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Abstract

Here I describe seedVicious, a versatile microRNA target site prediction software that can

be easily fitted into annotation pipelines and run over custom datasets. SeedVicious finds

microRNA canonical sites plus other, less efficient, target sites. Among other novel features,

seedVicious can compute evolutionary gains/losses of target sites using maximum par-

simony, and also detect near-target sites, which have one nucleotide different from a

canonical site. Near-target sites are important to study population variation in microRNA

regulation. Some analyses suggest that near-target sites may also be functional sites,

although there is no conclusive evidence for that, and they may actually be target alleles

segregating in a population. SeedVicious does not aim to outperform but to complement

existing microRNA prediction tools. For instance, the precision of TargetScan is almost dou-

bled (from 11% to ~20%) when we filter predictions by the distance between target sites

using this program. Interestingly, two adjacent canonical target sites are more likely to be

present in bona fide target transcripts than pairs of target sites at slightly longer distances.

The software is written in Perl and runs on 64-bit Unix computers (Linux and MacOS X).

Users with no computing experience can also run the program in a dedicated web-server by

uploading custom data, or browse pre-computed predictions. SeedVicious and its associ-

ated web-server and database (SeedBank) are distributed under the GPL/GNU license.

Introduction

Animal microRNAs target gene transcripts by partial sequence complementarity [1]. There

are multiple microRNA target prediction tools that use different strategies. Most prediction

programs look at the existence of seed sequences, six-nucleotide-long sequences in the tran-

scripts that are complementary to nucleotides 2 to 7 in the microRNA [1]. Depending on addi-

tional nucleotide pairings these sites can be canonical or marginal. Many programs exploit

additional features, mainly evolutionary conservation and RNA folding features [2,3].

Although these programs have an increased accuracy, they lose power as many real targets

remain undetected. Often, microRNA target predictions are available only on selected datasets.

Additionally, stand-alone programs are not always ready for use on custom data, or they are

not available as web forms where users can analyse their own data without the need of special-

ised computing skills. Here I describe a new microRNA target prediction software that does
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not aim to replace but to complement the existing tool-kit, and allow the high-throughput

analysis of custom microRNA/transcript data as well as the exploration of additional features

not covered by other programs.

The first population genetics studies on microRNA targets sites already described selective

pressures on seed sequences [4,5]. In a recent study I showed that, in Drosophila populations,

there is selection against microRNA target sites [6]. To study selection on non-target sites that

may become targets, I defined ‘one-mutant neighbors’ as six-nucleotide-long sequences that

have one nucleotide different to a seed sequence. Here I define a broader term: near-target

sites (Fig 1), which have one nucleotide different to a putative microRNA target site, and are

not targets themselves. Detection of near-target sites are important for population genetics

and evolutionary studies, and will allow us to explore the selective pressures on gene tran-

scripts. Additionally, reference genome sequences, in which microRNA target sites are usually

predicted, do not capture the true diversity of a species and may miss bona fide target sites.

Scanning for near-target sites may reveal targets that would be otherwise ignored. SeedVicious

allows the exploration of near-target sites.

Methods and implementation

SeedVicious initially scans custom sequences to detect canonical microRNA target sites as

described in [1]. Optionally, marginal sites can be reported (Fig 1). This strategy produces a

large number of false positives, and other prediction tools use evolutionary conservation to

narrow down the number of potential target sites [2,7]. However, evolutionary conservation is

not necessarily associated with functionality of the target site [8]. SeedVicious allows an alter-

native (and complementary) way of finding putative target sites. The complete list of canonical

(and marginal) sites can be ranked according to selected features. First, seedVicious computes

the free energy of the microRNA:transcript duplex using the RNAeval program in the Vienna

Package [9]. The lower the energy, the more stable is the RNA:RNA pair, which can be inter-

preted as a more efficient target site. Second, seedVicious can also report the minimum dis-

tance between pairs of target sites for the same microRNA (the position of a target, as reported

by seedVicious, is the position of the nucleotide in the transcript that is paired with the 5’ first

nucleotide of the microRNA).

