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Abstract

The atom-bond connectivity index (or, for short, ABC index) is a molecular structure descrip-

tor bridging chemistry to graph theory. It is probably the most studied topological index

among all numerical parameters of a graph that characterize its topology. For a given graph

G = (V, E), the ABC index of G is defined as ABCðGÞ ¼
P

ij2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdi þ dj � 2Þ=ðdidjÞ

q
, where di

denotes the degree of the vertex i, and ij is the edge incident to the vertices i and j. A combi-

nation of physicochemical and the ABC index properties are commonly used to foresee the

bioactivity of different chemical composites. Additionally, the applicability of the ABC index

in chemical thermodynamics and other areas of chemistry, such as in dendrimer nanostars,

benzenoid systems, fluoranthene congeners, and phenylenes is well studied in the litera-

ture. While finding of the graphs with the greatest ABC-value is a straightforward assign-

ment, the characterization of the tree(s) with minimal ABC index is a problem largely open

and has recently given rise to numerous studies and conjectures. A B1-branch of a graph is

a pendent path of order 2. In this paper, we provide an important step forward to the full char-

acterization of these minimal trees. Namely, we show that a minimal-ABC tree contains nei-

ther 4 nor 3 B1-branches. The case when the number of B1-branches is 2 is also considered.

Introduction

The atom-bond connectivity index, widely known as ABC index, of a graph is a thoroughly

studied vertex-degree-based graph invariant both in chemistry and mathematical communi-

ties. For a given simple graph G = (V, E), let us denote by du the degree of vertex u, and uv the

edge incident to the vertices u and v. The atom-bond connectivity index (or, simply, ABC

index) is a vertex-degree-based graph topological index, which is a variation of the Randić
graph-theoretic invariant [1], and is defined as

ABCðGÞ ¼
X

uv2E

f ðdu; dvÞ ;
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where

f ðdðuÞ; dðvÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du þ dv � 2

dudv

s

:

The relevance of the ABC index, in what we call today chemical graph theory, was first

revealed two decades ago by Estrada, Torres, Rodrı́guez, and Gutman in [2]. They disclosed

the importance of the ABC index as an analytical instrument for modeling thermodynamic

properties of organic chemical compounds. Ten years later, Estrada [3] uncovered the signifi-

cance of ABC index on the stability of branched alkanes, based on at that time a novel quan-

tum-theory-like exposition. These studies were the trigger point for an uncountable number of

papers on a new found area: chemical graph theory. Just to give two examples, in [4] it is

proved that the ABC index of both benzenoid systems and fluoranthene congeners, consisting

of two benzenoid fragments, depend exclusively on the number of vertices, hexagons and

inlets. The author also characterized the extremal catacondensed benzenoid systems with the

maximal and minimal ABC indices. The case of the phenylenes was considered by [5]. Another

example of the importance of this topological descriptor can be seen on the calculation of the

ABC index of an infinite class of nanostar dendrimers, artificially manufactured or synthesized

molecule built up from branched units called monomers [6].

Many problems persist open, though. For example, it is known that the star of a given order

has the maximal ABC index [7]. However for the trees with minimal ABC index, we are still

far from a full characterization. For some further conjectures and partial results the reader is

referred to [8–12]. More progress about minimal ABC trees can be found in [13–18].

A path v0v1� � �vr in a graph G is said to be a pendent path of length r, where dv0
� 3, dv1

= � � �

= dvr−1
= 2, and dvr

= 1.

For the tree(s) with minimal ABC index, the length of its pendent paths is of crucial impor-

tance. In particular, the next lemma has become a key result in this area:

Lemma 1 [11, 19] If T is a tree with minimal ABC index, then every pendent path in T is of
length 2 or 3, and there is at most one pendent path of length 3 in T.

In [20], Wang defined the greedy trees, for a given degree sequence, as follows:

Definition 1. Suppose that the degrees of the non-leaf vertices are given, the greedy tree is
achieved by the following ‘greedy algorithm’:

1. Label the vertex with the largest degree as v (the root);

2. Label the neighbors of v as v1, v2, . . ., assign the largest degree available to them such that
d(v1)� d(v2)� � � �;

3. Label the neighbors of v1 (except v) as v11, v12, . . ., such that they take all the largest degrees
available and that d(v11)� d(v12)� � � �, then do the same for v2, v3, . . .;

4. Repeat (3) for all newly labeled vertices, always starting with the neighbors of the labeled vertex
with largest degree whose neighbors are not labeled yet.

In particular, the vertex i is said to be the root of T, which is also the vertex lying on the first

layer of T; the vertices i1, i2, . . . are said to be the vertices lying on the second layer of T; the ver-

tices i11, i12, . . . are said to be the vertices lying on the third layer of T, and so on.

A major result attesting the importance of the greedy trees is the next proposition.

Proposition 2 ([21, 22]). Given the degree sequence, the greedy tree minimizes the ABC index.

The minimal-ABC trees with B1-branches
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From the previous considerations, different types of branches will play a crucial role in our

quest. Namely, the Bk-branches, with k� 1, and the B�k-branches, with k� 1, are illustrated in

Fig 1.

In this regard, the most relevant results on minimal-ABC trees are listed next.

Proposition 3 ([23, Theorem 3.2]). A minimal-ABC tree does not contain Bk-branch, with
k> 4.

Proposition 4 ([24, Proposition 3.4]). A minimal-ABC tree does not contain a B3-branch
and a B�

1
-branch sharing a common parent vertex.

Proposition 5 ([23, Lemma 3.3(a)]). A minimal-ABC tree does not contain a B4-branch and
a B1-branch sharing a common parent vertex.

Proposition 6 ([25, Theorem 3.4]). A minimal-ABC tree of order n> 18 with a pendent path
of length 3 may contain a B2-branch if and only if it is of order 161 or 168. Moreover, in this case,
a minimal-ABC tree is comprised of a single central vertex, B3-branches and one B2, including a
pendent path of length 3 that may belong to a B�

3
-branch or B�

2
-branch.

As a consequence of Proposition 6, we get the following proposition immediately.

Proposition 7. A minimal-ABC tree cannot contain a B2-branch and a B�
1
-branch

simultaneously.

Recently, the authors were able to show in [26] that a minimal-ABC tree cannot contain

simultaneously a B4-branch and B1- or B2-branches.

Recall that a k-terminal vertex of a rooted tree is a vertex of degree k + 1� 3, which is a par-

ent of only B�1-branches, such that at least one branch among them is a B1-branch (or

B�
1
-branch). The (sub)tree, induced by a k-terminal vertex and all its (direct and indirect) chil-

dren (descendant) vertices, is called a k-terminal branch or Tk-branch.

Proposition 8 ([27, Proposition 2.13]). A minimal-ABC tree contains at most one Tk-branch,
with k� 2.

Proposition 9 ([27, Theorem 3.5]). A minimal-ABC tree contains at most four B1-branches.
Although all the progress that has been lately made, the minimal-ABC trees seem still far

from a full characterization. This paper contributes for this task. Specifically, we show that

such trees contain neither 4 nor 3 B1-branches. The case when we have 2 B1-branches is also

considered in the last section.

