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Abstract

The vehicle routing problem (VRP) has a wide range of applications in the field of logistics

distribution. In order to reduce the cost of logistics distribution, the distance-constrained and

capacitated VRP with split deliveries by order (DCVRPSDO) was studied. We show that the

customer demand, which can’t be split in the classical VRP model, can only be discrete split

deliveries by order. A model of double objective programming is constructed by taking the

minimum number of vehicles used and minimum vehicle traveling cost as the first and the

second objective, respectively. This approach contains a series of constraints, such as sin-

gle depot, single vehicle type, distance-constrained and load capacity limit, split delivery by

order, etc. DCVRPSDO is a new type of VRP. A new tabu search algorithm is designed to

solve the problem and the examples testing show the efficiency of the proposed algorithm.

This paper focuses on constructing a double objective mathematical programming model

for DCVRPSDO and designing an adaptive tabu search algorithm (ATSA) with good perfor-

mance to solving the problem. The performance of the ATSA is improved by adding some

strategies into the search process, including: (a) a strategy of discrete split deliveries by

order is used to split the customer demand; (b) a multi-neighborhood structure is designed

to enhance the ability of global optimization; (c) two levels of evaluation objectives are set to

select the current solution and the best solution; (d) a discriminating strategy of that the best

solution must be feasible and the current solution can accept some infeasible solution, helps

to balance the performance of the solution and the diversity of the neighborhood solution;

(e) an adaptive penalty mechanism will help the candidate solution be closer to the neigh-

borhood of feasible solution; (f) a strategy of tabu releasing is used to transfer the current

solution into a new neighborhood of the better solution.

Introduction

The vehicle routing problem (VRP) is an NP-Hard problem [1], which has received wide atten-

tion in the operations research and transportation fields. Since it was proposed by Dantzig in

1959 [1], the VRP has been widely applied in logistics distribution, railway scheduling, cruise

control at sea, etc. [1–12]. In most existing VRP studies [3–40], the convention is that a
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customer demand can be completed by one vehicle at one time, which is an example of demand

inseparable VRP. However, in order to improve the loading rate of vehicles and reduce the

number of vehicles required in actual distribution, logistics enterprises sometimes allow the

demand to be split and delivered by multiple vehicles [13]. Therefore, the vehicle routing prob-

lem with split loads (VRPSL) has practical significance.

Dror and Trudeau first [13] proposed one of the most basic types of the VRPSL in 1989,

which is known as the VRP with split deliveries (VRPSD). They presented the definition of the

VRPSD in their study and pointed out that reasonably splitting customer demand by multiple

vehicles can not only reduce the number of vehicles required, but also the traveling cost. Later

in 1994 [14], they proved that the VRPSD is an NP-hard problem and provided the sub-loop

cancellation constraints. Their study enabled a group of researchers to enter the field of the

VRP with split deliveries [15–32]. For example, Archetti et al. further simplified the difficulty

of the VRPSD on this basis [15–19]. They established the classical integer programming model

for the VRPSD (K-VRPSD model) by setting the vehicle capacity and customer demand to

integer units, assuming that the demand of each customer can be arbitrarily split deliveries by

unit and that the vehicle capacity is not less than the demand of each customer [15–19].

Following the Method of demand unitized splitting by Archetti et al. [15–16], Archetti et al.

[17] used an enhanced branch and price-and-cut algorithm for solving the VRP with split deliv-

eries and time windows (VRPSDTW). Moreno et al. [20] and Archetti C et al. [21–22] also stud-

ied the exact algorithms for solving the VRPSD. Yan et al. [23] proposed a daily VRP model for

minimizing the total cost of replenishing inventory within a supply chain, and they used a clas-

sic two-step solution algorithm to solve the multi-trip VRP with split deliveries and soft time

windows (VRPSDSTW). By testing of a real-world scale numerical example, they found their

VRPSDSTW model is more effective than traditional VRP models. Nishi et al. [24] proposed a

column generation based heuristic algorithm to solve a ship routing and scheduling problem

for crude oil transportation with split deliveries. Based on the column generation method, they

used an efficient heuristic algorithm to generate a feasible solution taking into account of practi-

cal constraints. Compared with the branch and bound algorithm and that of human operators,

the column generation based heuristic algorithm has better performance [24].

As an NP-hard problem [25], many Scholars focused on metaheuristic algorithm for solving the

VRPSD and its related extension types [25–27]. To solve the VRPSD, Aleman et al. [25] added the

adaptive memory to their classical heuristic and metaheuristic algorithms. They carefully analyzed

the constructive heuristic approach (CA), iterative constructive approach (ICA) and iterative con-

structive approach plus variable neighborhood descent (ICA+VND). Wilck et al. [26] developed

two hybrid genetic algorithms to solve the VRPSD. Through numerical experiments, Wilck et al.

[26] found that, with respect to the total travel distance and computer time, the genetic algorithm

compares favorably versus a column generation method and a two-phase method [26]. Yin et al.

[27] studied a practical ship scheduling problem for international crude oil transportation. They

considered the problem as a VRPSD model, and they proposed a savings-based metaheuristic algo-

rithm with lot sizing parameters and volume assignment heuristic to solve it. The computational

results show that their heuristic algorithm is more effective than that of human operators [27].

Some extension types of the VRPSD were also solved by designing a series of new heuristic

mechanisms into the metaheuristic algorithm. To solve the fleet size and mixed VRPSD with

time windows (VRPSDTW), Belfiore et al. [28] proposed a scatter search (SS) approach for it.

With a case study on the Great Sichuan Earthquake in China, Wang et al. [29] constructed a

nonlinear integer open location-routing model for the relief distribution VRPSD with travel

time, and they used the non-dominated sorting genetic algorithm and non-dominated sorting

differential evolution algorithm to solve the problem. Rajappa et al. [30] designed an ant col-

ony optimization (ACO) and hybrid metaheuristics algorithm to solve the VRPSD, while Han
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et al. [31] used a multi-start heuristic approach for solving the VRPSD with minimum delivery

amounts (VRPSD-MDA). In order to provide cost savings to transportation and logistics oper-

ators, The VRP with simultaneous deliveries and pickups (VRPSDP) has attracted much res-

earch interest. Wang et al. [32] proposed a hybrid heuristic algorithm to solving the VRP of

simultaneous deliveries and pickups with split loads and time windows (VRPSDPTW).

