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Abstract

Anti-community detection in networks can discover negative relations among objects. How-

ever, a few researches pay attention to detecting anti-community structure and they do not

consider the node degree and most of them require high computational cost. Block models

are promising methods for exploring modular regularities, but their results are highly depen-

dent on the observed structure. In this paper, we first propose a Degree-based Block Model

(DBM) for anti-community structure. DBM takes the node degree into consideration and

evolves a new objective function Q(C) for evaluation. And then, a Local Expansion Optimi-

zation Algorithm (LEOA), which preferentially considers the nodes with high degree, is pro-

posed for anti-community detection. LEOA consists of three stages: structural center

detection, local anti-community expansion and group membership adjustment. Based on

the formulation of DBM, we develop a synthetic benchmark DBM-Net for evaluating compar-

ison algorithms in detecting known anti-community structures. Experiments on DBM-Net

with up to 100000 nodes and 17 real-world networks demonstrate the effectiveness and effi-

ciency of LEOA for anti-community detection in networks.

Introduction

The recent researches on complex networks have made significant advancements to our

understanding of complex systems [1–3]. Nodes in networks represent the objects, while edges

represent the relationships between objects. One of the most important characteristics in com-

plex networks is community structure, i.e. assortative structure [4–6], where nodes share most

of their connections inside the groups they belong to. Detecting community structure can

reveal the organizational and functional characteristics of underlying systems [7–11]. In this

paper, we pay attention to another important structure of complex networks, called anti-com-

munity structure, i.e. disassortative structure [12], where nodes have no or few connections

with each other inside their group but share most of their connections to the rest of the
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network as shown in Fig 1. Many real-world networks own the characteristics of anti-commu-

nity structure [13], such as sexually transmitted disease network, book selling network, and

divorce network, etc. Detecting anti-community structure in networks can help reveal some

interesting relations, such as non-cooperative relation, competitive relation, and even hostile

relation among individuals, corporations, or countries. For example, Karate describes the

friendship relations between 34 members of a karate club at an American university in the

1970s, which is split into two communities due to the disagreement between the administrator

and the instructor [14]. Detecting anti-community structure in Karate can divide the members

into several groups with no or few friendship relations inside. In each group, some negative

relations can be explored among the members, such as the disagreement between the adminis-

trator and the instructor.

Several anti-community detection methods have been developed in past few years. These

methods attempt to explore anti-community structure in networks from different perspectives.

The traditional methods divide a network into two groups to find the largest bipartite struc-

ture, which are similar to but not equivalent to the problem of searching for the maximum cut

in networks [15–17]. Spectral methods detect anti-community structure by using the negative

eigenvalues and eigenvectors of modularity matrix [12, 18]. Label propagation algorithms

spread the labels of nodes to the non-neighbor ones to explore multipartite structure in net-

works [13]. Multipartite structure consists of several groups without internal edge, which is a

special case of anti-community structure. Recently, several block models have been proposed

for exploring structural regularities in networks [19–26]. These models regard the network

structure as observed quantities and take the group membership of nodes as hidden quantities.

The structural regularities can be inferred from the group membership. And the group mem-

bership of nodes can be inferred by fitting the models to the observed structure based on the

method of maximum likelihood such as expectation-maximization (EM) algorithm [27].

However, the above researches suffer from some limitations. First, there is no universally

definition for anti-community and no widely-accepted objective function for evaluation. Sec-

ond, the proposed works [12–13, 15–17, 18–27] do not consider the impacts of node degree on

the methods, leading to poor performance especially when they are applied to real-world net-

works. Thirdly, the efficiency of these methods is comparatively low due to the massive

computational cost for calculating of eigenvalues and eigenvectors of modularity matrix in

spectral methods and repeated iterations of EM algorithm in block models. In addition, the

results provided by block models are highly dependent on the observed structure of a network.

For example, block models cannot identify the disassortative structure in Karate, because the

observed structure in Karate is assortative and these methods are incapable of exploring the

particular structure that is inconsistent with the observed one. Meanwhile, it is necessary for

EM algorithm of block models to run several times with different initial values of parameters

to avoid convergence to local optima and find the quantities that fit the observed structure to

the most, which also leads to the high computational cost when applied to large networks.

In this paper, we first introduce a definition of anti-community. And then, we propose a

Degree-based Block Model (DBM) for anti-community structure, which takes the node degree

into consideration and evolves an objective function Q(C) for anti-community structure evalu-

ation. Due to that the nodes with high degree have greater impacts on Q(C) than the ones with

low degree, a Local Expansion Optimization Algorithm (LEOA), which preferentially consid-

ers the nodes with high degree, is proposed for anti-community detection. In LEOA, we first

detect structural centers by node influence. Then, LEOA expands each structural center into

anti-community by a local search method. Finally, we adjust group membership of nodes by

maximizing Q(C) so as to detect a better anti-community structure. Inspired by the formula-

tion of DBM, a new synthetic benchmark DBM-Net is developed for testing algorithms in

DBM and LEOA for anti-community detection
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detecting known anti-community structure. Experimental results on DBM-Net with up to

100000 nodes and 17 real-world networks demonstrate the effectiveness and efficiency of

LEOA for exploring anti-community structure in networks.

The remainder of this paper is organized as follows. We present the related works about

anti-community detection in Section 2. Section 3 introduces the definition of anti-community,

the formulation of DBM model and the details of LEOA algorithm. The experimental results

are described in Section 4. Section 5 gives the conclusions.

Related works

Some approaches have been proposed for anti-community detection in networks. When a net-

work consists of two anti-communities, the problem is to explore the largest bipartite subgraph

in a given network. The detection of bipartite or approximately bipartite structure has

attracted attention in the recent literature [15–17]. Searching for the max-cut is an approxi-

mate method for solving this problem. Trevisan [15] proposed an approximate algorithm for

max-cut by the smallest eigenvalue with approximation ratio of 0.531. Alon and Sudakov [16]

obtained two results of dealing with the relation between the smallest eigenvalue of the adja-

cency matrix of a graph and its bipartite subgraphs. The first result is that the smallest eigen-

value μ of the adjacency matrix of any non-bipartite graph with n nodes, diameter L and its

maximum degree dmax satisfied μ�−dmax+1/((L+1)n). The other is that they determined the

approximation of the max cut algorithm [28] for graph G = (V,E),in which the size of the max-

cut is αm, wherem = |E|and α 2[0.845,1].Newman [12] used the least negative eigenvalue of

modularity matrix for bipartite structure detection in networks. By applying the proposed

algorithm to the co-occurrence network of Nouns and adjectives in the novel David Copper-
field, the author found that the obtained partition is approximately bipartite, where one group

is almost composed of adjectives and the other of nouns. In addition to the algorithms for

bipartite networks, a label propagation algorithm LPAD is proposed by Chen et al. [13] for

Fig 1. An example of anti-community structure.

https://doi.org/10.1371/journal.pone.0195226.g001
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detecting the partition with more than two anti-communities. LPAD defines the compatible

relationship and update rules of labels among nodes, which avoids oscillation in label propaga-

tion. The experimental results show that LPAD can detect bipartite and simple multipartite

structure in networks but its results are affected by the order of label propagation.