Fig 1. The Bk- and B�k-branches for k� 1.

https://doi.org/10.1371/journal.pone.0195153.g001
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Preliminaries and methods

Lemmas

First we recall some technical lemmas.

Lemma 10 ([23, Proposition A.3]). Let

gðx; yÞ ¼ f ðx þ Dx; y � DyÞ � f ðx; yÞ

with real numbers x, y� 2, Δx� 0, 0� Δy< y. Then g(x, y) increases in x and decreases in y.

Due to the symmetry of the function g(x, y), we can also get an equivalent version of

Lemma 10.

Lemma 11. Let

gðx; yÞ ¼ f ðx � Dx; y þ DyÞ � f ðx; yÞ

with real numbers x, y� 2, 0� Δx< x, Δy� 0. Then g(x, y) decreases in x and increases in y.

In a similar fashion we have:

Lemma 12. Let h(x, y) = (y − 4)f(x + y − 5, 4) − f(x, y), where x� y and y = 6, 7, 8, 9, 10, 11.

Then for every fixed y, the function h(x, y) decreases in x� y.

proof. We only prove the case when y = 6. The other cases are similar.

Suppose that y = 6. Then h(x, 6) = 2f(x + 1, 4) − f(x, 6).

First we have

ffiffiffi
6
p

x2ðx þ 1Þ
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx þ 3Þðx þ 4Þ

p
h0ðx; 6Þ ¼ 2ðx þ 1Þ

3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx þ 3Þ

p
�

ffiffiffi
6
p

x2
ffiffiffiffiffiffiffiffiffiffiffi
x þ 4
p

:

Next, it is readily verified that

2ðx þ 1Þ
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx þ 3Þ

p
�

ffiffiffi
6
p

x2
ffiffiffiffiffiffiffiffiffiffiffi
x þ 4
p

< 0

for x� 6.

Now it follows that h0(x, 6) < 0, i.e., h(x, 6) decreases in x� 6.

Similar to the proof of Lemma 12, we can also get the following lemma.

Lemma 13. Let ℓ(x, y) = (y − 3)f(x + y − 4, 3) − f(x, y), where y = 5, 7, 8, 9.

1. When y = 5, the function ℓ(x, 5) increases in x> 0.

2. When y = 7, the function ℓ(x, 7) decreases in x� 19.

3. When y = 8, the function ℓ(x, 8) decreases in x� 17.

4. When y = 9, the function ℓ(x,9) decreases in x� 16.

The root of B1-branches

A Kragujevac tree is a tree comprising of a single central vertex, Bk-branches, with k� 1, and

at most one B�k-branch.

Lemma 14 ([28, Theorem 11]). If T is a Kragujevac tree with minimal ABC index, and the
degree of the central vertex of T is at least 19, then T contains no B1-branch.

Taking into account Lemma 14, we can establish the main result in this section.

Proposition 15. If T is a minimal-ABC tree on more than 122 vertices containing B1-

branches, then the B1-branches cannot be attached to the root vertex of T.

proof. Observe that the B1-branches of T are attached to the same vertex, say u, otherwise,

there are at least two Tk-branches, which is a contradiction to Proposition 8. Suppose to the

contrary that u is the root vertex of T.

The minimal-ABC trees with B1-branches
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First, by Proposition 3, u contains no Bk-branch with k> 4. Next by Proposition 5, u con-

tains no B4-branch, and by Propositions 4 and 7, u contains no B�
1
-branch, no matter u has B3-

branches or B2-branches. Now we may deduce that the branches attached to u must be B3-, B2-

or B1-branches, i.e., T is of the structure as depicted in Fig 2.

Notice that T is actually a Kragujevac tree. Denote by du the degree of u in T.

If du� 19, then from Lemma 14, T contains no B1-branch, which is a contradiction to the

assumption for the existence of B1-branches in T.

If du� 18, then recall that every branch attached to u in T is a Bk-branch with k = 1, 2, 3,

and thus the order of T is at most

1þ 7ðdu � 1Þ þ 2 ¼ 7du � 4 � 122 ;

which is a contradiction to the assumption for the order of T.

Now the result follows.

Since all the minimal-ABC trees of order up to 300 are completely determined in [29], we

may assume that the trees considered in our main results have more than 300 vertices.

Switching transformation

Before we proceed with the main results of this paper, we present the so-called switching trans-
formation explicitly stated by Lin, Gao, Chen, and Lin [30].

Lemma 16 (Switching transformation). Let G = (V, E) be a connected graph with uv, xy 2 E
(G) and uy, xv =2 E(G). Let G1 = G − uv − xy + uy + xv. If d(u)� d(x) and d(v)� d(y), then ABC
(G1)� ABC(G), with the equality if and only if d(u) = d(x) or d(v) = d(y).

The switching transformation was used in the proofs of some characterizations of the mini-

mal-ABC trees, and the following observation that will be applied in the further analysis.

Observation 1. Let G be a minimal-ABC tree with the root vertex v0 and let v0, v1, . . ., vn be
the sequence of vertices obtain by the breadth-first search of G. If d(vi), d(vj)� 3 and i< j, then
by Lemma 16, we may assume that d(vi)� d(vj).

From Observation 1, we may assume that the trees considered are all greedy trees.

Results

The existence of four B1-branches

In this section we will prove our first main result: Any minimal-ABC tree cannot contain four

B1-branches.

Fig 2. The tree T in the proof of Proposition 15.

https://doi.org/10.1371/journal.pone.0195153.g002
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The following result is recent and establishes a forbidden configuration for minimal-ABC

trees.

Proposition 17 ([27, Proposition 3.2]). When s + t> 6, the configuration T depicted in Fig 3

cannot occur in a minimal-ABC tree.

We are ready now to state the main result of this section.

Theorem 18. A minimal-ABC tree cannot contain four B1-branches.
proof. Suppose to the contrary that T is a minimal-ABC tree containing exactly four B1-

branches. Observe that the four B1-branches are attached to the same vertex, say u, otherwise,

there are at least two Tk-branches, which is a contradiction to Proposition 8. Moreover, by

Proposition 15, u is not the root vertex of T. Let us denote by v the parent of u.

First, by Proposition 3, u contains no Bk-branch with k> 4. Next by Proposition 5, u con-

tains no B4-branch, and by Propositions 4 and 7, u contains no B�
1
-branch, no matter u has B3-

branches or B2-branches. Now we may deduce that the branches attached to u must be B3-, B2-

or B1-branches, i.e., T is of the structure depicted in Fig 3.

Denote by s the number of B3-branches attached to u, and t the number of B2-branches

attached to u. Clearly, s + t� 1, and s + t� 6 from Proposition 17.

Let dx be the degree of vertex x in T.

Observe that dv� du = s + t + 5 from Proposition 2.

Case 1. t = 0.

In this case, we apply the transformation T 1 depicted in Fig 4.