Though the method of demand unitized splitting is common in the existing VRPSD litera-

ture [13–32], some scholars still studied the VRP with discrete split deliveries (VRPDSD).

Nakao et al. [33] proposed a new type of the VRPSD, that is, the VRPDSD. In their model of

the VRPDSD, a customer’s demand consists of a set of items, each customer is allowed to be

visited more than once, and each item is required to be serviced by exactly one vehicle. That is

to say, each customer’s demand is allowed to split, but each item can not be split again. So its

way of split deliveries is discrete. To solve the VRP with discrete split deliveries and time win-

dows (VRPDSDTW), Salani et al. [34] designed a branch and price algorithm. Chen et al. [35]

also considered the method of discrete split deliveries in their study of VRPSL, in which by

using an a priori split strategy, that is, each customer demand is split into small pieces in

advance, they constructed a novel approach to solve the new type of the VRPSL. Some repre-

sentative literatures can be seen in Table 1.

From the related model of VRPSD [13–35], the idea of demand continuously unitized split-

ting is often adopted in lots of the VRPSD literatures, while studies on the VRP with discrete

split deliveries were rare [33–35]. However, in the practice of e-commerce logistics distribu-

tion, the way of split deliveries is usually discrete and goods are often assembled, packaged or

delivered in "orders". Each customer’s demand usually contains multiple orders and a single

order is unable to be split when the order is generated. Similarly, for utilities suppliers, super-

market distributors and courier deliveries, only the discrete splitting method, i.e. by order, is

convenient, while unitized splitting is unsuitable. This is because the customers’ goods are

often different in type, size, quality, etc. Therefore, this study on the VRP with split deliveries

by order (VRPSDO) has theoretical and practical significance.

Problem description and model

Problem description

In the existing VRPSD models [13–40], vehicle capacity and customer time windows were

addressed without taking “distance-constrained” variables into consideration. The main reason

for this is that traditional long-distance freight transportation practice does not have restrictions

on routing length and there is only an approximate term. This period is usually far beyond the

actual need of the road transportation and the driver’s normal driving will certainly not impact

delivery. Moreover, early short distance distribution enterprises were mainly based on extensive

development mode. They generally considered minimizing the delivery cost and increasing the

vehicle loading rate as much as possible. After all, considering the “distance-constrained” case

may reduce vehicle loading rate. However, late VRP tries to preempt customer resources by add-

ing time window restrictions so as to improve customer satisfaction in a buyer’s market environ-

ment. However, practically speaking, there are many customers who do not have requirements

for the time windows. When there is a maximum “distance-constrained” case, the time of vehicle

arrival to customer points will not be too late and does not impact customer business. However,

in a seller’s market where distribution resources are in short supply, the initiative of setting the

time window is in the hands of the distributor. Distribution companies only need to notify their

customers in advance to pick up the goods within a specified period of time according to the

arrival time at each point. In this way, the time windows given by the distributor does not need

to be included in the constraint.

TS for the distance-constrained VRP with split deliveries by order
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In logistics distribution practice, especially in urban environments, vehicles carry only a

limited amount of fuel and cannot travel for longer when the fuel runs out. Moreover, continu-

ous traveling over a certain mileage threshold will cause great wear and tear to the vehicle

parts, such as tires, bearings, steel plates and engines, especially in high temperatures zones or

seasons. Additionally, continuous long-distance traveling causes driver fatigue. Considering

factors such as the driver’s continuous working hours and the balanced workload of each dis-

tribution path, the traveling distance for each delivery vehicle cannot be too long and should

be “distance-constrained”. Logistics enterprises can determine the maximum length of the

road according to the actual situation. Based on the analysis above, the study of distance-con-

strained VRPSDO is of importance.

In this study, we consider a single depot or distribution center with a single vehicle type

that is used for deliveries only. We studied the distance-constrained and capacitated VRPSDO

(DCVRPSDO), which can be described as follows. The problem calls for the determination of

a set of minimum-cost routes to be performed by a fleet of vehicles to serve a given set of cus-

tomers with known demands, where each route originates and terminates at a single depot.

Table 1. Some representative literatures on the VRPSL.

Type of

VRPSL

Main method of

splitting

Author Type of algorithm Main idea of algorithm

General

VRPSD

Unitized splitting Dror (1989) [13] Classical heuristic algorithm Two-stage main algorithm

General

VRPSD

Unitized splitting Dror (1994) [14] Exact algorithm Branch and bound algorithm

General

VRPSD

Unitized splitting Archetti (2006)

[16]

Metaheuristic algorithm Tabu search algorithm

General

VRPSD

Unitized splitting Aleman (2010)

[25]

Classical heuristic and metaheuristic

algorithm

Adaptive memory algorithm

General

VRPSD

Unitized splitting Archetti (2011)

[21]

Exact algorithm Column generation approach

General

VRPSD

Unitized splitting Wilck (2012) [26] Metaheuristic algorithm Hybrid genetic algorithm

General

VRPSD

Unitized splitting Archetti (2014)

[22]

Exact algorithm Branch-and-cut algorithm

General

VRPSD

Unitized splitting Berbotto (2014)

[36]

Metaheuristic algorithm Randomized granular tabu search heuristic

General

VRPSD

Unitized splitting Rajappa (2016)

[30]

Metaheuristic algorithm ant colony optimization (ACO) and hybrid metaheuristics

algorithm

VRPSDTW Unitized splitting Ho (2004) [37] Metaheuristic algorithm Tabu search algorithm

VRPSDTW Unitized splitting Belfiore (2009)

[38]

Metaheuristic algorithm Scatter search algorithm

VRPSDTW Unitized splitting Archetti (2010)

[17]

Exact algorithm Enhanced branch and price-and-cut algorithm

VRPSDTW Unitized splitting Luo (2017) [39] Exact algorithm Branch and price-and-cut algorithm

VRPSDTW Unitized splitting Belfiore (2013)

[28]