Fig 1. MicroRNA target and near-target sites. Canonical and marginal sites are described in Bartel, 2009 [1]. Near-

target sites can be defined for all type of sites. The figure also shows that each seed (sixmer) 18 possible near-target sites

as defined by Marco, 2015 [6].

https://doi.org/10.1371/journal.pone.0195532.g001
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SeedVicious also permits the inference of gains and losses of microRNA target sites by first

predicting individual target sites at all transcripts in a given alignment, and then fitting a maxi-

mum parsimony (MP) model to a tree provided by the user, following Dollo’s criteria [10].

The MP reconstruction of ancestral states is computed with the ’dollop’ program from the

Phylip package [11]. We first used this method to study the evolution of post-transcriptional

regulation in a gene family in Drosophila [12], and as far as I’m aware, this is the only micro-

RNA target prediction program that currently implements this type of analysis. A number of

additional analyses can be performed with seedVicious. It can compare different 3’UTRs and

detect either common microRNAs targeting pairs of transcripts or common target sites in an

alignment. A major feature of seedVicious is the detection of near-target sites which are

detected for both canonical and marginal target sites.

The main program can be run from the command line using Perl 5 or above, and the

required modules and external binary files (compiled in a 64-bit Unix computer) are included

in the distributed version. Input sequence files should be in FASTA format, and tree files in

NEWICK format. Input files can be compressed in Gzip format. A fully referenced User Guide

is available form the package or as Supplementary Information to this paper, and it includes

different protocols.

For the analysis presented below, all microRNAs were retrieved from miRBase release 21

[13], and all transcript sequences from ENSEMBL Genes 89 via Biomart [14]. TargetScan tar-

gets were retrieved from targetscan.org, release 7.1 [2]. Predictions were compared to the

experimentally validated targets in miRTarBase 6.0 [15], for both weak and strong interactions.

Precision was calculated as the ratio TP/(TP+FP), where TP (True Positives) was the number

of predicted targets that were experimentally validated, and FP (False Positives) was the num-

ber of predicted targets not validated in miRTarBase. To map near-target sites to polymorphic

nucleotides the genomic coordinates of the 3’UTR of a TP53 transcript (NM_000546.5) were

retrieved from UCSC Table Browser for the human genome assembly hg38 [16]. Using this

information, the coordinates of the predicted near-target sites (see Results for a detailed

description) were then converted into genomic coordinates. UCSC Table Browser was also

used to identify all SNPs mapped to the 3’UTR of the transcript. Following this protocol, poly-

morphic nucleotides can be easily mapped to microRNA near-target sites.

The program is available for download at http://seedvicious.essex.ac.uk/download.html and

at FigShare https://figshare.com/articles/seedVicious/6106073/1. A web version is available,

which allows users to run the program using our server. Precomputed targets for selected spe-

cies can also be browsed from our SeedBank database. The web server and the database are

accessed via http://seedvicious.essex.ac.uk

Results and discussion

I describe in this section a few examples that illustrate different ways of analyzing target sites

with seedVicious. First, I computed with seedVicious the minimum distance between identical

canonical target sites for all human microRNAs in 3’UTRs (see Methods and Implementation).

This distance can be used as a filtering criteria for potential targets, based on a recent work that

suggests that neighboring sites for the same microRNA cooperate during lateral diffusion of the

Ago-miRNA complex during target recognition (see [17,18] and references therein). The aver-

age minimum distance between pairs of target sites was smaller for strong (751.8) and weak

(773.5) validated interactions than in all set of predicted interactions (888.1). The differences

are visible when plotting the cumulative distribution of minimum distances (Fig 2A). The

observed differences were statistically significant when performing a one-tailed Kolmogorov-

Smirnov test between validated and predicted targets (strong versus predicted: p<< 0.0001;
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weak versus predicted p<< 0.0001). Minimum distances were also significantly smaller in

strong interactions than in weak interactions (p = 0.00045). This indicates that the closest two

target sites are in a transcript, the more likely that the microRNA will regulate the targeted tran-

script. As a matter of fact, two adjacent target sites (6 nt distance) significantly increases the pre-

cision when detecting potential target interactions (Fig 2B).