After applying T 1, the degree of vertex v increases by s, while the degree of vertex u
decreases by s. The rest of the vertices do not change their degrees. The change of the ABC

Fig 3. The tree T in Proposition 17 and Theorem 18.

https://doi.org/10.1371/journal.pone.0195153.g003
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index after applying T 1 is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ s; dxÞ � f ðdv; dxÞÞ

þf ðdv þ s; 5Þ � f ðdv; sþ 5Þ þ sðf ðdv þ s; 4Þ � f ðsþ 5; 4ÞÞ :

Clearly, f(dv + s, dx) − f(dv, dx)< 0 for xv 2 Eð�TÞ, and thus

ABCðT1Þ � ABCðTÞ < f ðdv þ s; 5Þ � f ðdv; sþ 5Þ þ s½f ðdv þ s; 4Þ � f ðsþ 5; 4Þ�

¼ ðsþ 1Þf ðdv þ s; 4Þ � f ðdv; sþ 5Þ

þf ðdv þ s; 5Þ � f ðdv þ s; 4Þ � s � f ðsþ 5; 4Þ :

Recall that dv� s + 5 from Proposition 2. On one hand, by Lemma 12, (s + 1)f(dv + s, 4) −
f(dv, s + 5) decreases in dv� s + 5. On the other hand, by Lemma 11, f(dv + s, 5) − f(dv + s, 4)

also decreases in dv� s + 5. So we get that

ABCðT1Þ � ABCðTÞ < ðsþ 1Þf ððsþ 5Þ þ s; 4Þ � f ðsþ 5; sþ 5Þ

þf ððsþ 5Þ þ s; 5Þ � f ððsþ 5Þ þ s; 4Þ � s � f ðsþ 5; 4Þ

¼ ðsþ 1Þf ð2sþ 5; 4Þ � f ðsþ 5; sþ 5Þ

þf ð2sþ 5; 5Þ � f ð2sþ 5; 4Þ � s � f ðsþ 5; 4Þ :

ð1Þ

By virtue of Mathematica, the right-hand side of (1) is negative, equivalently ABC(T1)<

ABC(T), follows from direct calculation, for 1� s� 6.

Case 2. t� 1.

In this case, we apply the transformation T 2 depicted in Fig 5.

After applying T 2, the degree of vertex v increases by s + t, while the degree of vertex u
decreases to 4, and a child of u in T belonging to a B2-branch increases its degree from 3 to 4.

Fig 4. The transformation T 1 in Case 1 of Theorem 18.

https://doi.org/10.1371/journal.pone.0195153.g004
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The rest of the vertices do not change their degrees. The change of the ABC index after apply-

ing T 2 is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ

þsðf ðdv þ sþ t; 4Þ � f ðsþ t þ 5; 4ÞÞ

þðt � 1Þðf ðdv þ sþ t; 3Þ � f ðsþ t þ 5; 3ÞÞ

þ2f ðdv þ sþ t; 4Þ � f ðsþ t þ 5; 3Þ

� f ðdv; sþ t þ 5Þ :

ð2Þ

Clearly, f(dv + s + t, dx) − f(dv, dx)< 0 for xv 2 Eð�TÞ, and thus

ABCðT1Þ � ABCðTÞ < sðf ðdv þ sþ t; 4Þ � f ðsþ t þ 5; 4ÞÞ

þðt � 1Þðf ðdv þ sþ t; 3Þ � f ðsþ t þ 5; 3ÞÞ

þ2f ðdv þ sþ t; 4Þ � f ðsþ t þ 5; 3Þ � f ðdv; sþ t þ 5Þ :

Let r = s + t be a fixed number. Recall that 1� r� 6.

Now we have

ABCðT1Þ � ABCðTÞ < ðr � tÞðf ðdv þ r; 4Þ � f ðr þ 5; 4ÞÞ

þðt � 1Þðf ðdv þ r; 3Þ � f ðr þ 5; 3ÞÞ

þ2f ðdv þ r; 4Þ � f ðr þ 5; 3Þ � f ðdv; r þ 5Þ :

ð3Þ

For the right-hand side of (3), notice that the coefficient of t is

ðf ðdv þ r; 3Þ � f ðr þ 5; 3ÞÞ � ðf ðdv þ r; 4Þ � f ðr þ 5; 4ÞÞ :

Since dv> 5, from Lemma 10, f(dv + r, y) − f(r + 5, y) decreases in y� 2, thus we may deduce

that

ðf ðdv þ r; 3Þ � f ðr þ 5; 3ÞÞ � ðf ðdv þ r; 4Þ � f ðr þ 5; 4ÞÞ > 0 :

Fig 5. The transformation T 2 in Case 2 of Theorem 18.

https://doi.org/10.1371/journal.pone.0195153.g005

The minimal-ABC trees with B1-branches

PLOS ONE | https://doi.org/10.1371/journal.pone.0195153 April 18, 2018 8 / 33

https://doi.org/10.1371/journal.pone.0195153.g005
https://doi.org/10.1371/journal.pone.0195153


Together with t� r, we have

ABCðT1Þ � ABCðTÞ < ðr � rÞðf ðdv þ r; 4Þ � f ðr þ 5; 4ÞÞ

þðr � 1Þðf ðdv þ r; 3Þ � f ðr þ 5; 3ÞÞ

þ2f ðdv þ r; 4Þ � f ðr þ 5; 3Þ � f ðdv; r þ 5Þ

¼ ðr � 1Þf ðdv þ r; 3Þ þ 2f ðdv þ r; 4Þ

� f ðdv; r þ 5Þ � r � f ðr þ 5; 3Þ :

ð4Þ

Recall that dv� r + 5 from Proposition 2.

Subcase 2.1. r = 1.

If r = 1, then by (4), we have

ABCðT1Þ � ABCðTÞ < 2f ðdv þ 1; 4Þ � f ðdv; 6Þ � f ð6; 3Þ :

Moreover, by Lemma 12, we know that 2f(dv + 1, 4) − f(dv, 6) decreases in dv� 6, thus

ABCðT1Þ � ABCðTÞ < 2f ð6þ 1; 4Þ � f ð6; 6Þ � f ð6; 3Þ < 0 ;

i.e., ABC(T1)< ABC(T).

Subcase 2.2. r = 2.

If r = 2, then by (4), we have

ABCðT1Þ � ABCðTÞ < f ðdv þ 2; 3Þ þ 2f ðdv þ 2; 4Þ � f ðdv; 7Þ � 2f ð7; 3Þ

¼ 3f ðdv þ 2; 4Þ � f ðdv; 7Þ

þf ðdv þ 2; 3Þ � f ðdv þ 2; 4Þ � 2f ð7; 3Þ :

Moreover, by Lemma 12, we know that 3f(dv + 2, 4) − f(dv, 7) decreases in dv� 7, and by

Lemma 10, f(dv + 2, 3) − f(dv + 2, 4) increases in dv, thus

f ðdv þ 2; 3Þ � f ðdv þ 2; 4Þ � lim
dv!þ1

ðf ðdv þ 2; 3Þ � f ðdv þ 2; 4ÞÞ ¼

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r

:

So for dv� 11, we get that

ABCðT1Þ � ABCðTÞ < 3f ð11þ 2; 4Þ � f ð11; 7Þ þ

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r

� 2f ð7; 3Þ < 0 ;

i.e., ABC(T1)< ABC(T). For the remaining cases that 7� dv� 10, by virtue of Mathematica,

the right-hand side of (4) is negative, equivalently ABC(T1)< ABC(T), follows from direct cal-

culation easily.