Metaheuristic algorithm Scatter search aprrpoach

VRPSDSTW Unitized splitting Yan (2015) [23] Classical heuristic algorithm Classic two-step solution algorithm

VRPSDSTW Unitized splitting Chu (2017) [40] Metaheuristic algorithm Two-stage heuristic solution algorithm

VRPSD-MDA Unitized splitting Han (2016) [31] Metaheuristic algorithm Multi-start heuristic approach

VRPSDPTW Unitized splitting Wang (2013) [32] Metaheuristic algorithm hybrid heuristic algorithm

VRPDSD Discrete split deliveries Nakao (2007) [33] Exact algorithm Dynamic programming

VRPDSD Discrete split deliveries Chen (2017)[35] Classical heuristic algorithm Priori split strategy and column generation approach

VRPDSDTW Discrete split deliveries Salani (2011) [34] Exact algorithm Branch and price algorithm.

https://doi.org/10.1371/journal.pone.0195457.t001
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The route length and load limit conditions are satisfied. The demand of each customer can be

split and served by multiple vehicles. However, the splitting can only be made according to

orders, which refers in this study to the minimum set of customer demand. In summary,

DCVRPSDO has some assumptions, as shown in Table 2.

The depot is numbered as 0, and customers are numbered as 1, 2, . . ., N. The notations are

defined as in Table 3.

Mathematical model

The total cost corresponding to a feasible solution with fewer vehicles is usually lower. There-

fore, solutions with fewer vehicles are usually better than those with more vehicles [41]. To

facilitate the solution of this kind, two levels of evaluation objectives are set. The first level is to

minimize the number of vehicles used, while the second is to minimize the total traveling time

of vehicles. The priority of the first level is higher than that of the second level. The double

objective mathematical model of the DCVRPSDO is as follows.

min K ð1Þ

min Z ¼
XN

i¼0

XN

j¼0

XK

k¼1

ðtij � y
k
ijÞ ð2Þ

XN

i¼0

XN

j¼0

ðtij � y
k
ijÞ � L; k ¼ 1; 2; . . . ;K ð3Þ

XN

i¼1

XR

r¼1

ðdri � x
k
irÞ � Q; k ¼ 1; 2; ;K ð4Þ

XK

k¼1

xkir¼1; i ¼ 1; 2; . . . ;N; r ¼ 1; 2; . . . ;R ð5Þ

XK

k¼1

XR

r¼1

ðdri � x
k
irÞ ¼ di; i ¼ 1; . . . ;N ð6Þ

Table 2. Some assumptions of the DCVRPSDO.

Essential

factor

Assumptions

Depot A single depot with known location and sufficient vehicles.

Routing The effect of road traffic is ignored. The depot to customer points and one customer point to

another is directly reachable.

Customer The location and demand of all customers are known. The demand of each customer can be split

and delivered by multiple vehicles, with the traveling time between customers satisfying triangle

inequality.

Vehicle A single vehicle type whereby all vehicles have the same loading capacity and cannot be overloaded,

with each vehicle having a route length constraint. The vehicles traveling speed is constant and they

must also return to the original starting point after finishing their tasks.

Objective Two levels of evaluation objectives were set. The first level is to minimize the number of vehicles

used, while the second is to minimize the total traveling time of the used vehicles. The priority of

the first level is higher than that of the second level.

https://doi.org/10.1371/journal.pone.0195457.t002
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XN

i¼0

XK

k¼1

ykij � 1; j ¼ 1; 2; . . . ;N ð7Þ

XN

i¼0

ykie¼
XN

j¼0

ykej; e ¼ 1; 2; ;N; k ¼ 1; 2; . . . ;K ð8Þ

XK

k¼1

XN

j¼1

yk
0j¼K ð9Þ

XK

k¼1

XN

i¼1

yki0¼K ð10Þ

Table 3. Notations of the DCVRPSDO.

Parameters or

variables

Notations

K The number of vehicles used (the number of routes).

L Maximum route length.

Q Vehicle capacity.

di The demand of customer i.
R The actual maximum number of orders of all customers.

dir The demand of the rth order of customer i.
xirk If vehicle k delivers the rth order of customer i, the value is 1; otherwise the value is 0.

yijk If vehicle k visits j immediately after visiting i, the value is 1; otherwise the value is 0.

tij The traveling distance from customer i directly to customer j.
nk The customer order sequence of the kth route.

S A solution to the problem, S = (η1,η2, . . .,ηK).

Sinitial Initial solution.

Sneighbor Neighborhood solution generated by neighborhood exchange

Scandi Candidate solutions selected from neighborhood solutions.

Snow The current solution in each iteration.

Sbest The best solution in each iteration.

Best{} According to the two evaluation indices, a function used to select the better solution, details

are stated later.

A Candidate solution set composed of Scandi.
#Scandi. Best candidate solution in set A.

Snon-tabu Non tabued solution in set A, Snon-tabu2A.

B Non tabued solution set composed of Snon-tabu, Snon-tabu2B, B�A.
#Snon-tabu Best non-tabu solution in set B, #Snon-tabu = Best {Snon-tabu |Snon-tabu2B}.

Sfeasible Feasible candidate solution in set A, Sfeasible2A.

C Feasible candidate solution set composed of Sfeasible in set A, Sfeasible2C, C�A.

P The number of neighborhood solutions.

Mu1 The total iteration number.

Mu2 The iteration number of the “best solution” remaining unchanged.

Mu3 The total iteration time.

Nu1 The upper limit of Mu1.

Nu2 The upper limit of Mu2.

Nu3 The upper limit of Mu3.

https://doi.org/10.1371/journal.pone.0195457.t003
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X

i;j2n�n

ykij � jn j � 1; n ¼ 1; 2; . . . ;N; k ¼ 1; . . . ;K ð11Þ

K � Kmin¼b
XN

i¼1

di=Qcþ1 ð12Þ

ykij 2 f0; 1g; i; j ¼ 0; 1; . . . ;N; k ¼ 1; . . . ;K ð13Þ

Eqs (1) and (2) are objective functions. Eqs (3) and (4) are the route length constraint and

capacity constraint. Eq (5) guarantees that each order can only be delivered by one vehicle and

that a single order cannot be further split. Eq (6) is the constraint that the customer demand

can only by split by orders whereby the demand of each customer can be composed of several

discrete orders. Eq (7) guarantees that each customer is visited at least once. Eqs (8)–(10) guar-

antee that the numbers of entering vehicles and exiting vehicles of intermediate vertexes are

the same and all vehicles start from and return to the depot. Eq (11) can eliminate sub-loops

and Eq (12) can estimate the lower bound of the number of vehicles required, where bc is

rounded down. Eq (13) is 0 or 1 integer constraint.