Fig 2. Multiple uses of seedVicious. A) Cumulative distribution of the number of transcripts with at least two target sites with respect to the minimum distance

between pairs of targets. The graph compares the distribution of all transcript (black), transcript/microRNA pairs with experimentally validated interactions (blue) and

those with strongly validated interactions (red) according to miRTarBase. B) Precision of microRNA target prediction for different cut-offs of minimum distance

between pairs of targets. The peak corresponds to a distance of 6, that is, two contiguous target sites. C) Precision of microRNA target prediction for multiple targets

sites for the same microRNA. D) Evolutionary turnover of microRNA canonical target sites for let-7 in lin-14 in roundworm species using maximum parsimony.

https://doi.org/10.1371/journal.pone.0195532.g002
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A distance of 6 implies that the seed sequence of two canonical target sites are adjacent, so

that positions 7 and 8 of the canonical left target overlaps with the positions 1 and 2 of the

right target (Fig 3). Among the microRNAs with the highest precision values at 6 nucleotides

of distance we find four whose seed sequence is a dinucleotide repetitive motif. For instance,

the seed sequence of miR-8485 is ACACACA so it will have multiple (and adjacent) target

sites in UG-rich UTRs. Despite its low complexity, there are 371 genes predicted to be targeted

by this microRNA, of which 234 interactions are also found in miRTarBase (mostly from

high-throughput PAR-CLIP and HITS-CLIP experiments). That yields a markedly high preci-

sion value (63%) for this particular microRNA. Finding adjacent target sites for microRNAs

with repeated dinucleotides is not surprising. However, the fact that these interactions are

often found in miRTarBase is striking. An interesting possibility is that microRNA/RISC com-

plexes bounce forth and back between clustered target sites in a one-dimensional diffusion

Fig 3. Distance between canonical target sites. Distance between canonical target sites as defined by seedVicious (A), and the

partial overlap of targets that are 6 nucleotides away (B).

https://doi.org/10.1371/journal.pone.0195532.g003
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process (see [17]), which is particularly visible for some microRNAs targeting repeated

regions. In other words, multiple target sites near to each other does not imply that several

microRNAs are targeting the transcript at the same time, but that a single microRNA/RISC

complex may be diffusing between sites.

By using a compilation of experimentally validated microRNA/transcript interactions (see

Methods and Implementation) I estimated the precision of target prediction based on the min-

imum distance between canonical sites. If we predict as microRNA targets transcripts with at

least 2 canonical sites, the precision of the prediction is 0.041. This value significantly increases

(to 0.087) if we only consider pairs of canonical sites next to each other (distance of 6 nucleo-

tides). Precision values in microRNA target prediction are generally low, in particular when

one uses a small dataset of validated targets (as in this case), but it is useful to compare the pre-

dictive power of different strategies. Using this same dataset, the precision of TargetScan

(using conserved targets only) is 0.11. Strikingly, if we combine TargetScan and pairs of targets

at 10 or less nucleotides in distance, the precision goes up to 0.195. In conclusion, combining

some of the features of seedVicious to other programs can be use to increase the precision in

microRNA target prediction.

Pairs of target sites can also be for different microRNAs. Indeed, seedVicious also allows

the exploration of clustered target sites for multiple microRNAs. In Fig 4 I plot the proportion

of pairs of targets at a given distance for all pairs of microRNAs in the human genome. For dis-

tances of up to about 20 nucleotides, pairs of target sites are more likely to be for the same

microRNA than to different microRNAs. However, this pattern is probably a consequence of

sequence bias composition: if a segment of a 3’UTR is rich in a given motif, it is more likely

that microRNAs with the same seed sequence (same family) will target at nearby places. For

instance, RNA-binding proteins (RBPs) often bind to clustered motifs (see [19] and references

within).