Subcase 2.3. r = 3.

If r = 3, then by (4), we have

ABCðT1Þ � ABCðTÞ < 2f ðdv þ 3; 3Þ þ 2f ðdv þ 3; 4Þ � f ðdv; 8Þ � 3f ð8; 3Þ

¼ 4f ðdv þ 3; 4Þ � f ðdv; 8Þ

þ2ðf ðdv þ 3; 3Þ � f ðdv þ 3; 4ÞÞ � 3f ð8; 3Þ :

Moreover, by Lemma 12, we know that 4f(dv + 3, 4) − f(dv, 8) decreases in dv� 8, and by
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PLOS ONE | https://doi.org/10.1371/journal.pone.0195153 April 18, 2018 9 / 33

https://doi.org/10.1371/journal.pone.0195153


Lemma 10, f(dv + 3, 3) − f(dv + 3, 4) increases in dv, thus

f ðdv þ 3; 3Þ � f ðdv þ 3; 4Þ � lim
dv!þ1

ðf ðdv þ 3; 3Þ � f ðdv þ 3; 4ÞÞ ¼

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r

:

So for dv� 20, we get that

ABCðT1Þ � ABCðTÞ < 4f ð20þ 3; 4Þ � f ð20; 8Þ þ 2

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r !

� 3f ð8; 3Þ < 0 ;

i.e., ABC(T1)< ABC(T). For the remaining cases that 8� dv� 19, by virtue of Mathematica,

the right-hand side of (4) is negative, equivalently ABC(T1)< ABC(T), follows from direct cal-

culation easily.

Subcase 2.4. r = 4.

If r = 4, then by (4), we have

ABCðT1Þ � ABCðTÞ < 3f ðdv þ 4; 3Þ þ 2f ðdv þ 4; 4Þ � f ðdv; 9Þ � 4f ð9; 3Þ

¼ 5f ðdv þ 4; 4Þ � f ðdv; 9Þ

þ3ðf ðdv þ 4; 3Þ � f ðdv þ 4; 4ÞÞ � 4f ð9; 3Þ :

Moreover, by Lemma 12, we know that 5f(dv + 4, 4) − f(dv, 9) decreases in dv� 9, and by

Lemma 10, f(dv + 4, 3) − f(dv + 4, 4) increases in dv, thus

f ðdv þ 4; 3Þ � f ðdv þ 4; 4Þ � lim
dv!þ1

ðf ðdv þ 4; 3Þ � f ðdv þ 4; 4ÞÞ ¼

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r

:

So for dv� 31, we get that

ABCðT1Þ � ABCðTÞ < 5f ð31þ 4; 4Þ � f ð31; 9Þ þ 3

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r !

� 4f ð9; 3Þ < 0 ;

i.e., ABC(T1)< ABC(T). For the remaining cases that 9� dv� 30, by virtue of Mathematica,

the right-hand side of (4) is negative, equivalently ABC(T1)< ABC(T), follows from direct cal-

culation easily.

Subcase 2.5. r = 5.

If r = 5, then by (4), we have

ABCðT1Þ � ABCðTÞ < 4f ðdv þ 5; 3Þ þ 2f ðdv þ 5; 4Þ � f ðdv; 10Þ � 5f ð10; 3Þ

¼ 6f ðdv þ 5; 4Þ � f ðdv; 10Þ

þ4ðf ðdv þ 5; 3Þ � f ðdv þ 5; 4ÞÞ � 5f ð10; 3Þ :

Moreover, by Lemma 12, we know that 6f(dv + 5, 4) − f(dv, 10) decreases in dv� 10, and by

Lemma 10, f(dv + 5, 3) − f(dv + 5, 4) increases in dv, thus

f ðdv þ 5; 3Þ � f ðdv þ 5; 4Þ � lim
dv!þ1

ðf ðdv þ 5; 3Þ � f ðdv þ 5; 4ÞÞ ¼

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r

:

So for dv� 42, we get that

ABCðT1Þ � ABCðTÞ < 6f ð42þ 5; 4Þ � f ð42; 10Þ þ 4

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r !

� 5f ð10; 3Þ < 0 ;
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i.e., ABC(T1)< ABC(T). For the remaining cases that 10� dv� 41, by virtue of Mathematica,

the right-hand side of (4) is negative, equivalently ABC(T1)< ABC(T), follows from direct cal-

culation easily.

Subcase 2.6. r = 6.

If r = 6, then by (4), we have

ABCðT1Þ � ABCðTÞ < 5f ðdv þ 6; 3Þ þ 2f ðdv þ 6; 4Þ � f ðdv; 11Þ � 6f ð11; 3Þ

¼ 7f ðdv þ 6; 4Þ � f ðdv; 11Þ þ 5ðf ðdv þ 6; 3Þ � f ðdv þ 6; 4ÞÞ

� 6f ð11; 3Þ :

Moreover, by Lemma 12, we know that 7f(dv + 6, 4) − f(dv, 11) decreases in dv� 11, and by

Lemma 10, f(dv + 6, 3) − f(dv + 6, 4) increases in dv, thus

f ðdv þ 6; 3Þ � f ðdv þ 6; 4Þ � lim
dv!þ1

ðf ðdv þ 6; 3Þ � f ðdv þ 6; 4ÞÞ ¼

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r

:

So for dv� 56, we get that

ABCðT1Þ � ABCðTÞ < 7f ð56þ 6; 4Þ � f ð56; 11Þ þ 5

ffiffiffi
1

3

r

�

ffiffiffi
1

4

r !

� 6f ð11; 3Þ < 0 ;

i.e., ABC(T1)< ABC(T). For the cases that 18� dv� 55, by virtue of Mathematica, the right-

hand side of (4) is negative, equivalently ABC(T1)< ABC(T), follows from direct calculation

easily.

As to the remaining cases that 11� dv� 17, let us be a bit more precisely in (2) about the

term
X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ 6; dxÞ � f ðdv; dxÞÞ :

Notice that the degree of every neighbor of v in �T is at least 3 from Proposition 2. Furthermore,

by Lemma 10, f(dv + 6, dx) − f(dv, dx) decreases in dx� 3, we may deduce that
X

xv2Eð�T Þ

ðf ðdv þ 6; dxÞ � f ðdv; dxÞÞ < f ðdv þ 6; 3Þ � f ðdv; 3Þ :

Now together with (4), it follows that

ABCðT1Þ � ABCðTÞ < f ðdv þ 6; 3Þ � f ðdv; 3Þ

þ5f ðdv þ 6; 3Þ þ 2f ðdv þ 6; 4Þ

� f ðdv; 11Þ � 6f ð11; 3Þ :

ð5Þ

By virtue of Mathematica, the right-hand side of (5) is negative, equivalently ABC(T1)<

ABC(T), for 11� dv� 17, follows from direct calculation easily.

Combining the above cases, the result follows easily.