Design of adaptive tabu search algorithm

In the DCVRPSDO, allowing the demand to be split makes the number of combinations increase

dramatically. In solving large-scale problems, the algorithm has more significant challenges. It is

generally believed that the solution of the VRPSD is more difficult than the general VRP. Since

VRPSD is also a NP-Hard problem [15], the solution of it is more difficult than general VRP.

Exact algorithms such as the branch and bound method, cut plane, dynamic programming, col-

umn generation tangent plane, and the branch tangent plane methods [33–35], can only solve

small and medium scaled problems. Therefore, metaheuristic algorithms, such as the tabu search

algorithm (TSA), genetic algorithm (GA), ant colony algorithm (ACO), particle swarm optimiza-

tion (PSO), bee colony algorithm (BCA) and so on are usually used to solve large-scale VRPs [40–

53]. From the viewpoint of the publications [4–49], TSA is an efficient algorithm to solve VRPs.

TSA is an intelligent algorithm (metaheuristic algorithm) simulating human thinking pro-

cess, and is essentially a kind of global optimization algorithm [6]. TSA has advantages of sim-

plicity, adaptability, rapidity, accuracy and robustness [6]. The neighborhood searching ability

of TSA is relatively strong. In this study, adaptive operation was added to the basic TSA, and

the multi-neighborhood structure and tabu list re-initialization strategies were designed to

improve its adaptive global optimization ability, thus forming an Adaptive TSA (ATSA).

Solution representation and initial solution

A permutation of the depot 0 and custom orders (where order quantities are not zero) is used

to represent a solution of the problem, where 0 can appear more than once, each time for a

new route, while each custom order can only occur once. The vertexes between two 0 consist

of a route. For example, in solution S ¼ ð0d1
1
d2

1
d1

2
d1

3
d2

3
d3

3
0d2

2
d1

4
d2

4
d1

5
d1

6
0 � � � 0Þ, the first two

routes are ð0d1
1
d2

1
d1

2
d1

3
d2

3
d3

3
0Þ and ð0d2

2
d1

4
d2

4
d1

5
d1

6
0Þ, respectively. The first route represents start-

ing from depot 0, sequentially delivering the 1st and 2nd orders of customer 1, the 1st order of

customer 2, and the 1st, 2nd and 3rd orders of customer 3, and finally returning to depot 0.

It is generally believed that the better initial solution Sinitial helps the TSA to find a good

final solution, while a poor Sinitial can easily cause slow convergence of the algorithm.
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Moreover, in solving specific problems, according to the problem characters, some heuristic

algorithms can be adopted to generate Sinitial with high quality in advance, and then use TSA

for further search. Such staged processing methodologies can usually improve the final solu-

tion quality [41]. In this study, a simple but practical “nearest zero” (here zero refers to depot

0) heuristic mechanism is used to generate the feasible Sinitial. Particularly, all customers are

sorted in ascending order according to their distance to depot 0. Then, under the constraints

of vehicle capacity and maximum route length, the orders corresponding to customers are

added into the vehicle routes according to such ascending order. When capacity Q and maxi-

mum route length L are violated, a new route starts. In constructing a feasible Sinitial, splitting

is not considered, i.e., the orders of one customer are all put into the same route.

Solution evaluation

Accepting infeasible solutions helps the algorithm to search for a better feasible solution in

iterative steps [41]. In this study, an adaptive penalty mechanism is designed. We denote δk as

the excess quantity of the kth route length and εk as the overload of the kth vehicle with values

as shown in (14) and (15).

dk ¼ maxf0;
XN

i¼0

XN

j¼0

ðtij � y
k
ijÞ � Lg; k ¼ 1; 2; . . . ;K ð14Þ

εk ¼ max½0;
XN

i¼1

XR

r¼1

ðdri � x
k
irÞ � Q�; k ¼ 1; 2; . . . ;K ð15Þ

To enhance the ability of ATSA on jumping out of local optima, the algorithm is designed

to accept the transform of infeasible solutions so that it can generate more feasible solutions by

the transition of infeasible solutions. Therefore, the overall evaluation function G in

DCVRPSDO is designed as (16).

G ¼ P1 � K þ P2 � F ð16Þ

F ¼ Z þ Z0 ð17Þ

In this study, the dual objectives are calculated by a hierarchical mode. Here, P1 and P2

are qualitative concepts representing priority P1>>P2. In other words, when using func-

tion Best{} to select #Snon-tabu (Snon-tabu 2B) and Sfeasible (Sfeasible 2C), small K values are

first considered and then small F values [41]. The ATSA sets the minimization of the num-

ber of vehicles used as the first objective because a decrease in the number of vehicles is

consistent with a decrease in the traveling cost. Generally, the decrease in the number of

vehicles is because the vehicle loading rate is increased, shortening traveling distance and

avoiding detours. Z0 in evaluation function F represents the penalty cost of violating (3)

and (4), as follows.

Z0 ¼ l � ½H1 � ð
XK

k¼1

dkÞ þH2 � ð
XK

k¼1

εkÞ� ð18Þ

where

• H1 andH2 are the number of non-zero values of δk and εk, respectively, representing the

weighted penalty coefficients for route length overrun and vehicle overloading;
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• λ is an adaptive penalty coefficient, with value range of λ2[20, 2000] and initial value of 100.

If five successive iterations have infeasible solutions, it is multiplied by two; while if five suc-

cessive iterations have feasible solutions, it is divided by two. The setting of parameter λ is

necessary for the adaptive optimization potential of the ATSA, more thoroughly searching

in neighborhoods, guiding the algorithm to iterate between feasible solutions and infeasible

solutions adaptively, enhancing the algorithm’s ability of jumping out of local optima and

improving the robustness of the algorithm.