Block models are promising methods for exploring modular regularities in networks [19–

26]. However, most of the models focus on the detection of community structure and only two

researches can discover disassortative structure [23, 26]. Newman and Leicht [23] proposed a

mixture model for exploring broad types of structure in networks. This model takes the

assumption that the nodes in the same group have similar connection preference. Due to that

this model only considers the relationship between groups and nodes, it may generate the

results with mixture of several types of structures, such as assortative structure, disassortative

structure, hierarchical structure and core-periphery structure, etc. Shen et al. [26] modified

this model and proposed general stochastic block model (GSBM) to detect intrinsic structural

regularities of networks. By utilizing the block matrix to indicate the relationship among

groups, GSBM can output the types of identified structural regularities.

In this paper, we propose a Local Expansion Optimization Algorithm (LEOA) for anti-

community detection in networks by preferentially considering the nodes with high degree,

which improves its effectiveness for anti-community detection in synthetic and real-world

networks. By first detecting structural centers, then expanding structural centers into anti-

communities, and finally adjusting group membership of nodes, LEOA achieves good perfor-

mance and overcomes the shortcomings of the existing algorithms, such as poor performance

in real-world networks, great requirement of computational cost, and high dependency of the

observed structure.

Methods

Anti-community

Generally, an anti-community can be defined as a group of nodes with most of their connec-

tions outside and few or no connections inside. Inspired by the definition of community pro-

posed by Radicchi et al. [29], we provide a quantitative description for anti-community in this

subsection.

Consider an undirected and unweighted graph G = (V,E) with V being the set of nodes with

n nodes and E = {(vi,vj)|vi,vj2V} being the set of edges withm edges, which can be represented

as an adjacent matrix A such that if there is an edge between node vi and node vj, aij = 1,other-

wise aij = 1. Let us consider a group cr2V, which vi belongs to, the degree of node vi can be

written as

di ¼
X

s

miðsÞ; ð1Þ

wheremi(s) is the number of edges connecting node vi to the nodes in group cs

miðsÞ ¼
X

vj2cs

aij: ð2Þ

Thus, group cr is an anti-community if it satisfies the constraint as follow

l
X

vi2cr

miðrÞ � min
s;s6¼r

X

vi2cr

miðsÞ; ð3Þ

where
X

vi2cr

miðrÞ is twice the number of edges inside group cr,
X

vi2cr

miðsÞ is the number of edges

DBM and LEOA for anti-community detection
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connecting the nodes in group cr and the nodes in group cs(s6¼r). Eq (3) is regulated by the fac-

tor λ(λ� 1). Given the value of min
s;s6¼r

X

vi2cr

miðsÞ, the larger the factor λ, the less the number of

edges inside group cr, and the better the anti-community cr. And given the value of λ, the

higher the value of min
s;s6¼r

X

vi2cr

miðsÞ � l
X

vi2cr

miðrÞ; the better the anti-community cr.

Degree-based block model

In DBM, given K anti-communities, a K×Kmatrix Ωis adopted and its element ωrs denotes the

probability of edges connecting group cr and group cs, r,s = 1,2,. . .,K. Specifically, ωrr is the

probability of edges inside group cr. The probability of an edge connecting node vi and node vj
is didj/(2m)2 if edges are placed at random. Thus, the probability of an edge connecting node vi
and node vj with vi2cr,vj2cs is

Pij ¼ ors �
didj
ð2mÞ2

; vi 2 cr; vj 2 cs: ð4Þ

Since the probability of an edge connecting node vi and node vj independently meets a Poisson

distribution [22] with the mean of Pij, the possibility of generating graph G with edges inside

and among anti-communities can be written as follows

PðGinjΩ; gÞ ¼ P
i6¼j;vi ;vj2cr

ðPijÞ
aij

aij!
expð� PijÞ; ð5Þ

PðGoutjΩ; gÞ ¼ P
i 6¼ j; r 6¼ s

vi 2 cr; vj 2 cs

ðPijÞ
aij

aij!
expð� PijÞ; ð6Þ

where aij2{0,1} and aij! = 1. Eqs (5) and (6) can be written as follows after manipulations of the

equations

PðGinjΩ; gÞ ¼ P
r

P
vi2cr
ðdiÞ

2miðrÞ �P
r
½ðorrÞ

mrrð
1

4m2
Þ
mrrexpð� orr �

ðDrÞ
2
�
X

vi2cr

ðdiÞ
2

4m2
Þ�; ð7Þ

PðGoutjΩ; gÞ ¼ P
r

P
vi2cr
ðdiÞ

2mouti ðrÞ P
r;s;r 6¼s
½ðorsÞ

mrsð
1

4m2
Þ
mrsexpð� ors �

DrDs
4m2
Þ�: ð8Þ

wheremrr is twice the number of edges inside group cr,mrs is the number of edges between

group cr and group cs, Dr is the group degree of group cr,mouti ðrÞ is the number of edges con-

necting node vi to the nodes not belonging to cr. These variables are calculated as follows

mrr ¼
X

vi2cr

miðrÞ; ð9Þ

mrs ¼
X

vi2cr

miðsÞ; s 6¼ r; ð10Þ

Dr ¼
X

vi2cr

di; ð11Þ
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mouti ðrÞ ¼
XK

s¼1;s6¼r

miðsÞ: ð12Þ

Thus, the probability of generating graph G parameterized by Ω and g can be written as follow

after multiplying Eqs (7) and (8)

PðGjΩ; gÞ ¼ PðGinjΩ; gÞ � PðGoutjΩ; gÞ ¼
1

ð4m2Þ
2m P

vi
ðdiÞ

2di

�P
r
½ðorrÞ

mrrexpð� orr �

ðDrÞ
2
�
X

vi2cr

ðdiÞ
2

4m2
Þ� P
r;s;r 6¼s
½ðorsÞ

mrs � expð� ors �
DrDs
4m2
Þ�: ð13Þ

Eq (13) is to be maximized with respect to the matrix Ω and group membership g. However,

likelihood maximization cannot be carried out directly with the likelihood itself, but with its

logarithm. Neglecting constants and the terms independent of Ω and g, we obtain the loga-

rithm of Eq (13) as follow

lnPðGjΩ; gÞ ¼
X

r

ðmrrlnorr � orr �

ðDrÞ
2
�
X

vi2cr

ðdiÞ
2

4m2
Þ þ

X

r;s;r 6¼s

ðmrslnors � ors �
DrDs
4m2
Þ: ð14Þ

Here, we first maximize this expression with respect to the matrix Ω By using the method of

maximum-likelihood estimate, we take partial derivative of the elements in the matrix Ω and

obtain the estimation values of ωrr and ωrs

o
_

rr ¼
4m2mrr

ðDrÞ
2
�
X

vi2cr

ðdiÞ
2
; o
_

rs ¼
4m2mrs
DrDs

: ð15Þ

By first substituting Eq (15) into Eq (14) and then neglecting the constant 2m, we obtain the

maximization of Eq (14) with respect to group membership g

lnPðGjgÞ ¼
X

r

Mrr þ
X

r;s;r 6¼s

Mrs:

Mrr ¼
mrrln

4m2mrr
ðDrÞ

2
�
X

vi2r

ðdiÞ
2
; mrr > 0

0;mrr ¼ 0

;Mrs ¼
mrsln

4m2mrs
DrDs

;mrs > 0

0;mrs ¼ 0

:ð16Þ

8
><

>:

8
>><

>>:

Given the network partition C, we normalize lnP(G|g) by dividing it by a constant, twice the

number of edges 2m, to constrain the value of lnP(G|g) within relatively tight bounds. The nor-

malized objective function can be written as follow

QðCÞ ¼
1

2m
lnPðGjgÞ: ð17Þ

Eq (17) can be considered as a new objective function for evaluating anti-community struc-

ture. In Figs 1 and 2, two anti-community structures own the same number of edges and dif-

ferent number of edges inside and among anti-communities. The number of internal edges for

DBM and LEOA for anti-community detection
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each anti-community and the values of Q(C) for Figs 1 and 2 are shown in Table 1. We observe

that the partition in Fig 1 owns the less number of internal edges and a higher value of Q(C),

which indicates that the higher the value of Q(C), the less the number of internal edges, and

the better the anti-community structure. In addition, we find that the nodes with different

degree have different impacts on Q(C). Here, we respectively remove nodes v1, v2, v3 and v4

from Fig 1 and calculate the values of Q(C) for the remaining networks as shown in Fig 3. It

can be seen that the higher the degree of the removed node, the lower the value of Q(C) in the

remaining network, which indicates that the nodes with high degree have greater contribution

to Q(C) than the ones with low degree. In the proposed algorithm LEOA, we preferentially

consider the nodes with high degree so as to be effective for anti-community detection in

networks.

Local expansion optimization algorithm

In this paper, we decompose an anti-community into two parts: a central node and several

periphery nodes. As shown in Fig 4, node v1,node v5 and node v9 are the central nodes of red,

yellow and green anti-communities, respectively, which have no connection to their periphery

nodes and are highly connected with each other. Here, we call these central nodes as structural

centers. Detecting structural centers plays an important role in anti-community detection.

Once structural centers are detected, the number of anti-communities can be determined.

Fig 2. An example of anti-community structure.

https://doi.org/10.1371/journal.pone.0195226.g002

Table 1. The number of internal edges and the values of Q(C) for Figs 1 and 2.

Cases Fig 1 Fig 2

Anti-community Red Yellow Green Red Yellow Green

Internal Edge 1 1 1 2 2 2

Q(C) 4.567 4.487

https://doi.org/10.1371/journal.pone.0195226.t001

DBM and LEOA for anti-community detection
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In this subsection, we propose a Local Expansion Optimization Algorithm (LEOA) for

detecting anti-community structure in networks. In LEOA, we first detect structural centers

by the node influence, which is controlled by a cutoff distance lc. And then, we employ a local

search method to detect periphery nodes to expand structural centers into anti-communities.

Finally, we adjust the group membership of nodes by maximizing Q(C) so as to detect a better

Fig 3. Four anti-community structures. The degree of the four removed nodes v1, v2, v3, v4 and the values ofQ(C) for

the remaining networks are shown in (a), (b), (c), (d) respectively.(a) d1 = 8, Q(C) = 4.324. (b) d2 = 7,Q(C) = 4.357. (c)

d3 = 6,Q(C) = 4.448.(d) d4 = 5,Q(C) = 4.480.

https://doi.org/10.1371/journal.pone.0195226.g003

Fig 4. Structural centers and periphery nodes. The nodes in blue boxes are structural centers and the nodes in orange

boxes are periphery nodes.

https://doi.org/10.1371/journal.pone.0195226.g004
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anti-community structure. The main steps of the proposed algorithm LEOA are given in Algo-

rithm 1.
Algorithm 1. Local Expansion Optimization Algorithm (LEOA).
Input: (G,A,lc) /� A is the adjacent matrix of graph G = (V,E),and lc is
a cutoff distance. �/
Output:C = {c1,c2,. . .,cK} /� C is the final anti-community structure. �/
1: (S,K) = Structural Center Detection(G,A,lc)./� S is the set of struc-
tural centers and K is the number of structural centers.�/
2: C� = Local Anti-community Expansion(A,lc,S,K).
3: C = Group Membership Adjustment(C�).
4: return C.

Structural Center Detection (SCD). Definition 1. (Node Influence) Consider a graph

G = (V,E), the influence ηi of node vi is a set of nodes within the distance lc to node vi, which is

defined as follow

Zi ¼ fvjjdðlc � lijÞ ¼ 1g; ð18Þ

where δ(x) = 1 if x�0, and δ(x) = 0 otherwise. lc is a cutoff distance, and lij denotes the distance

between node vi and node vj. If lij�lc, node vj is influenced by node vi. |ηi| is the number of

nodes influenced by node vi. The higher the value of lc, the more the number of nodes influ-

enced by node vi, and the higher the value of |ηi|. When lc = l,only adjacent nodes of node vi
are influenced by node vi and |ηi| = di. When lc = L, where L is the diameter of the network,

|ηi| = n.

In SCD, structural centers are a set of nodes that influence each other, i.e., the distance

among structural centers is no more than lcWhen lc = l, structural centers are highly connected

with each other and constitute a complete subgraph. Here, we propose an iterative method for

structural centers detection. Given the set of structural centers S, we define a set of candidate

structural centers CSC to record the nodes that are influenced by S, CSC = {vj|lj,S�lc}, where

lj;S ¼ min
vi2S
ðlijÞ: In SCD, the node vj with j ¼ argmax

vj2CSC
ðjZjjÞ is repeatedly added into S until

CSC = ;. The main steps of structural centers detection are provided in Algorithm 2. At the

beginning, S = ;, CSC = ; and K = 0. K is the number of structural centers. First, we calculate

the influence of nodes by the breadth-first search method. And then, the node vi with i ¼

argmax
vi2V

ðjZijÞ is selected as the first structural center and added to S. And we set CSC= ηi. Next,

the node vj with j ¼ arg max
vj2CSC

ðjZjjÞ is chosen as the second structural center and added into S.

And we remove node vj from CSC. Since some nodes in CSCmay not be influenced by node vj,
the nodes satisfying {vk|vk2CSC,ljk>lc} are deleted from CSC so as to maintain that the nodes

in CSC are influenced by S. We repeatedly execute this operation until CSC = ; and all struc-

tural centers are detected.
Algorithm 2. Structural Center Detection (SCD).
Input:(G,A,lc) /� A is the adjacent matrix of graph G = (V,E), and lc is
a cutoff distance. �/
Output:(S,K)/� S is the set of structural centers and K is the number
of structural centers. �/
1: S = ;,CSC = ;,K = 0./� CSC is the set of candidate structural cen-
ters. �/

Table 2. The procedure of structural centers detection in Fig 4.