The existence of three B1-branches

We proceed proving in this section that a minimal-ABC tree does not contain three B1-

branches. Before that, we consider some preliminary results.

Proposition 19 ([27, Proposition 3.2]). When s + t> 8, the configuration T depicted in Fig 6

cannot occur in a minimal-ABC tree.
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Proposition 20 ([27, Proposition 3.4]). When s = 0 and t> 3, the configuration T depicted
in Fig 6 cannot occur in a minimal-ABC tree.

Proposition 21. The configuration T depicted in Fig 6 cannot occur in a minimal-ABC tree,
for the following cases:

• t = 3 and s = 0, 4, 5;

• t = 4 and s = 2, 3, 4;

• t = 5 and s = 1, 2, 3;

• t = 6 and s = 1, 2;

• t = 7 and s = 1.

proof. Let dx be the degree of vertex x in T.

First we apply the transformation T 1 illustrated in Fig 7.

After applying T 1, the degree of vertex u decreases by 3, while the degrees of three children

of u in T belonging to a B2-branch increase from 3 to 4, and the rest of the vertices do not

change their degrees. The change of the ABC index after applying T 1 is

ABCðT1Þ � ABCðTÞ ¼ f ðsþ t þ 1; dvÞ � f ðsþ t þ 4; dvÞ

þðsþ 3Þf ðsþ t þ 1; 4Þ þ ðt � 3Þf ðsþ t þ 1; 3Þ

� s � f ðsþ t þ 4; 4Þ � t � f ðsþ t þ 4; 3Þ :

From Lemma 11, f(s + t + 1, dv) − f(s + t + 4, dv) increases in dv, and thus

f ðsþ t þ 1; dvÞ � f ðsþ t þ 4; dvÞ � lim
dv!þ1

ðf ðsþ t þ 1; dvÞ � f ðsþ t þ 4; dvÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 1

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 4

r

:

Fig 6. The tree T in Propositions 19, 20 and 21, and Theorem 22.

https://doi.org/10.1371/journal.pone.0195153.g006
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Now it follows that

ABCðT1Þ � ABCðTÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

sþ t þ 1

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 4

r

þðsþ 3Þf ðsþ t þ 1; 4Þ þ ðt � 3Þf ðsþ t þ 1; 3Þ

� s � f ðsþ t þ 4; 4Þ � t � f ðsþ t þ 4; 3Þ :

ð6Þ

By virtue of Mathematica, the right-hand side of (6) is negative, equivalently ABC(T1)< ABC
(T), follows from direct calculation easily, except the case t = 3 and s = 0. In such case, we apply

the transformation T 2 illustrated in Fig 8.

Fig 7. The transformation T 1 in the proof of Proposition 21.

https://doi.org/10.1371/journal.pone.0195153.g007

Fig 8. The transformation T 2 in the proof of Proposition 21.

https://doi.org/10.1371/journal.pone.0195153.g008
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After applying T 2, the degree of vertex v increases by 2, the degrees of three children of u in

T belonging to a B2-branch increase from 3 to 4, a pendent vertex in T belonging to a B2-

branch increases its degree from 1 to 2, the degree of u decreases from 7 to 1, and the rest of

the vertices do not change their degrees. The change of the ABC index after applying T 2 is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ 2; dxÞ � f ðdv; dxÞÞ

þf ð2; 1Þ � f ðdv; 7Þ þ 3ðf ðdv þ 2; 4Þ � f ð7; 3ÞÞ :
ð7Þ

Clearly, f(dv + 2, dx) − f(dv, dx)< 0 for xv 2 Eð�TÞ. So

ABCðT1Þ � ABCðTÞ < f ð2; 1 � f ðdv; 7Þ þ 3ðf ðdv þ 2; 4Þ � f ð7; 3ÞÞ

¼ 3f ðdv þ 2; 4Þ � f ðdv; 7Þ þ f ð2; 1Þ � 3f ð7; 3Þ :

Note that dv� du = 7 from Proposition 2, and from Lemma 12, we know that 3f(dv + 2, 4) −
f(dv, 7) decreases in dv� 7. Therefore, for dv� 20, we get that

ABCðT1Þ � ABCðTÞ < 3f ð20þ 2; 4Þ � f ð20; 7Þ þ f ð2; 1Þ � 3f ð7; 3Þ < 0 :

For the remaining cases that 7� dv� 19, let us be a bit more precisely in (7) for the term

X

xv2Eð�T Þ

ðf ðdv þ 2; dxÞ � f ðdv; dxÞÞ :

Note that every neighbor of v in �T has degree at least three from Proposition 2. By Lemma 10,

f(dv + 2, dx) − f(dv, dx) decreases in dx� 3, and thus

X

xv2Eð�T Þ

ðf ðdv þ 2; dxÞ � f ðdv; dxÞÞ � ðdv � 1Þððf ðdv þ 2; 3Þ � f ðdv; 3ÞÞ :

Now together with (7), it follows that

ABCðT1Þ � ABCðTÞ � ðdv � 1Þððf ðdv þ 2; 3Þ � f ðdv; 3ÞÞ

þf ð2; 1Þ � f ðdv; 7Þ þ 3ðf ðdv þ 2; 4Þ � f ð7; 3ÞÞ :
ð8Þ

By virtue of Mathematica, the right-hand side of (8) is negative, equivalently ABC(T1)< ABC
(T), for 7� dv� 19, follows from direct calculation easily.

Then the result follows.

We are now prepared to establish the main result of this section.

Theorem 22. A minimal-ABC tree cannot contain three B1-branches.
proof. Similarly to Theorem 18, let us suppose to the contrary that T is a minimal-ABC tree

containing exactly three B1-branches. Observe that the three B1-branches are attached to the

same vertex, say u, otherwise, there are at least two Tk-branches, which is a contradiction to

Proposition 8. Moreover, by Proposition 15, u is not the root vertex of T. Denote by v the par-

ent of u.

First, by Proposition 3, u contains no Bk-branch with k> 4. Next by Proposition 5, u con-

tains no B4-branch, and by Propositions 4 and 7, u contains no B�
1
-branch, no matter u has B3-

branches or B2-branches. Now we may deduce that the branches attached to u must be B3-, B2-

or B1-branches, i.e., T is of the structure depicted in Fig 6.

Let us denote by s the number of B3-branches attached to u, and by t the number of B2-

branches attached to u. Clearly, s + t� 1, and s + t� 8, from Proposition 19.