Multi-neighborhood structure design

The number of neighborhood solutions Sneighbor generated from each iteration is assigned

to P and the neighborhood solutions are selected to construct candidate solution set A
(K�Kmin). After set A is generated, Snow and Sbest are selected for the next iteration from

set A. It is stipulated that Snow is allowed to violate the constraints, while Sbest must be a

feasible solution. A neighborhood transform can be used to generate Sneighbor. In a neigh-

borhood transform, two different routes R1 and R2 are selected from Snow each time as

neighborhood routes. In the ATSA, a perturbation rule with the maximum duration route

(PRMDR) is designed. If the maximum route length in Snow exceeds L, then let it be the

neighborhood route R1 and randomly select a route from others as R2. Otherwise, ran-

domly select two routes as R1 and R2.

In the ATSA, a multi-neighborhood structure is designed, and a random neighborhood trans-

form strategy is adopted to randomly select a neighborhood to transform Snow. In the neighbor-

hood transform, after selecting R1 and R2 according to the PRMDR method, a customer or order

is randomly selected in the two routes for transformation. After each neighborhood operation,

the front zero is kept if multiple zeros exist. The orders from the same customer in the same

route are arranged orderly (i.e., combining orders in the same route), and checked for relevant

constraints. The neighborhood transform randomly selects neighborhood operators from the

following 6 types. For example, in solution S ¼ ð0d1
1
d2

1
d1

2d1
3
d2

3
d3

3
0d2

2
d1

4
d2

4d1
5
d1

6
0 � � � 0Þ, the under-

lines indicate the two randomly selected orders j1 ( d1
3
) and j2 ( d1

5
), and the results after the opera-

tion are as follows.

1) Vertexes exchange. Exchange the customers corresponding to orders j1 and j2, i.e. totally

exchange the orders corresponding to the customers selected from the two routes, resulting

in S0 ¼ ð0d1
1
d2

1
d1

2d1
5
0d2

2
d1

4
d2

4d1
3
d2

3
d3

3
d1

6
0 � � � 0Þ.

2) Insert vertex forward. Insert the customer corresponding to order j1 before the customer

corresponding to order j2, resulting in S0 ¼ ð0d1
1
d2

1
d1

2
0d2

2
d1

4
d2

4d1
3
d2

3
d3

3d1
5
d1

6
0 � � � 0Þ.

3) Insert vertex backward. Insert the customer corresponding to order j1 after the customer

corresponding to order j2, resulting in S0 ¼ ð0d1
1
d2

1
d1

2
0d2

2
d1

4
d2

4d1
5
d1

3
d2

3
d3

3
d1

6
0 � � � 0Þ.

4) Vertex inversion. Invert the arrangement of the customers corresponding to orders j1 and

j2, resulting in S0 ¼ ð0d1
1
d2

1
d1

2d1
5
d2

4
d1

4
d2

2
0d3

3
d2

3d1
3
d1

6
0 � � � 0Þ, and then combine the orders of the

same route in S' resulting in S@ ¼ ð0d1
1
d2

1
d1

2
d2

2d1
5
d2

4
d1

4
0d3

3
d2

3d1
3
d1

6
0 � � � 0Þ.

5) Order exchange. Exchange orders j1 and j2, resulting in

S0 ¼ ð0d1
1
d2

1
d1

2d1
5
d2

3
d3

3
0d2

2
d1

4
d2

4d1
3
d1

6
0 � � � 0Þ.

6) Tails exchange. Exchange the customers corresponding to the route after orders j1 and j2,

resulting in S0 ¼ ð0d1
1
d2

1
d1

2d1
5
d1

6
0d2

2
d1

4
d2

4d1
3
d2

3
d3

3
0 � � � 0Þ.
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Tabu rules and termination conditions

The design of tabu rules is the core of the TSA and the selection of tabu length has great effect

on algorithm performance. To prevent the loop search in the early stage of the algorithm and

improve the stochastic diversity in the late stage of the algorithm, a mixed tabu length is set

based on several approaches in the literature [45]. In the first Nu0 steps it is set to the fixed

value of 16, and after Nu0 steps, it is set to a random integer between 5 and 16, and Nu0 = 500

+15N.

A matrix tabu list is set with N×N elements, with tabu objects being customers. In each iter-

ation, when a “vertex pair” (i, j) of a neighborhood operation (or its corresponding order) is

selected, and its corresponding Scandi is about to be the Snow of the next iteration, the element

(i, j) of the tabu list is filled with corresponding tabu length. The basic principle is that, after

each iteration, the tabu length of the tabu object is subtracted by 1, until it is 0. Moreover, rea-

sonable tabu operation can accelerate the search process.

To avoid excessive tabu, a “tabu releasing” strategy is set. If a “feasible candidate solution”

Sfeasible is better than current Sbest, such as “K(Sfeasible)< K(Sbest)” or “K(Sfeasible) = K(Sbest), F
(Sfeasible)< F(Sbest)”, we then take this Sfeasible as the new Snow and Sbest. Otherwise, we take
#Snon-tabu as the new Snow. If all Scandi are tabued, i.e., B = Ø, then the tabu of the “best candidate

solution” #Scandi is released and let #Scandi to be the new Snow.

The tabu list has a short-term memory function and can avoid the repeated search when

the tabu are appropriate. However, it may lose good solutions due to excessive tabu. In the iter-

ative process, the routes of Snow are continuously updating. The following situation definite

exists whereby different Snow select the same neighborhood exchange combination vertex pair

(i, j) while the corresponding new solutions are different. Although these new solutions are

not necessarily better than the current Sbest, these new solutions can transit to better Sneighbor.

Breaking the tabu and increasing the probability of these new solutions to be Snow is very desir-

able. To further prevent excessive tabu and improve the optimization ability of the ATSA, a

tabu list re-initialization strategy is added. After Nu0 steps, the tabu list is re-initialized everym
iterations, i.e. the tabu list becomes an all-zero element matrix. In this study, we setm = 50.

Combining the methods in the literature [6–20], we set 3 stopping criteria for the ATSA.