S ; {v1} {v1,v5} {v1,v5} {v1,v5,v9} {v1,v5,v9}

CSC ; {v5,v6,v7,v8,v9,v10,v11,v12} {v6,v7,v8,v9,v10,v11,v12} {v9,v10,v11,v12} {v10,v11,v12} ;

https://doi.org/10.1371/journal.pone.0195226.t002
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2: Calculate the influence of nodes by the breadth-first search method.
3: i ¼ arg max

vi2V
ðjZijÞ; S = {vi}, K = K+1, and CSC = ηi.

4: while CSC 6¼ ; do
5: j ¼ arg max

vj2CSC
ðjZjjÞ; CSC = CSC−{vj}.

6: S = S+{vj}, K = K+1.
7: for each node vk2CSC do
8: if (ljk>lc) then
9: CSC = CSC−{vk}.
10: end if
11: end for
12:end while
13:return (S,K).

Here, we take Fig 4 with cutoff distance lc = 1 as an example to present the procedure of

structural centers detection, as shown in Table 2. Initially, S = ; and CSC = ;. First, we calculate

the influence of nodes and find that nodes v1, v5 and v9 own the maximal influence in Fig 4.

Then, we randomly select node v1 as the first structural center and add it to S. And the nodes

that are influenced by node v1 are regarded as candidate structural centers and added to CSC.

In CSC, nodes v5 and v9 have the maximal influence and we randomly select node v5 as the sec-

ond structural center. Thus, we add node v5 to S and remove it from CSC. It can be found that

nodes v6, v7 and v8 are not influenced by node v5 due to that the distances between node v5 and

nodes v6, v7 and v8 are more than lc. Therefore, we delete them from CSC so as to maintain that

the nodes in CSC are influenced by S. Next, node v9 has the maximal influence in CSC and we

select node v9 as the third structural center and remove it from CSC. Due to that distances

between node v9 and nodes v10, v11 and v12 are more than lc, we delete nodes v10, v11 and v12

from CSC. Finally, CSC = ; and nodes v1, v5 and v9 are detected as structural centers in the

network.

Local Anti-community Expansion (LAE). In SCD, K structural centers have been

detected for K anti-communities. In this subsection, we aim to expand the structural centers

into anti-communities by a local search method. Here, we define a local anti-community mea-

sure, i.e. disassortative density, for local anti-community expansion.

Definition 2. (Disassortative Density) For group cr with nr nodes andmredges inside, the

disassortative density is defined as follow

Br ¼

X

vi2cr

jZij

2mr þ 1
: ð19Þ

If lc = 1, Br ¼ ð
X

vi2cr

diÞ=ð2mr þ 1Þ: Given the value of
X

vi2cr

jZij, the higher the value of Br, the less

the number of edges inside group cr, and the more disassortative the group cr.
In LAE, we preferentially consider the nodes with high degree. For each unassigned node

vj, we first calculate the increment of disassortative density DBcrþfvjg when node vj is added into

group cr, r = 1,2,. . .,K. And then we add node vj into the group cr with r ¼ argmax
r¼1;2;...;K

ðDBcrþfvjgÞ.

If different groups have the same maximal increment of disassortative density, we break this

ties by favoring the influence of the group
X

vi2cr

jZij. The increment of disassortative density
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DBcrþfvjg can be calculated in Eq (20) and the main steps of LAE are given in Algorithm 3.

DBcrþfvjg ¼

jZjj þ
X

vi2cr

jZij

2mjðrÞ þ 2mr þ 1
�

X

vi2cr

jZij

2mr þ 1
; ð20Þ

wheremj(r) is the number of edges connecting node vj and the nodes in group cr.
Algorithm 3. Local Anti-community Expansion (LAE).
Input: (A,lc,S,K)
Output: C� = {c1,c2,. . .,cK} /�C� is the anti-community structure after
local anti-community expansion. �/
1: C� = ; and r = 1.
2: for each node vi2S do /� Assign K structural centers into K anti-com-
munities. �/
3: cr = {vi}.
4: C� = C�[{cr}.
5: r = r+1.
6: end for
7: Sort the unassigned nodes in a descending order by the node degree,
denoted as V.
8: for each node vj2V do
9: Calculate DBcrþfvjg; r = 1,2,. . .,K.

10: R ¼ frj arg max
r¼1;2;...;K

ðDBcrþfvjgÞg; r ¼ arg max
r2R

ð
X

vi2cr

jZijÞ:

11: cr = cr+{vj}.
12:end for
13:return C�.

Group Membership Adjustment (GMA). As mentioned above, the higher the objective

function Q(C), the better the anti-community structure. In GMA, we aim to adjust the group

membership of nodes by maximizing Q(C) so as to explore a better anti-community structure.

For node vi, we calculate the increment of Q(C) when node vi is removed from the group cr
it belongs to and added into a new group cs. The increment value can be calculated as follows

DQðCÞcsþfvigcr � fvig
¼

1

2m
DlnPðGjgÞcsþfvigcr � fvig

;

DlnPðGjgÞcsþfvigcr � fvig
¼ m�r�r ln

4m2m�r�r

ðD�r Þ
2
�
X

vj2c�r

ðdjÞ
2
þm�s�s ln

4m2m�s�s

ðD�sÞ
2
�
X

vj2c�s

ðdjÞ
2

þ2m�r�s ln
4m2m�r�s

D�rD�s
þ 2

XK

k¼1;k6¼r;s

m�rkln
4m2m�rk

D�rDk
þ 2

XK

k¼1;k6¼r;s

m�skln
4m2m�sk

D�sDk

� mrrln
4m2mrr

ðDrÞ
2
�
X

vj2cr

ðdjÞ
2
� mssln

4m2mss
ðDsÞ

2
�
X

vj2cs

ðdjÞ
2
� 2mrsln

4m2mrs
DrDs

� 2
XK

k¼1;k6¼r;s

mrkln
4m2mrk
DrDk

� 2
XK

k¼1;k6¼r;s

mskln
4m2msk
DsDk

; ð21Þ

where c�r ¼ cr � fvig; c�s ¼ cs þ fvig;m�r�r andm�s�s are twice the number of edges inside group

c�r and group c�s ; respectively, D�r and D�s are group degree of group c�r and group c�s ; respectively,