We apply the transformation T depicted in Fig 9. And let dx be the degree of vertex x in T.
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After applying T , the degree of vertex v increases by s + t, while the degree of vertex u
decreases by s + t, and the rest of the vertices do not change their degrees. The change of the

ABC index after applying T is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ

þsðf ðdv þ sþ t; 4Þ � f ðsþ t þ 4; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 4; 3ÞÞ

þf ðdv þ sþ t; 4Þ � f ðdv; sþ t þ 4Þ :

ð9Þ

Clearly, f(dv + s + t, dx) − f(dv, dx)< 0 for xv 2 Eð�TÞ, and thus

ABCðT1Þ � ABCðTÞ < sðf ðdv þ sþ t; 4Þ � f ðsþ t þ 4; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 4; 3ÞÞ

þf ðdv þ sþ t; 4Þ � f ðdv; sþ t þ 4Þ :

On one hand, from Lemma 10, f(dv + s + t, 4) − f(dv, s + t + 4) increases in dv, thus

f ðdv þ sþ t; 4Þ � f ðdv; sþ t þ 4Þ � lim
dv!þ1

ðf ðdv þ sþ t; 4Þ � f ðdv; sþ t þ 4ÞÞ

¼

ffiffiffi
1

4

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 4

r

:

So it follows that

ABCðT1Þ � ABCðTÞ < sðf ðdv þ sþ t; 4Þ � f ðsþ t þ 4; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 4; 3ÞÞ

þ

ffiffiffi
1

4

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 4

r

:

ð10Þ

Fig 9. The transformation T in the proof of Theorem 22.

https://doi.org/10.1371/journal.pone.0195153.g009
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On the other hand, note that dv� du = s + t + 4 from Proposition 2, and both f(dv + s + t, 4)

and f(dv + s + t, 3) decrease in dv� s + t + 4, i.e., the right-hand side of (10) also decreases in dv

� s + t + 4.

Besides the upper bound about ABC(T1) − ABC(T) as (10), by considering a bit precisely in

(9) for the term

X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ ;

we may get a somewhat stricter upper bound about ABC(T1) − ABC(T). Note that, from

Lemma 10, f(dv + s + t, dx) − f(dv, dx) decreases in dx, and from Proposition 2, every neighbor

of v in �T has degree at least three, thus

X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ � ðdv � 1Þðf ðdv þ sþ t; 3Þ � f ðdv; 3ÞÞ :

Now together with (9), it follows that

ABCðT1Þ � ABCðTÞ � ðdv � 1Þðf ðdv þ sþ t; 3Þ � f ðdv; 3ÞÞ

þsðf ðdv þ sþ t; 4Þ � f ðsþ t þ 4; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 4; 3ÞÞ

þf ðdv þ sþ t; 4Þ � f ðdv; sþ t þ 4Þ :

ð11Þ

Case 1. t = 0.

In this case, note that 1� s� 8, and dv� s + 4.

By direct calculation, we may deduce that the right-hand side of (10) is negative, equiva-

lently ABC(T1)< ABC(T), holds for the following cases:

• s = 1 and dv� 12;

• s = 2 and dv� 14;

• s = 3 and dv� 16;

• s = 4 and dv� 18;

• s = 5 and dv� 21;

• s = 6 and dv� 23;

• s = 7 and dv� 26;

• s = 8 and dv� 26.

For the remaining cases as follows:

• s = 1 and 5� dv� 11;

• s = 2 and 6� dv� 13;

• s = 3 and 7� dv� 15;

• s = 4 and 8� dv� 17;

• s = 5 and 9� dv� 20;

• s = 6 and 10� dv� 22;

• s = 7 and 11� dv� 25;
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• s = 8 and 12� dv� 25,

we would turn to use (11), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation.

Case 2. t = 1.

In this case, note that 0� s� 7, and dv� s + 5.

By direct calculation, we may deduce that the right-hand side of (10) is negative, equiva-

lently ABC(T1)< ABC(T), holds for the following cases:

• s = 0 and dv� 124;

• s = 1 and dv� 23;

• s = 2 and dv� 22;

• s = 3 and dv� 22;

• s = 4 and dv� 25;

• s = 5 and dv� 28;

• s = 6 and dv� 30;

• s = 7 and dv� 33.

For the remaining cases as follows:

• s = 0 and 5� dv� 123;

• s = 1 and 6� dv� 22;

• s = 2 and 7� dv� 21;

• s = 3 and 8� dv� 21;

• s = 4 and 9� dv� 24;

• s = 5 and 10� dv� 27;

• s = 6 and 11� dv� 29;

• s = 7 and 12� dv� 32,

we would turn to use (11), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 3. t = 2.

In this case, note that 0� s� 6, and dv� s + 6.

By direct calculation, we may deduce that the right-hand side of (10) is negative, equiva-

lently ABC(T1)< ABC(T), holds for the following cases:

• s = 0 and dv� 751;

• s = 1 and dv� 41;

• s = 2 and dv� 34;

• s = 3 and dv� 33;

• s = 4 and dv� 35;

• s = 5 and dv� 37;

• s = 6 and dv� 39.
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For the remaining cases as follows:

• s = 0 and 6� dv� 750;

• s = 1 and 7� dv� 40;

• s = 2 and 8� dv� 33;

• s = 3 and 9� dv� 32;

• s = 4 and 10� dv� 34;

• s = 5 and 11� dv� 36;

• s = 6 and 12� dv� 38,

we would turn to use (11), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 4. t = 3.

In this case, note that 0� s� 5, and dv� s + 7.

On one hand, the contradiction for the cases s = 0, 4, 5 may be deduced from Proposition

21.

On the other hand, by direct calculation, we may deduce that the right-hand side of (10) is

negative, equivalently ABC(T1)< ABC(T), holds for the following cases:

• s = 1 and dv� 74;

• s = 2 and dv� 52;

• s = 3 and dv� 48.

For the remaining cases as follows:

• s = 1 and 8� dv� 73;

• s = 2 and 9� dv� 51;

• s = 3 and 10� dv� 47,

we would turn to use (11), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 5. t = 4.

In this case, note that 0� s� 4, and dv� s + 8.

The contradiction for the cases s = 0 and s = 2, 3, 4 may be, respectively, deduced from

Propositions 20 and 21.

Besides that, by direct calculation, we may deduce that the right-hand side of (10) is nega-

tive, equivalently ABC(T1)< ABC(T), for s = 1 and dv� 145. For the remaining cases s = 1 and

9� dv� 144, we would turn to use (11), and a negative upper bound, equivalently ABC(T1)<

ABC(T), follows from direct calculation easily.

Case 6. t = 5.

In this case, note that s = 0, 1, 2, 3. The contradiction for the cases s = 0 and s = 1, 2, 3 may

be, respectively, deduced from Propositions 20 and 21.

Case 7. t = 6.

In this case, note that s = 0, 1, 2. The contradiction for the cases s = 0 and s = 1, 2 may be,

respectively, deduced from Propositions 20 and 21.

Case 8. t = 7.
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In this case, note that s = 0, 1. The contradiction for the cases s = 0 and s = 1 may be, respec-

tively, deduced from Propositions 20 and 21.

Case 9. t = 8.

In this case, note that s = 0. The contradiction may be deduced from Proposition 20

directly.

Combining the above cases, the result follows.

The existence of two B1-branches

This last section is devoted to the analysis of the existence of two B1-branches in a minimal-

ABC tree. The first two propositions are known results establishing forbidden configurations

in such cases.

Proposition 23 ([27, Proposition 3.2]). When s + t> 10, the configuration T depicted in
Fig 10 cannot occur in a minimal-ABC tree.

Proposition 24 ([27, Proposition 3.4]). When s = 0 and t> 4, the configuration T depicted
in Fig 10 cannot occur in a minimal-ABC tree.