The algorithm ends if any of them is satisfied. The first is for the total iteration number (Mu1)

to reach the upper limit Nu1, the second is for the iteration number of the “best solution”

remaining unchanged (Mu2) to reach the preset upper limit of iterations Nu2 and the third is

for the total iteration time (Mu3) to reach the preset upper limit Nu3.

Algorithm description

According to the basic framework of the TSA, the ATSA algorithm can be described as

follows.

Step 1: Initialize

Step 2: Read in the relevant data and parameter values.

Step 3: Generate feasible “initial solution” Sinitial under distance and
vehicle capacity constraints, according to “nearest zero” heuristic
mechanism and take Sinitial as the Snow and Sbest.
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Step 4: While stopping criterion is not satisfied, do

Step 5: While the number of Sneighbor is less than P, do

Step 6: Randomly select one of the preset 6 neighborhood operators.

Step 7: Perform neighborhood transform operation according to selected
rule for Snow, and construct corresponding solution sets A and C.

Step 8: End

Step 9: If a feasible candidate solution Sfeasible (Sfeasible 2A) is better
than current solution Sbest, take Sfeasible as the new Snow and Sbest. Oth-
erwise, construct solution set B and take #Snon-tabu (#Snon-tabu2B) as the
new Snow. If B = Ø, remove the tabu situation of #Scandi and take it as
the new Snow.

Step 10: Update tabu list

Step 11: End.

Algorithm complexity

Denote the iteration steps of the algorithm as I, the number of neighborhood solutions gener-

ated by a single iteration as P and the problem solution as wN (since the number of orders is

larger than that of customers). In the above described algorithm, the computation time mainly

concentrates on iterations, the generation of neighborhood solutions and the selection of new

Snow and new Sbest. In each iteration, the following several steps belong to sequential structure

and the most complicated computation is in the stage of neighborhood solution generation of

neighborhood search (including neighborhood exchange) with complexity P�Ο((wN)2). The

total algorithm complexity is IP�Ο((wN)2). It is clear that the complexity of the distance-con-

strained ATSA is in proportion with the square of the problem scale wN and both the number

of iterations and solutions impact computation time. This indicates that the complexity of our

method is on the same order of magnitude of ordinary heuristic algorithms such as nearest

neighbor insertion method, 2-exchange method, etc. [6] and is relatively reasonable. More-

over, it is clear from the algorithm complexity that I and P have impact on computation time.

For a problem with a determined scale, when the requirement for result accuracy is not high,

the computation time can be shortened by reducing the values of I and P.

Results and discussion

Currently, there have not been benchmark examples of demand split by order with distance

constraints. In this study, 7 large scale capacitated VRP (CVRP) numerical examples provided

by Christofides et al. [2,25] were used to construct the testing examples (All relevant data are

within the paper and the Supporting Information file S1 Appendix). They consisted of 50–199

customers. In the above examples, the distance constraints were added into and the customer

demand quantities were randomly split into 1 to 4 orders, forming the numerical examples of

the DCVRPSDO. The data of each example is listed in Table 4.
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In the studies of the VRP with demand split by units (which belongs to classical K-VRPSD)

by Archetti et al. [16] and Aleman and Hill et al. [2, 25], the above-mentioned 7 original exam-

ples without distance constraints were tested. The difference between their examples and those

in this study lies in “distance constraints”. The results can be directly compared with the results

of this study. The 7 numerical examples are numbered by a1, a2. . .a7 according to the order

given by Aleman and Hill et al. [2, 25], where a part of demand data of a7 with 100 customers

are listed in Table 5.

Results

In this study, Matlab2014a was used to implement the proposed ATSA and it was tested on a

LENOVOV3000 with 2.40GHz AMD CPU and 4GB RAM. To make the algorithm suitable for

problems of different scales without increasing the computational complexity too much, the

relevant parameter values were set to linear to customer scale N with certain cardinality. The

detailed parameter settings are as follows: Nu1 = 4 000+100N, Nu2 = 3 000+5N, Nu3 = 400+12N
and P = 50+N. According to the characters of the original examples, the Euclidean distance

between vertexes represents the traveling time between vertexes. Each example was tested 8

times and the best results were used.

The results demonstrated that the convergence of the 7 examples was relatively good. The

time for final solutions by the program was within 149.73–1773.49 seconds, which is accept-

able. Apart from example a5 in which an additional vehicle was used, all examples reduced the

number of vehicles used to the minimum.

Comparative analysis

Archetti et al. designed a TSA in [12], but the test Z value of the numerical examples was not

given. However, Aleman and Hill et al. [2, 30] used the same examples as those of Archetti

et al. and gave the Z value results. Aleman and Hill et al. [2] carefully analyzed the constructive

heuristic approach (CA), iterative constructive approach (ICA) and iterative constructive

Table 4. The data of the test problems.

a1 a2 a3 a4 a5 a6 a7

N 50 75 100 150 199 120 100

Q 160 140 200 200 200 200 200

L 180 144 160 200 220 220 220

Kmin 5 10 8 12 16 7 10

https://doi.org/10.1371/journal.pone.0195457.t004

Table 5. Customer demand data for a7.

Vertex No. Demand Order No.

1 2 3 4

1 10 10 0 0 0

2 30 7 2 21 0

. . . . . .

37 20 3 17 0 0

. . . . . .

69 10 2 8 0 0

. . . . . .

100 20 13 7 0 0

https://doi.org/10.1371/journal.pone.0195457.t005
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approach plus variable neighborhood descent (ICA+VND). CA constructed a route angle con-

trol (RAC) strategy, which was similar to the scanning algorithm with customers’ demand split

by angle, and used the cheapest customer insertion to optimize routings. This had relatively

good solutions at first, but solutions degraded during the late insertions. ICA was based on CA

and added an iterative searching function. It was used to optimize the degraded solutions of

CA due to late customer insertions. ICA+VND algorithms adopted two stages to solve prob-

lems, whereby the results of ICA were used as the initial solutions of VND to obtain better

solutions. It is clear from the analysis by Aleman and Hill et al. in [2] that CA belongs to heu-

ristic algorithm, and ICA and ICA+VND belong to intelligent algorithms. The comparative

studies combined the advantages of classical heuristic algorithms and the character is that the

computation speed during the early stage is fast. But the algorithm robustness is unsatisfactory

and is easy to be trapped local optima.