DBM and LEOA for anti-community detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0195226 April 18, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0195226


m�r�s is the number of edges between group c�r and group c�s ;m�rk is the number of edges between

group c�s and group ck,m�sk is the number of edges between group c�s and group ck. These vari-

ables can be computed as follows

m�r�r ¼ mrr � 2miðrÞ

m�s�s ¼ mss þ 2miðsÞ

D�r ¼ Dr � di
D�s ¼ Ds þ di
m�r�s ¼ mrs � miðsÞ þmiðrÞ

m�rk ¼ mrk � miðkÞ

m�sk ¼ msk þmiðkÞ

k ¼ 1; 2; . . . ;K; k 6¼ r; s; r 6¼ s

; ð22Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

wheremi(r) is the number of edges connecting node vi and the nodes in group cr,mi(s) is the

number of edges connecting node vi and the nodes in group cs, andmi(k) is the number of

edges connecting node vi and the nodes in group ck.
For the convenience of calculating DQðCÞcsþfvigcr � fvig

in the latter group membership adjustment,

we need to update the values ofm�r�r ;m�s�s ; D�r ; D�s ;m�r�s ;m�rk;m�sk;mjð�rÞ andmjð�sÞ (k = 1,2,. . .K,k
6¼ r,s and aij = 1), when node vi is moved from group cr to group cs.The first seven variables can

be updated by Eq (22).mjð�rÞ andmjð�sÞ are updated as follows

mjð�rÞ ¼ mjðrÞ � aij
mjð�sÞ ¼ mjðsÞ þ aij

: ð23Þ

(

Due to that the nodes with high degree have greater impacts on Q(C) than the ones with

low degree, the nodes with high degree are preferentially considered here. For each node vi, we

calculate DQðCÞcsþfvigcr � fvig
(s = 1,2,. . .K, and s 6¼ r) and then move node vi to group cs with s ¼

argmaxð
s¼1;2;...;K;s6¼r

DQðCÞcsþfvigcr � fvig
Þ and DQðCÞcsþfvigcr � fvig

> 0. This operation is repeated until no increment of

DQðCÞcsþfvigcr � fvig
can be found. The main steps of GMA are provided in Algorithm 4.

Algorithm 4. Group Membership Adjustment (GMA).
Input: C�

Output: C = {c1,c2,. . .,cK}/� C is the final anti-community structure. �/
1: Initialize mrr, mrs and mi(r), r,s = 1,2,. . .,K,r 6¼ s, and i = 1,2,. . .,
n.
2: Sort nodes in a descending order by the node degree, denoted as V,
and C = C�.
3: repeat
4: Δ = 0. /� Δ is used for calculating the sum of DQðCÞcsþfvigcr � fvig

for each
iteration. �/
5: for each node vi2V do
6: Calculate DQðCÞcsþfvigcr � fvig

; s = 1,2,. . .,K, and s 6¼ r./� cr is the anti-com-
munity which node vi belongs to. �/

7: s ¼ arg maxs¼1;2;...;K;s6¼rðDQðCÞ
csþfvig
cr � fvig

Þ:

8: if ðDQðCÞcsþfvigcr � fvig
> 0Þ then /� Move node vi from group cr to group cs.�/

9: cr = cr−{vi},cs = cs−{vi}.
10: Update the variables by Eqs (22) and (23).

11: D ¼ Dþ DQðCÞcsþfvigcr � fvig
:
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12: end if
13: end for
14: until Δ = 0.
15: return C.

Complexity analysis

In this subsection, we analyze the computational complexity of the proposed algorithm LEOA.

Given graph G = (V,E) with n nodes andm edges, the complexity of calculating the influence

of node vi isOð�dlcÞ; where �d is the average degree of nodes. Thus, it needs Oð�dlcnþ nÞ to detect

structural centers. In LAE, it needs O(nlogn) to sort the unassigned nodes in a descending

order by the node degree. And for each unassigned node vi, the complexity of assigning node

vi to the group with the maximal increment of its disassortative density is O(di+K), where di is
the degree of node vi. So the complexity of local anti-community expansion is O(nlogn+m+

nK). In GMA, the complexity of calculating DQðCÞcsþfvigcr � fvig
is O(di+K) and the complexity of

updating variables by Eqs (22) and (23) is O(di). Thus, it requires O(mK+nK2) to adjust the

group membership of nodes. The total complexity of LEOA is O½nð�dlc þ lognþ K2Þ þmK�:
In our experiments, we find that LEOA achieves the best performance when lc = 1, so the time

complexity of LEOA is O(nlogn+nK2+mK).

Experiments

In this section, we evaluate the performance of LEOA on synthetic benchmark DBM-Net and

17 real-world networks [30–32]. The experiments on DBM-Net aim to test the ability of LEOA

to detect known anti-communities, while the experiments on real-world networks are to access

its performance in real applications. Here, we compare LEOA with its variant LEOA� and five

state-of-the-art anti-community detection algorithms: Spectral [18], Di-Spectral [12], E-Model

[26], M-Model [23] and LPAD [13]. LEOA� does not take the node degree into consideration

and randomizes the node order for LAE and GMA. Spectral and Di-Spectral utilize negative

eigenvalues and eigenvectors of modularity matrix for anti-community detection. E-Model

and M-Model are two block models for structural regularities detection optimized by EM algo-

rithm. LPAD is a recently proposed anti-community detection algorithm based on label prop-

agation. Due to that EM often converges to local optima, we repeatedly carry out EM

algorithm 20 times with different initial values for E-Model and M-Model and output the best

result for each network. All algorithms are independently run 20 times for each experimental

network. The comparison algorithms are conducted by C# on a PC with Intel (R) Core i5-

4460 3.20 GHz and 4GB real memory.

As DBM-Net and real-world disassortative networks have known anti-community struc-

tures, we adopt the Normalize Mutual Information [33] (NMI) to estimate the similarity

between the true partition and the detected one. Assuming that the true partition of a network

with n nodes is C1 and the detected one is C2, NMI(C1,C2) can be computed as

NMIðC1;C2Þ ¼

� 2
XKC1

i¼1

XKC2

j¼1

fijlog½fijn=ðfi�f�jÞ�

XKC1

i¼1

fi�logðfi�=nÞ þ
XKC2

i¼1

f�jlogðf�j=nÞ

; ð24Þ

where F is a confusing matrix, its element fij records the number of the same nodes of the ith
group of C1 and the jth group of C2, fi�(f.j) is the sum of the elements of the ith row (jth column)

in F, and KC1
ðKC2
Þ represents the number of groups in partition C1(C2). The value of NMI is
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between [0,1] and the larger value of NMI indicates that the detected structure is more accor-

dant with the true one.

Datasets

Synthetic benchmark DBM-Net. To our knowledge, there is no benchmark designed for

anti-community detection. Inspired by the formulation of DBM, we develop a new benchmark

called DBM-Net for comparison algorithms in detecting known anti-community structures.

Most of complex networks in real-world are scale-free networks [34], where node degree

follows a power law distribution. Thus, we set that the node degree for DBM-Net follows a

power law distribution with exponent β and coefficient α, which means that the probability of

randomly selecting a node with di degree is P(di) = α(di)−β. Given the value of exponent β, the

maximal degree dmax and the minimal degree dmin, the coefficient α can be calculated as follow

a ¼
1

Xdexp

di¼dmin

ðdiÞ
� b

: ð25Þ

So the number of nodes with di degree is n(di) = bn×P(di)c, di2[dmin,dmax], and the number of

edgesm can be calculated as follow

m ¼ 0:5
Xdexp

di¼dmin

dibn� PðdiÞc

6
6
6
4

7
7
7
5; ð26Þ

Given the number of groups K, the number of edges inside and among groupsmrr,mrs (r,
s = 1,2,. . .,K, and r 6¼ s) are constrained by Eq (27).