We next list several cases more where the configuration depicted in Fig 10 is not possible in

a minimal-ABC tree.

Proposition 25. The configuration T depicted in Fig 10 cannot occur in a minimal-ABC tree,
for the following cases:

• t = 2 and s = 0;

• t = 3 and s = 1, 2;

• t = 4 and s = 0, 1, 2, 3, 4, 5, 6;

• t = 5 and s = 1, 2, 3, 4, 5;

• t = 6 and s = 1, 2, 3, 4;

Fig 10. The tree T in Propositions 23, 24 and 25, and Theorem 26.

https://doi.org/10.1371/journal.pone.0195153.g010
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• t = 7 and s = 1, 2, 3;

• t = 8 and s = 1, 2;

• t = 9 and s = 1.

proof. First we apply the transformation T 1 illustrated in Fig 11. Let dx be the degree of ver-

tex x in T.

After applying T 1, the degree of vertex u decreases by 2, while the degrees of two children

of u in T belonging to a B2-branch increase from 3 to 4. The rest of the vertices do not change

their degrees. The change of the ABC index after applying T 1 is

ABCðT1Þ � ABCðTÞ ¼ f ðsþ t þ 1; dvÞ � f ðsþ t þ 3; dvÞ

þðsþ 2Þf ðsþ t þ 1; 4Þ þ ðt � 2Þf ðsþ t þ 1; 3Þ

� s � f ðsþ t þ 3; 4Þ � t � f ðsþ t þ 3; 3Þ :

From Lemma 11, f(s + t + 1, dv) − f(s + t + 3, dv) increases in dv, and thus

f ðsþ t þ 1; dvÞ � f ðsþ t þ 3; dvÞ � lim
dv!þ1

ðf ðsþ t þ 1; dvÞ � f ðsþ t þ 3; dvÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 1

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 3

r

:

Now it follows that

ABCðT1Þ � ABCðTÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

sþ t þ 1

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 3

r

þðsþ 2Þf ðsþ t þ 1; 4Þ þ ðt � 2Þf ðsþ t þ 1; 3Þ

� s � f ðsþ t þ 3; 4Þ � t � f ðsþ t þ 3; 3Þ :

ð12Þ

Fig 11. The transformation T 1 in the proof of Proposition 25.

https://doi.org/10.1371/journal.pone.0195153.g011

The minimal-ABC trees with B1-branches

PLOS ONE | https://doi.org/10.1371/journal.pone.0195153 April 18, 2018 20 / 33

https://doi.org/10.1371/journal.pone.0195153.g011
https://doi.org/10.1371/journal.pone.0195153


The right-hand side of (12) is negative, equivalently ABC(T1)< ABC(T), holds for the follow-

ing cases:

• t = 4 and s = 3, 4, 5, 6;

• t = 5 and s = 2, 3, 4, 5;

• t = 6 and s = 1, 2, 3, 4;

• t = 7 and s = 1, 2, 3;

• t = 8 and s = 1, 2;

• t = 9 and s = 1.

Next for the following cases:

• t = 2 and s = 0;

• t = 3 and s = 1, 2;

• t = 4 and s = 1, 2,

we apply the transformation T 2 illustrated in Fig 12.

After applying T 2, the degree of vertex v increases by s + t − 1, the degrees of two children of

u in T belonging to a B2-branch increase from 3 to 4, a pendent vertex in T belonging to a B3-

branch increases its degree from 1 to 2, the degree of u decreases from s + t + 3 to 1, and the rest

of the vertices do not change their degrees. The change of the ABC index after applying T 2 is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ sþ t � 1; dxÞ � f ðdv; dxÞÞ

þsðf ðdv þ sþ t � 1; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t � 1; 3Þ � f ðsþ t þ 3; 3ÞÞ

þ2ðf ðdv þ sþ t � 1; 4Þ � f ðdv þ sþ t � 1; 3ÞÞ

þf ð1; 2Þ � f ðdv; sþ t þ 3Þ :

ð13Þ

Fig 12. The transformation T 2 in the proof of Proposition 25.

https://doi.org/10.1371/journal.pone.0195153.g012
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Clearly, f(dv + s + t − 1, dx) − f(dv, dx)�0, for xv 2 Eð�TÞ. So

ABCðT1Þ � ABCðTÞ � sðf ðdv þ sþ t � 1; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t � 1; 3Þ � f ðsþ t þ 3; 3ÞÞ

þ2ðf ðdv þ sþ t � 1; 4Þ � f ðdv þ sþ t � 1; 3ÞÞ

þf ð1; 2Þ � f ðdv; sþ t þ 3Þ

¼ ðsþ tÞf ðdv þ sþ t � 1; 3Þ � f ðdv; sþ t þ 3Þ

þðsþ 2Þðf ðdv þ sþ t � 1; 4Þ � f ðdv þ sþ t � 1; 3ÞÞ

� s � f ðsþ t þ 3; 4Þ � t � f ðsþ t þ 3; 3Þ þ f ð1; 2Þ :

ð14Þ

Note that dv� du = s + t + 3 from Proposition 2, and from Lemma 13, we know that (s + t)f
(dv + s + t − 1, 3) − f(dv, s + t + 3) increases in dv� 5 when t = 2 and s = 0, and decreases in

• dv� 19 when t = 3 and s = 1;

• dv� 17 when t = 3 and s = 2, or t = 4 and s = 1;

• dv� 16 when t = 4 and s = 2.

On the other hand, from Lemma 11, f(dv + s + t − 1, 4) − f(dv + s + t − 1, 3) also decreases in

dv� s + t + 3.

So if t = 2 and s = 0, and dv� 83, then by (14),

ABCðT1Þ � ABCðTÞ � 2f ðdv þ 1; 3Þ � f ðdv; 5Þ

þ2ðf ðdv þ 1; 4Þ � f ðdv þ 1; 3ÞÞ

� 2f ð5; 3Þ þ f ð1; 2Þ

� lim
dv!þ1

ð2f ðdv þ 1; 3Þ � f ðdv; 5ÞÞ

þ2ðf ð83þ 1; 4Þ � f ð83þ 1; 3ÞÞ

� 2f ð5; 3Þ þ f ð1; 2Þ

< 0 :

Otherwise, the right-hand of (14) decreases in the following cases:

• dv� 19 when t = 3 and s = 1;

• dv� 17 when t = 3 and s = 2 or t = 4 and s = 1;

• dv� 16 when t = 4 and s = 2.