In many large-scale distribution VRP practices, enterprises are usually willing to sacrifice

computation time to improve solution quality. In large-scale periodic distribution services, a

percentage point increase in the solution quality would result in huge annual savings. To

obtain high quality solutions, Aleman et al. [25] designed ICA+VND with Diversification

(iVNDiv for short) based on ICA+VND. It mainly added a classification solution comparison

mechanism of multi-starting solutions and an increased iteration number based on ICA

+VND. In each iteration, the best solutions were kept from each class of solutions. In this

study, the results of CA, ICA, ICA+VND and iVNDiv given by Aleman and Hill et al. [2, 25]

are used for comparative analysis, with the comparison results of Z values for each example

shown in Table 6 and the corresponding solution time shown in Table 7.

Classical heuristic algorithms are adopted in the neighborhood searching process in the

comparative studies and it is shown that their solution speed is fast during the early stage, but

it is easy to get trapped in a local optimum during the late stage. After the iteration proceeds to

a certain extent, the algorithm cannot jump out no matter how long it runs. For example, iVN-

Div was improved based on ICA+VND with good solution quality during the early stage, but

for large numerical examples (such as a5 and a6), the improvement after 3 000s was insignifi-

cant. The proposed ATSA uses the multi-neighborhood random searching rule in the iterative

searching process with several robustness improvement strategies that enhanced the global

optimization ability of the algorithm.

For the number of vehicles required, the proposed ATSA adopts a dynamic descending

method. Apart from the first example (a5) which exceeded the minimum number of vehicles

by 1, all examples reduced the results to the minimum number of vehicles used as the compar-

ative algorithms did. This does not mean that the proposed ATSA is weaker than comparative

algorithms in terms of reducing the number of vehicles. The comparative algorithms can arbi-

trarily split demand by units without distance constraints. Therefore, comparative algorithms

can use a fixed minimum number of vehicles to search the shortest distance. However, the

constraints in this study are more complicated. If the fixed minimum number of vehicles is

used, there may be no feasible solution. Therefore, using the dynamic descending method for

the number vehicles has better versatility compared with fixed ones, and the ability of reducing

the number of vehicles for the proposed ATSA is also relatively strong.

In the aspect of traveling cost, apart from example (a1) for which iVNDiv and ATSA have

the same best solutions, the Z values of all examples of the proposed ATSA are better than

other algorithms, indicating that the ability of travel distance reduction is better than the com-

parative algorithms. The maximum saving ratios of ATSA to CA, ICA, ICA+VND, and iVN-

Div for the examples are 10.34%, 9.88%, 6.89% and 5.02%, respectively, as shown in Table 6.

In the aspect of solution time, CA, ICA, and ICA+VND have relatively strong control over

stopping criteria (solution time), with shorter solution time than the proposed algorithm.
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However, iVNDiv based on ICA+VND had a longer solution time than that of the proposed

ATSA for the large numerical example and it also has a poorer solution quality. It is clear from

Tables 6 and 7 that for heuristic algorithms of neighborhood searching with deterministic

rules, although the solving speed during the early stage is fast, they are easily trapped in local

optima during the late stage. Their global optimization ability is therefore weaker than that of

ATSA with random neighborhood searching rules. Moreover, the object of the static VRP is to

pursue the quality of the final solution. The final scheme does not have a high requirement for

solution time. The planned distribution schemes do not need frequency changes like the

dynamic VRP and it is workable if the solution time is within an acceptable range. Generally,

the static VRP does not need to change the distribution scheme for a certain period, such as

one month or one week.

It is clear that the algorithm complexity of ATSA is in proportion to the square of the problem

scale, which is on the same order of magnitude of ordinary heuristic algorithms and relatively rea-

sonable. For the same computing equipment, shortening the execution time of ATSA only

requires reducing the numbers of iteration steps and candidate solutions (which may cause solu-

tion quality degradation). For different computing equipment, many factors may impact the spe-

cific solution time of the program, such as computer configuration and depreciation. Moreover,

for the same computer configurations, desktops are much faster than notebooks. Aleman and Hill

et al. [25] just described their platform as Pentium 4 2.8GHz CPU with 512MB RAM, without

other descriptions of their platform. The equipment and stringency of the stopping criteria are dif-

ferent in the comparative studies and this study. Also, the algorithm complexity analysis was not

given in the comparative studies and thus the computation time of each algorithm can only be

compared roughly, as shown in Table 7. It is clear from Table 7 that the solution time of a4

(N = 150) is longer than that of a5 (N = 199) with a larger customer scale for proposed ATSA. For

ICA+VND, the solution time of a6 (N = 120) is longer than that of a4 (N = 150) with larger cus-

tomer scale. For iVNDiv, the solution time of a6 (N = 120) is longer than that of a4 (N = 150) and

a5 (N = 199) with larger customer scale. The solution time of other algorithms is not in proportion

to the customer scale. Therefore, it can be known that the solution time is not only related to the

scale of customers in the problems, but also closely related to algorithm structures, geometric dis-

tribution of customers, demand distributions, constraints, etc.

The ATSA only allows the demand to be split by orders, which is stricter than the constraint

of K-VRPSD of Aleman and Hill et al. [2, 25]. However, comparative algorithms without dis-

tance constraints are the relaxation of distance-constrained situations. From the viewpoint of

solution space size, the solution sets of the test examples in this study are the subset of those in

comparative algorithms. Theoretically, the comparative algorithms should obtain better results

Table 6. Comparison results for distance of the ATS with others in the literature.