XK

r¼1

mrr þ
XK

r¼1

XK

s¼1;s6¼r

mrs ¼ 2m

lmrr � min
s;s6¼r
mrs; r ¼ 1; 2; . . . ;K

: ð27Þ

8
>><

>>:

For simplicity, we set that the values ofmrr are the same for r = 1,2,. . .,K, and the values ofmrs
are also the same for r,s = 1,2,. . .,K, r 6¼ s. Thus, we obtain (mrr)min = 0 and (mrr)max = b2m/(K
+λK2−λK)c. Given the degree of each node, the number of nodes nr in group cr satisfies the fol-

lowing constraints

XK

r¼1

nr ¼ n

XK

r¼1

X

vi2cr

di ¼ 2m

; ð28Þ

8
>>>>><

>>>>>:

where
X

vi2cr

di ¼ Dr: Here, we take the assumption that the group degree follows a uniform dis-

tribution, i.e., the group degree for group cr is Dr = b2m/Kc, r = 1,2,. . .,K. The main steps of

establishing synthetic benchmark DBM-Net are described in Algorithm 5.
Algorithm 5. DBM-Net Establishment.
Input: (n,K,mrr,β,dmin,dmax,λ)
Output: (C = {c1,c2,. . .,cK},A) /� C is the anti-community structure, A is
the adjacent matrix. �/
1: Calculate the coefficient α according to Eq (25).
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2: Calculate the values of n(di)and randomly assign n(di) nodes with di
degree, di2[dmin,dmax].
3: Calculate the number of edges m according to Eq (26).
4: Randomly assign nr nodes into group cr with the group degree Dr =
b2m/Kc, r = 1,2,. . .,K.
5: Calculate the number of edges mrs between group cr and group cs,

mrs ¼
2m� Kmrr
KðK� 1Þ

j k
, r,s = 1,2,. . .K,r 6¼ s.

6: Calculate the estimation values of ωrr and ωrs according to Eq (15).
7: for r = 1 to K do
8: for each pair of nodes vi,vj2cr do
9: Calculate the probability of an edge connecting node vi and node

vj, Pij ¼ orr �
didj
ð2mÞ2

:

10: Generate a random number P2[0,1].
11: if (P�Pij) then
12: aij = 1./� There is an edge connecting node vi and node vi.�/
13: else
14: aij = 0. /� There is no edge connecting node vi and node vj.�/
15: end if
16: end for
17:end for
18:for r, s = 1 to K do /� r 6¼ s�/
19: for each pair of nodes vi2cr,vj2cs do
20: Calculate the probability of an edge connecting node vi and node

vj, Pij ¼ ors �
didj
ð2mÞ2

:

21: Generate a random number P2[0,1].
22: if (P�Pij) then
23: aij = 1.
24: else
25: aij = 0.
26: end if
27: end for
28:end for
29:return (C = {c1,c2,. . .,cK},A).

Real-world networks

In this paper, we adopt 17 real-world networks [30–32] to evaluate the performance of LEOA,

which are divided into two categories: disassortative network and assortative network as

shown in Tables 3 and 4, respectively. The experiments on disassortative networks aim at vali-

dating the effectiveness of LEOA in exploring known partitions in real applications. Due to

that the observed structure in an assortative network is a community structure, the experi-

ments on assortative networks are to test whether LEOA is capable of detecting anti-commu-

nity structure when the detected structure is inconsistent with the observed one. Here, we

adopt NMI and Q(C) for evaluation in disassortative and assortative networks, respectively.

In disassortative networks, (1) Southern women describes the participation of 18 women in

14 social events in 1930s. (2) Divorce in US illustrates the relationship of 9 main causes of the

divorce cases in 50 states of USA. (3) Cities and services provides the distribution of offices for

Table 3. Disassortative network.

Network n m L Network n m L
Southern women 32 89 4 Nouns and adjectives 112 425 5

Divorce in US 59 225 4 Interlocks in Scotland 244 358 1

Cities and services 101 1342 3 Unicode languages 868 1255 1

https://doi.org/10.1371/journal.pone.0195226.t003
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46 global advanced producer service firms over 55 cities. (4) Nouns and adjectives describes a

co-occurrence network of Nouns and adjectives in the novel David Copperfield. (5) Interlocks
in Scotland characterizes the relationship between 108 Scottish firms and 136 multiple direc-

tors during 1904–1905. (6) Unicode languages illustrates the usage of 254 languages over 614

territories around the world. Due to that Interlocks in Scotland contains 15 isolated nodes and

Unicode languages consists of 5 connecting components, their diameters L are1.

In assortative networks, (1) Karate is a friendship network between 34 members of a karate

club at a US university in the 1970s, which is divided into two communities due to the dis-

agreement between the administrator and the instructor. (2) Dolphin is a social network of

frequent associations among 62 dolphins living in Doubtful Sound, New Zealand and it is

divided into two communities according to their age. (3) US politics books describes a frequent

co-purchasing network of US politics books by the same buyers in Amazon. The books fall

into three types: liberal, neutral, and conservative. (4) Football is a network of American foot-

ball games among 115 Division IA teams during regular season in Fall 2000. The teams are

divided into 12 conferences and the games are more frequent among the teams in the same

conference than the ones in different conferences. (5) Elegans describes the relationship

between 453 metabolic molecules in a metabolic process. (6) Air traffic control is a network

of travel routes among 1226 airports and service centers. (7) Political blogs describes a hyper-

links network among 1490 weblogs on US politics. (8) Netscience is a collaboration network

of scientists working on network theory and experiment. (9)Human protein illustrates inter-

actions among 4941 proteins of human; (10) Power represents the topology of the Western

States Power Grid of USA. (11) DBLP cite is a network describing the citations among 12591

publications.

Performance evaluation

The cutoff distance lc has great impacts on the number of anti-communities K, the computa-

tional cost and effectiveness of LEOA. As mentioned in complexity analysis of LEOA, the

higher the value of lc, the higher the computational cost of LEOA. As DBM-Net and real-world

disassortative networks have known anti-community structures, we analyze the impacts of cut-

off distance lc on NMI and the number of anti-communities K in DBM-Net and real-world

disassortative networks. Here, four datasets DBM-Net (n = 500, K = 2,mrr = 0, β = 2, dmin =

10, dmax = 50) with L = 5, Southern women, Cities and services and Unicode languages are

selected for performance evaluation.

Fig 5 shows the results of NMI and K for different values of lc It can be observed that the

increase of lc leads to the decrease of NMI and the increase of K. The reason is that as lc
increases, |ηi| is also increases, i = 1,2,. . .n, leading to the increase of the nodes that influence

each other and the increase of the structure centers explored by SCD, which results in the

decrease of NMI. When lc = 1, LEOA outputs two anti-communities in these four networks

Table 4. Assortative network.

Network n m L Network N m L
Karate 34 78 5 Political blogs 1490 19090 8

Dolphin 62 159 8 Netscience 1589 2742 17

US politics books 105 441 7 Human protein 3133 6726 10

Football 115 613 4 Power 4941 6594 46

Elegans 453 2025 7 DBLP cite 12591 49743 10

Air traffic control 1226 2615 17

https://doi.org/10.1371/journal.pone.0195226.t004
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and the values of NMI are higher than those when lc = 1. Thus, we set lc = 1 in this paper.