Fig 4. Pairs of target sites for the same and different microRNAs. Proportion of pairs of target sites (y-axis) at a

given distance (x-axis) for the same microRNAs (solid black line) and for two different microRNAs (dashed gray line).

https://doi.org/10.1371/journal.pone.0195532.g004
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In previous studies, the occurrence of two or more seed sequences in transcripts has been

associated to a higher chance of predicting a bona fide targeting interaction [20]. Here I com-

pared the proportion of predicted targets that are validated by experiments (precision) and the

number of canonical target sites. The graph in Fig 2C shows that, indeed, as the number of tar-

get sites increase, the proportion of validated targets also increases, although there is a global

maximum around 50. It will be interesting to explore whether distinct microRNAs have a dif-

ferent optimum number of target sites for an efficient repression of the target transcript.

The analysis of targets and near-targets is of particular interest to analyse populations with

segregating alleles in target sites [4,6]. For instance, it has been shown that amplifications of

the microRNAs mir-17, mir-18 and mir-19 from the mir-17~mir-92 cluster lead to tumor

development (reviewed in [21]). That is, this cluster is an oncogenic loci. I scanned the 3’UTR

sequence of TP53 with seedVicious to find near-target sites of the oncogenic microRNAs of the

cluster and I found 14 sites. Comparing these sites with polymorphic nucleotides (see Methods)

I detected one specific target site for miR-18a-5p (dbSNP accession number rs17881366P) that

it is a non-target in the reference genome, but a small yet significant fraction of the human pop-

ulation (0.6%) has a target allele. In populations of African ancestry the target allele is detected

in over 2% of the individuals sequenced. Whether a target site for a oncogenic microRNA in a

tumour-suppresor gene segregation in African populations have a significance from the epide-

miological point of view cannot be inferred, and this result remains largely speculative. How-

ever, it demonstrates that this methodology can be adapted to explore the impact of microRNA

target sites segregating in human populations. Indeed, current work in our lab reveals that selec-

tive pressures against this type of substitutions in cancer-associated genes is prevalent (Hatlen

and Marco, unpublished results).

The transcript from the gene lin-14 in Caenorhabditis elegans has seven targets sites for the

microRNA lin-4 [22]. However, other prediction programs detect only three (TargetScan) or

none, probably due to the stringent criteria. Using seedVicious I scanned the lin-14 3’ UTR

[23] for canonical target and canonical near-target sites. Three canonical sites were detected,

the same that are reported in TargetScan. Additionally, five near-target sites were reported,

four of them corresponding to the other four sites originally described. One of the near-target

sites was not previously described and may be a good candidate to further explore. The

detailed analysis as well as the input files are available with the package and fully described in

the User Guide (S1 File). This example illustrates the potential of studying near-target sites,

not only in evolutionary studies, but in the detection of potential functional targets. However,

these near-target sites may actually be target sites segregating in a population. The exploration

of segregating microRNA target sites in populations is a promising area of research. Further

examples are described in the software manual.

The canonical target sites for lin-4-5p in lin-14 are highly conserved. Actually, in five spe-

cies of worm studies all sites remain the same. However, let-7-5p, which also targets lin-14, has

a more dynamic evolution. Using seedVicious I predicted the canonical target sites in five

worm species and to reconstruct the gains and losses using maximum parsimony. Results are

shown in Fig 2D, where we observe that there have been 4 target sites gained among the stud-

ied species whilst Caenorhabditis briggsae lost its three ancestral target sites.

Conclusion

SeedVicious is a valuable addition to the toolkit of microRNA biologists. It works on custom

datasets and can be easily fitted into annotation pipelines. It provides a range of analysis that

can be combined with other programs to generate robust microRNA target predictions. The

analysis of near-target sites is also useful to study population dynamics at target sites, and the
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inbuilt maximum parsimony functionality is valuable to study the evolution of microRNA-

mediated regulation at a large scale.

Supporting information

S1 File. User guide and installation instructions for seedVicious software. It includes proto-

cols and recipes.

(PDF)
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