Pr. ATSA CA ICA ICA+VND iVNDiv

Z Z IMP Z IMP Z IMP Z IMP

a1 524.61 578.83 10.34 568.67 8.40 540.82 3.09 524.61 0.00

a2 843.55 899.11 6.59 889.05 5.39 880.28 4.35 851.24 0.91

a3 833.67 873.46 4.77 863.18 3.54 854.13 2.45 852.74 2.29

a4 1 062.94 1 121.33 5.49 1 108.97 4.33 1 088.91 2.44 1 074.11 1.05

a5 1 364.63 1 412.18 3.48 1 412.18 3.48 1 390.55 1.90 1 368.67 0.30

a6 1 144.41 1 257.48 9.88 1 257.48 9.88 1 223.28 6.89 1 201.83 5.02

a7 819.56 827.59 0.98 826.03 0.79 824.82 0.64 824.78 0.64

Note: IMP represents the percentage of the comparative literature value Z higher than the ATS. The bold data represents the best value.

https://doi.org/10.1371/journal.pone.0195457.t006
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than that of the DCVRPSDO, bearing in mind that the finally results also depend on the opti-

mization performance of the designed algorithm. It is clear from the test results that the overall

solution quality of ATSA is higher than the 4 comparative algorithms, indicating the proposed

ATSA has relatively strong optimization ability.

Algorithm advantages and disadvantages

The distance-constrained ATSA with order-split belongs to a stochastic intelligent algorithm

with advantages and disadvantages. Combined with the results of numerical tests, some advan-

tages and disadvantages of the ATSA are described as Table 8.

Table 7. Comparison results for CPU time of the ATS with others in the literature.

Pr. ATSA CA ICA ICA+VND iVNDiv

CPU CPU CPU CPU CPU

a1 149.73 0.08 2.69 10.89 54.91

a2 645.97 0.06 3.25 9.81 83.28

a3 1 197.84 0.16 9.34 43.50 319.33

a4 1 773.49 0.33 20.77 129.23 1 361.16

a5 1 369.17 0.55 26.66 534.83 3 284.64

a6 630.50 0.41 20.27 257.30 3 414.41

a7 645.10 0.11 6.20 21.02 126.08

Note: CPU running units are seconds.

https://doi.org/10.1371/journal.pone.0195457.t007

Table 8. Some advantages and disadvantages of the ATSA.

Essential factor Advantages Disadvantages

Route length Distance-constrained are added into the ATSA so that the length of the

delivery route will be concentrated.

Adding distance restrictions easily reduces the vehicle loading rate and

increases total cost.

Sensitivity of

adaptive parameter

For maximum distance-constrained, an adaptive penalty mechanism is

designed for the ATSA by accepting a part of the infeasible solutions for

a transition to better feasible solutions and avoiding the premature

convergence of the algorithm, which is conducive to improving the

robustness of it. Moreover, experiments demonstrated that the

algorithm was insensitive to the value of the adaptive coefficient λ2[20,

2 200].

The adaptability of the algorithm is adjusted by λ, and the value of λ
therefore has an impact on the solution quality. If a higher solution

accuracy is expected, experiments are needed to determine the value

range for λ.

demand-split

strategy

The algorithms for the classical VRPs cannot directly solve the problem

with demand split by order. In this study, the demand can only be split

by order. We design a code format according to order split, where

neighborhood operators perform unified operations for customers and

orders, thereby reducing the difficulty of solving the order-split type

problems.

Although the cost for demand split by order is theoretically lower than

that of non-split, the difficulty of solving NP-Hard problems such as

VRP increases significantly, and the requirement for the computational

performance of algorithms is also higher.

Tabu strategy The ATSA uses a matrix tabu list which can rapidly determine the tabu

situation of customers. The ATSA uses a tabu list for short-term

memory function, while uses a tabu releasing strategy, that is, re-

initialization to avoid excessive tabu. It balances the two aspects of tabu

and releasing, which can improve the robustness of the algorithm and

improve the final solution quality.

when strategy of re-initialization is practiced, the solution time of

numerical examples may be prolonged when the algorithm jumps out

of a local optima.

Calculation time The complexity of the ATSA is reasonable and on the same order of

magnitude as ordinary heuristic algorithms. The multi-neighborhood

structure is designed for the ATSA, which can simulate the distribution

of extreme values in each neighborhood well and uses the random

neighborhood operator selection rule. This is a progressive

improvement method which can overcome the drawback of classical

heuristic algorithms in which they can rapidly fall into the local

optimum of neighborhoods and get stuck.

Since the improvement is achieved by randomly selecting

neighborhoods, it depends on a certain probability. High quality

solutions usually need more iteration steps and candidate solutions.

https://doi.org/10.1371/journal.pone.0195457.t008
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Conclusions

The demand-split VRP belongs to the category of NP-Hard problems and has a wide value in

the practice of distribution. Adding the distance-constrained aspect is helpful to improving the

balance of routings. The splitting demand by orders in distribution is conducive to improving

vehicle loading rate and reducing the total cost of delivery. In this study, The DCVRPSDO is

studied and the corresponding double objective mathematical model is given. An ATSA is

designed and the testing results demonstrate that ATSA can obtain relatively good final solu-

tions in a reasonable calculation time. The DCVRPSDO is a new type of VRP. In this paper, a

single order cannot be split again, maybe we can further study a mixed type of VRP, i.e. Some

customers’ large order can be shipped by splitting but the small order remain stable.

In TSA, adopting a multi-neighborhood structure can simulate the extreme value distribu-

tion situations of the problem very well. Using the strategy of random neighborhood selection

is helpful to realizing the access of multiple neighborhoods in several searching steps. The tabu

vertexes can accelerate the optimization speed of the algorithm compared to the tabu solutions.

Using mixed tabu length and adaptive penalty mechanism is conducive to improving the flexi-

bility of neighborhood search and enhancing the richness of neighborhood solutions. Execut-

ing tabu list re-initialization strategy can avoid excessive tabu and improve the global

optimization ability of the algorithm.

High quality optimal solutions usually need more iteration steps and candidate solutions.

In other words, it can be inferred that in ATSA with random neighborhood selection rules, the

values of I and P are larger than those of ATSA with traditional heuristic rules, which extends

the calculation time of the search process. This also provides an idea of improvement, i.e. we

can consider adding traditional heuristic rules into the local search of the ATSA. In addition,

in the further study, we can consider adding more constraints into the DCVRPSDO, such as

the multi-depots, multi-type vehicles, time windows, deliveries and pickups, dynamic vehicle

routing, and so on.
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