When lc = L, all nodes influence each other and each node forms an anti-community, which

leads to the lowest NMI. In addition, we find that the number of nodes that influence each

other increases greatly in cases of DBM-Net and Unicode languages when 3�lc�4. This may

explain the results that K increases greatly in these two networks when 3�lc�4.

Performance comparison on DBM-Net

In this subsection, comparison algorithms are applied to DBM-Net to evaluate their perfor-

mance in detecting known anti-community structure. We first evaluate the performance of

comparison algorithms on DBM-Net with the increase of twice the number of internal edges

mrr. Whenmrr = (mrr)min, no edge can be found in each group and DBM-Net degenerates into

a multipartite network. When (mrr)min<mrr�(mrr)max, λmrr is less than or equal tomrs (s =

1,2,. . .,K, and r 6¼ s) and DBM-Net is a network with anti-community structure according to

Eq (3). Whenmrr>(mrr)max, DBM-Net does not have the characteristics of anti-community

structure anymore. For comparison, we set n = 500, K = 2, β = 2, dmin = 10, dmax = 50, λ = 2

andmrr varies from (mrr)min to (mrr)max with an increment of (mrr)max/10. For each value of

mrr, 20 networks are generated and the results of comparison algorithms are shown in Fig 6. It

can be observed that the increase ofmrr leads to the decrease of NMI because internal edges

weaken the anti-community structure and increase the difficulty of anti-community detection.

It can be seen that Spectral outputs higher values of NMI than LEOA exceptmrr = (mrr)min.

The reason is that whenmrr = (mrr)min, the number of structural centers detected by SCD is

equal to the number of groups in the true partition, which helps LAE and GMA to find the

true partition. Whenmrr>(mrr)min, there are some edges inside each group in the true parti-

tion and the number of structural centers detected by SCD may be more than the number of

groups in the true partition, which results in that some groups in the true partition may be

split into several small groups and the values of NMI decrease. We observe that the higher the

Fig 5. The results of NMI and the number of anti-communities K for different values of lc. (a) DBM-Net. (b)

Southern women. (c) Cities and services. (d) Unicode languages.

https://doi.org/10.1371/journal.pone.0195226.g005
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value ofmrr, the more the number of structural centers detected by SCD, and the lower the

value of NMI. Due to that the number of anti-communities explored by Di-Spectral is much

more than the one in the true partition, its values of NMI are lower than those output by Spec-

tral and LEOA. Although EM algorithm is repeatedly carried out with different initial values

for E-Model and M-Model, it is still easy for them to fall into local optima and the results out-

put by these two algorithms rely on the threshold of EM algorithm. In addition, we find that

the values of NMI output by LPAD are lower than those output by other algorithms in most

cases. On one hand, LPAD selects compatible nodes for label updation but the order of com-

patible nodes selection has great impacts on its accuracy. On the other hand, no internal edge

is allowed in the results output by LPAD, which leads to that the higher the value ofmrr, the

more the number of groups detected by LPAD, and the lower the value of NMI. It can be seen

that the values of NMI provided by LEOA� are lower than those provided by LEOA, which

indicates that consideration of node degree in LAE and GMA can improve the effectiveness of

LEOA for anti-community detection in DBM-Net.

To further verify the effectiveness of LEOA in detecting known anti-community structures,

we apply the comparison algorithms to DBM-Net with the increase of the number of groups

K. When K = 1, DBM-Net consists of only one anti-community. And when K = n, each node

forms an anti-community. For comparative experiments, we set n = 500,mrr = 0, β =2, dmin =

10, dmax = 50, and K varies from 2 to 10. The NMI results of comparison algorithms are shown

in Fig 7. It can be seen that with the increase of K, it becomes more and more difficult for the

algorithms to detect the true partition. The reason is that as K increases, each node has a higher

probability to be assigned to a wrong group, especially in the early stage of the algorithms. And

when K�7, all algorithms fail to find the true partition (NMI�0). It can be observed that when

2�K�4, the NMI results of LEOA fall more slowly than those of other algorithms, but when

4<K�6, the NMI results of LEOA fall faster than those of other algorithms. The reason is that

when 2�K�4, the number of structural centers detected by SCD is equal to the number of

groups in the true partition, leading to high values of NMI (NMI�0.8) and a slow descent of

NMI. In cases of 4<K�6, LEOA cannot detect the structural centers for some groups in the

true partition, because all nodes in these groups are not highly connected with the structural

centers in other groups, which leads to the wrong assignments of the nodes and a fast descent

of NMI.

As mentioned above, the factor λ in Eq (3) controls the number of edges inside and among

anti-communities. Here, we evaluate the performance of comparison algorithms in DBM-Net

with the increase of the factor λ For comparison, we set n = 500, K = 2, β =2, dmin = 10, dmax =

Fig 6. The results of NMI of comparison algorithms on DBM-Net for different values of mrr.

https://doi.org/10.1371/journal.pone.0195226.g006
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50, λmrr =mrs (s = 1,2,. . .,K, and r 6¼ s)and λ varies from 1 to 10. The results of NMI of compar-

ison algorithms are shown in Fig 8. It can be observed that the increase of λ leads to the

increase of NMI. Given the number of edgesm, the higher the value of λ, the fewer the number

of edges inside groups, and the more the number of edges among groups, which is easier for

the algorithms to detect the true partition and leads to high values of NMI.

Performance comparison on real-world networks

Table 5 shows the results of comparison algorithms on 6 disassortative networks. It can be

observed that all algorithms output the true partitions for the first three networks. In the

remaining networks, LEOA provides the highest values of NMI. It can be found that the NMI

results of all algorithms on Nouns and adjectives are less than 0.4. The reason is that there are

some edges among nouns nodes and some edges among adjectives nodes, which leads to an

incomplete bipartite network and increases the difficulty of the algorithms to explore the true

partition. As LAE and GMA may generate some edges inside groups, which is suitable to

Nouns and adjectives, LEOA provides a higher NMI than others. We observe that the values

of NMI of all algorithms on Interlocks in Scotland are less than 0.5. The main reason is that

Interlocks in Scotland contains 15 isolated nodes, which affect the calculation of eigenvalues

and eigenvectors of modularity matrix for Spectral and Di-Spectral and the calculation of

Fig 7. The results of NMI of comparison algorithms on DBM-Net for different values of K.

https://doi.org/10.1371/journal.pone.0195226.g007

Fig 8. The results of NMI of comparison algorithms on DBM-Net for different values of λ.

https://doi.org/10.1371/journal.pone.0195226.g008
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maximum likelihood optimized by EM algorithm for E-Model and M-Model. Due to that the

isolated nodes are compatible with any other node, LPAD cannot accurately determine the

labels for these nodes. In addition, LEOA always assigns the isolated nodes to the group with

the maximal group size so as to output higher Q(C). These reasons result in the wrong assign-

ments of isolated nodes and even affect the assignments of other nodes, leading to the low val-

ues of NMI. In addition, we find that all algorithms cannot detect the true partition in Unicode
languages. The reason is thatUnicode language consists of 5 connected components with bipar-

tite structure, leading to that 16 different partitions can be obtained by randomly combining

the connected components into a final bipartite structure. And the bipartite structures

detected by the comparison algorithms are different from the true one. It can be observed that

the NMI results provided by LEOA are higher than those provided by LEOA� in the last three

networks, which demonstrates that node degree factor in LEOA can enhance the accuracy of

LEOA. From these results, we can see that LEOA achieves good performance for anti-commu-

nity detection in experimental disassortative networks.

