and with placebo only [13,14]. We found an increased dissimilarity and a clear compositional

separation in the PCoA after therapy in the antibiotic group, only. However, a statistically sig-

nificantly increased dissimilarity and a compositional separation was reported previously in

both groups after therapy [15].

Compositional differences between both treatment groups after therapy became even more

apparent on genus and aRSV level. In the antibiotic group the abundance of the most prevalent

aRSVs at baseline was reduced after therapy, especially for many annotated genera including

species from the red and orange Socransky complexes. Furthermore, usage of antibiotics

increased the number of aRSVs assigned to health-associated green, purple, and yellow com-

plex taxa. On the contrary, in the placebo group the abundance of highly prevalent taxa

belonging to the red or orange Socransky complex was not noticeably changed. This is in con-

cordance with results of smaller microbiome studies that found no significant changes on taxa

level after mechanical periodontal therapy alone [13,14]. However, in the metagenomic shot-

gun sequencing analysis by Shi et al. [40] several disease-associated taxa were significantly

reduced after mechanical periodontal therapy alone. Of note in this study, only selected peri-

odontal pockets that clinically improved after treatment were included in the analysis. This

sampling approach differs markedly from ours. These results may show either the influence of

changes of the habitat due to the decreasing pocket depth or a microbiome switch that conse-

quently resulted in a resolved pocket. In the study by Bizzarro et al. the taxa level analysis

showed that the therapy resulted in a significantly stronger decrease of Porphyromonas, Trepo-
nema, and Synergistaceae after 3 months in the antibiotic compared to the placebo group.

Additionally, 3 other genera were reduced in the antibiotic group exclusively, i.e., Paludibacter,
Fusobacterium, and Parvimonas. Furthermore, Neisseria, Rothia, Capnocytophaga, and Strepto-
coccus increased in both groups, while Veillonella and Haemophilus increased significantly

only after antibiotic exposure [15]. We found also a stronger reduction of those described taxa

in the antibiotic group. However, the number of significantly differentially abundant taxa after

mechanical treatment without antibiotics reported in that study differs from our findings and

also from other microbiome studies [13,14]. Bizzarro et al. subsampled at 1400 reads per sam-

ple, analyzed only the 21 major genera, and—most importantly—did not correct for multiple

testing that might explain the differences to our observations in the placebo group. Other stud-

ies analyzing selected bacteria using, e.g., culture [41] or checkerboard DNA-DNA hybridiza-

tion [42] also reported a statistically significant reduction of putative pathogens in the placebo

group, which was stronger in the antibiotic group. Our results did also show a reduction of the

mean relative abundances of putative periodontal pathogens in the placebo group, which was,

however, not statistically noticeable. Of note, patients included in those studies that showed

also better clinical results in the antibiotic group, had a much higher proportion of deep
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periodontal pockets�5 mm at baseline compared to our study (approximately 38/44% vs.

19% PPD5mm).

In contrast to all other cited studies we found a larger number of low abundant aRSVs

noticeably different after therapy, in the antibiotic group. We used DESeq2 for aRSV level

analysis that increased the detection rate for single aRSVs, because microbiomes were not

needed to be rarefied for this analysis [43]. DESeq2 performed in the past favorably compared

to other tools for identification of differentially expressed genes [34] and has also successfully

been used with taxa abundance data [44]. Taken together, the use of modern sequencing tech-

niques in principal allows for detection of low abundant taxa beyond the Socransky complex

species [45,46]. Indeed, approximately two third of the decreased low abundant taxa after ther-

apy in the antibiotic group did not belong to the classical periodontal complexes.

There are some limitations in our study that warrant further comments. The examined

patients had a rather low proportion of deep periodontal pockets (approximately 19%

PPD5mm at baseline). A higher taxonomic resolution to species level would be desirable,

but due to the limited read length of our currently used technology this was not feasible. It

has been shown previously that the choice of the amplified 16S rDNA region (e.g., V3-V4 vs.

V4) may influence the number of erroneous sequences using Illumina MiSeq sequencing

[47]. DESeq2 does not allow to include random effects, e.g., to account for dependencies

between multiple samples from the same patient. Furthermore, a whole-genome shotgun

analysis would provide also insights in the functional capacities of the microbiomes. Addi-

tionally, a longer follow up would be needed to analyze the stability of the detected micro-

biome shift.

In summary, adjunctive antibiotics were able to induce a microbiome shift by statistically

noticeably reducing disease-associated taxa and increasing health-associated taxa two month

after therapy. Mechanical therapy with placebos did not induce a statistically noticeable micro-

biome shift. Despite the difference in microbial changes both therapies noticeably improved

the tested clinical outcome parameters. This casts doubt on the relevance of the short-term

(two-months) reduction and/or elimination of disease-associated taxa as a main goal of peri-

odontal therapy.
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(before or after therapy), treatment group (antibiotic or placebo group), and ENA acces-
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S3 Table. OUT-ID, log2FoldChange, standard error of log2FoldChange (lfcSE), p-value,

adjusted p-values (padj), mean relative read counts (MRRCb; over both groups), MRRC

(before/placebo or antibiotic), MRRC (after/placebo or antibiotic), phylum, and genus

(n = 360). MRRC variables are shown as mean percentages of aRSVs per sample for the respec-

tive treatment group and time point. Adjusted p-values (according to Benjamini-Hochberg)

are derived from a negative binomial regression model comparing aRSV abundances before

and after treatment within each group. Noticeable adjusted p-values (padj <0.05) are shown in

bold. Taxonomic classifications are colored according to the Soccransky et al. complex affilia-

tion. For each treatment group (Antibiotic or Placebo group) a separate sheet is used in the
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