Table 6 shows the results of the comparison algorithms on 11 assortative networks. Due to

that the observed structure in an assortative network is a community structures and the results

output by E-Model and M-Model are highly dependent on the observed one of a network,

they cannot output anti-community structure on an assortative network and their results are

not considered here. It can be seen that the values of Q(C) provided by LEOA are higher than

those provided by other algorithms, which indicates that LEOA is superior to other algorithms

for experimental assortative networks.

To further compare the comparison algorithms, we take assortative network Karate as an

example and their results are shown in Fig 9. In Karate, the disagreement between the

Table 5. Experimental results of comparison algorithms on disassortative networks.

Datasets NMI
Spectral Di-Spectral E-Model M-Model LPAD LEOA� LEOA

Southern women 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Divorce in US 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cities and services 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Nouns and adjectives 0.191 0.311 0.022 0.203 0.095 0.303 0.323

Interlocks in Scotland 0.041 0.051 0.204 0.317 0.106 0.285 0.455

Unicode languages 0.163 0.286 0.241 0.297 0.031 0.292 0.362

https://doi.org/10.1371/journal.pone.0195226.t005

Table 6. Experimental results of comparison algorithms on assortative networks.

Datasets Q(C)

Spectral Di-Spectral LPAD LEOA� LEOA

Karate 5.249 5.308 5.286 5.337 5.351

Dolphin 5.863 5.833 5.962 6.009 6.165

US politics books 6.910 6.797 6.971 6.972 7.000

Football 7.173 7.130 7.266 7.637 7.872

Elegans 8.416 8.371 8.484 8.811 8.835

Air traffic control 8.544 8.551 8.770 8.774 8.778

Political blogs 10.440 10.484 10.506 11.084 11.091

Netscience 8.975 8.611 8.889 9.805 9.877

Human protein 9.499 9.645 9.586 9.664 9.687

Power 9.657 9.781 9.880 9.878 9.886

DBLP cite 8.674 8.762 8.772 8.773 8.779

https://doi.org/10.1371/journal.pone.0195226.t006
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administrator (node v1 and the instructor (node v34) leads to the division of the network into

two groups. We observe that the partitions output by Spectral, Di-Spectral, LPAD, LEOA� and

LEOA are anti-community structures, while the partitions output by E-Model and M-Model

are community structures. These results indicate that LEOA is capable of exploring anti-com-

munity structure in assortative networks. It can be seen that some groups detected by Spectral,

Di-Spectral and LPAD consist of two or three nodes, leading to that a few negative relations

can be explored in these groups. In addition, we find that only LEOA assigns node v1 and node

v34 into the same anti-community and reveals the negative relation between the administrator

and the instructor. The reason is that node v34 owns the highest degree (d34 = 17) in Karate. In

SCD, node v34, node v32 and node v33 are regarded as structural centers. And then node v1 is

first considered in LAE because it owns the highest degree (d1 = 16) in the remaining nodes.

We find that node v1 outputs the highest increment of disassortative density when it is added

into the group of node v34 and the group of node v33. Due to that |η34|>|η33|, node v1 is added

into the group of v34. In GMA, the group memberships of node v1 and node v34 are not

changed. These results demonstrate that the consideration of node degree in LEOA can help

explore the negative relations among objects.

Efficiency analysis

In this subsection, we compare the running time of the comparison algorithms on DBM-Net

to evaluate the efficiency of LEOA. First, we apply them to DBM-Net with K = 2,mrr = 0, β =2,

dmin = 10, dmax = 50, and n2[500,5000] as shown in Fig 10(A). It can be observed that the

Fig 9. The results of comparison algorithms for Karate. (a) Spectral. (b) Di-Spectral. (c) E-Model. (d) M-Model. (e)

LPAD. (f) LEOA�. (g) LEOA.

https://doi.org/10.1371/journal.pone.0195226.g009
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running time of E-Model gets close to that of LPAD as n increases, but when n�1500,

E-Model is more efficient than LPAD. The reason is that LPAD needs O(n) to determine

whether the label of each node is changed in each iteration, so it requires more computational

cost than E-Model. In order to validate the performance of comparison algorithms in larger

networks, we apply the comparison algorithms to DBM-Net with n2[10000,100000] as shown

in Fig 10(B). We find that Spectral and Di-Spectral cannot output the results within 24 hours

when n�30000, because with the increase of the number of nodes n and the number of edges

m, the scale of DBM-Net increases and then the running time for calculating the eigenvalues

and eigenvectors of the modularity matrix increases greatly. It can be seen that LEOA� requires

less running time than LEOA, because the complexity of sorting the nodes in a descending

order by the node degree is O(nlogn), while the complexity of randomizing the node order for

LEOA� is O(n). From the curves, we can conclude that LEOA is more efficient than five state-

of-the-art algorithms in DBM-Net.

Conclusions

In this paper, we propose a Degree-based Block Model (DBM) for anti-community structure.

In DBM, we take the node degree into consideration and obtain a objective function Q(C) for

evaluation. A local expansion optimization algorithm LEOA is designed, in which the nodes

with high degree are preferentially considered. Based on the formulation of DBM, a synthetic

benchmark DBM-Net is developed for evaluating the algorithms in detecting known anti-

community structures. The proposed algorithm LEOA is applied to DBM-Net with up to

100000 nodes and 17 real-world networks and compared with its variant LEOA� and five

state-of-the-art anti-community detection algorithms. The experimental results demonstrate

the effectiveness and efficiency of LEOA for anti-community detection in networks and

exploring negative relations among objects.

There are still some problems to be solved in our future work. First, we find that the edges

inside groups have great impacts on the number of structural centers detected by SCD, which

leads to the low performance when LEOA is applied to the networks with edges inside groups.

In our future work, we plan to employ some priori information by merging some nodes into

small groups not to be divided in later operations. This strategy will further improve the effec-

tiveness and efficiency of the algorithm. Second, we find that the number of structural centers

detected by SCD is less than the number of anti-communities K in the true partitions when K
is large. In the future, we will divide some groups into two subgroups when the number of

edges inside group is more than a certain threshold. Third, it can be seen that the preferential

consideration of nodes with high degree can improve the effectiveness of LEOA. However, the

node order sorted by the node degree may not output the best result for each network. In the

Fig 10. The running time of comparison algorithms on DBM-Net.

https://doi.org/10.1371/journal.pone.0195226.g010
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future, we aim to analyze the order of node and select the best node sequence for each network

so as to output a better anti-community structure. Finally, DBM-Net is designed based on the

assumptions that the group degree and the number of internal edges for each group are the

same and each group pair shares the same number of external edges. More complicated bench-

mark with heterogeneous distribution of group degree and edges number should be consid-

ered in the future.
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