Besides the upper bound about ABC(T1) − ABC(T) as (14), by considering in particular in

(13) the term

X

xv2Eð�T Þ

ðf ðdv þ sþ t � 1; dxÞ � f ðdv; dxÞÞ ;

we may get a somewhat stricter upper bound about ABC(T1) − ABC(T). Note that, from

Lemma 10, f(dv + s + t − 1, dx) − f(dv, dx) decreases in dx, and from Proposition 2, every neigh-

bor of v in �T has degree at least three, thus

X

xv2Eð�T Þ

ðf ðdv þ sþ t � 1; dxÞ � f ðdv; dxÞÞ � ðdv � 1Þðf ðdv þ sþ t � 1; 3Þ � f ðdv; 3ÞÞ :
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Now together with (13), it follows that

ABCðT1Þ � ABCðTÞ � ðdv � 1Þðf ðdv þ sþ t � 1; 3Þ � f ðdv; 3ÞÞ

þsðf ðdv þ sþ t � 1; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t � 1; 3Þ � f ðsþ t þ 3; 3ÞÞ

þ2ðf ðdv þ sþ t � 1; 4Þ � f ðdv þ sþ t � 1; 3ÞÞ

þf ð1; 2Þ � f ðdv; sþ t þ 3Þ :

ð15Þ

By direct calculation, we may deduce that the right-hand side of (14) is negative, equiva-

lently ABC(T1)< ABC(T), holds for the following cases:

• t = 3, s = 1, and dv� 64;

• t = 3, s = 2, and dv� 44;

• t = 4, s = 1, and dv� 4015;

• t = 4, s = 2, and dv� 116.

For the remaining cases as follows:

• t = 2, s = 0, and 5� dv� 82;

• t = 3, s = 1, and 7� dv� 63;

• t = 3, s = 2, and 8� dv� 43;

• t = 4, s = 1, and 8� dv� 4014;

• t = 4, s = 2, and 9� dv� 115,

we would turn to use (15), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

At this point, there are still two remaining cases: t = 4, s = 0, and t = 5, s = 1.

For the case t = 4 and s = 0, we apply the transformation T 3 illustrated in Fig 13.

After applying T 3, the degree of vertex v increases by 2, the degrees of two children of u in

T belonging to a B2-branch increase from 3 to 5, one child of u in T belonging to another B2-

branch increases its degree from 3 to 4, the remaining child of u in T belonging to a B2-branch

decreases its degree from 3 to 2, the degree of u decreases from 7 to 1, and the rest of the verti-

ces do not change their degrees. The change of the ABC index after applying T 3 is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ 2; dxÞ � f ðdv; dxÞÞ

þ2ðf ðdv þ 2; 5Þ � f ð7; 3ÞÞ þ f ðdv þ 2; 4Þ � f ðdv; 7Þ

þ2ðf ð1; 2Þ � f ð7; 3ÞÞ :

ð16Þ

Clearly,

f ðdv þ 2; dxÞ � f ðdv; dxÞ < 0 ;
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for xv 2 Eð�TÞ. So

ABCðT1Þ � ABCðTÞ < 2ðf ðdv þ 2; 5Þ � f ð7; 3ÞÞ þ f ðdv þ 2; 4Þ � f ðdv; 7Þ

þ2ðf ð1; 2Þ � f ð7; 3ÞÞ

¼ 2ðf ðdv þ 2; 5Þ � f ðdv þ 2; 4ÞÞ þ 3f ðdv þ 2; 4Þ � f ðdv; 7Þ

� 4f ð7; 3Þ þ 2f ð1; 2Þ :

ð17Þ

Note that dv� du = 7 from Proposition 2, and by Lemma 11, f(dv + 2, 5) − f(dv + 2, 4)

decreases in dv� 7. On the other hand, by Lemma 12, 3f(dv + 2, 4) − f(dv, 7) decreases in dv�

7. So the right-hand side of (17) also decreases in dv� 7.

Besides the upper bound about ABC(T1) − ABC(T) as (17), by considering in (16) the term

X

xv2Eð�T Þ

ðf ðdv þ 2; dxÞ � f ðdv; dxÞÞ ;

we may get a somewhat stricter upper bound about ABC(T1) − ABC(T). Note that, from

Lemma 10, f(dv + 2, dx) − f(dv, dx) decreases in dx, and from Proposition 2, every neighbor of v
in �T has degree at least three, thus

X

xv2Eð�T Þ

ðf ðdv þ 2; dxÞ � f ðdv; dxÞÞ � ðdv � 1Þðf ðdv þ 2; 3Þ � f ðdv; 3ÞÞ :

Now together with (16), it follows that

ABCðT1Þ � ABCðTÞ � ðdv � 1Þðf ðdv þ 2; 3Þ � f ðdv; 3ÞÞ

þ2ðf ðdv þ 2; 5Þ � f ð7; 3ÞÞ þ f ðdv þ 2; 4Þ � f ðdv; 7Þ

þ2ðf ð1; 2Þ � f ð7; 3ÞÞ :

ð18Þ

Fig 13. The transformation T 3 in the proof of Proposition 25.

https://doi.org/10.1371/journal.pone.0195153.g013
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For dv� 20, by (17), we have

ABCðT1Þ � ABCðTÞ < 2ðf ð20þ 2; 5Þ � f ð7; 3ÞÞ þ f ð20þ 2; 4Þ � f ð20; 7Þ

þ2ðf ð1; 2Þ � f ð7; 3ÞÞ

< 0 ;

i.e., ABC(T1)< ABC(T). For the remaining cases 7� dv� 19, we would turn to use (18), and a

negative upper bound, equivalently ABC(T1)< ABC(T), follows from direct calculation

straightforwardly.

As to the last case t = 5 and s = 1, we apply the transformation T 4 illustrated in Fig 14.

After applying T 4, the degree of vertex v increases by 4, three children of u in T belonging

to a B2-branch increase its degrees from 3 to 4, the degree of one child of u in T belonging to

another B2-branch increases from 3 to 5, the remaining child of u in T belonging to a B2-

branch decreases its degree from 3 to 2, the degree of u decreases from 9 to 1, and the rest of

the vertices do not change their degrees. The change of the ABC index after applying T 4 is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ 4; dxÞ � f ðdv; dxÞÞ

þ4ðf ðdv þ 4; 4Þ � f ð9; 3ÞÞ þ f ðdv þ 4; 5Þ � f ðdv; 9Þ

þ2f ð1; 2Þ � f ð9; 4Þ � f ð9; 3Þ :

ð19Þ

Clearly, f(dv + 4, dx) − f(dv, dx)< 0 for xv 2 Eð�TÞ. So

ABCðT1Þ � ABCðTÞ < 4ðf ðdv þ 4; 4Þ � f ð9; 3ÞÞ þ f ðdv þ 4; 5Þ � f ðdv; 9Þ

þ2f ð1; 2Þ � f ð9; 4Þ � f ð9; 3Þ

¼ f ðdv þ 4; 5Þ � f ðdv þ 4; 4Þ þ 5f ðdv þ 4; 4Þ � f ðdv; 9Þ

� 5f ð9; 3Þ � f ð9; 4Þ þ 2f ð1; 2Þ :

ð20Þ

Note that dv� du = 9 from Proposition 2, and by Lemma 11, f(dv + 4, 5) − f(dv + 4, 4)

decreases in dv� 9. On the other hand, by Lemma 12, 5f(dv + 4, 4) − f(dv, 9) decreases in dv�

9. So the right-hand side of (20) also decreases in dv� 9.

Fig 14. The transformation T 4 in the proof of Proposition 25.

https://doi.org/10.1371/journal.pone.0195153.g014
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Besides the upper bound about ABC(T1) − ABC(T) as (20), by considering in (19) the term

X

xv2Eð�T Þ

ðf ðdv þ 4; dxÞ � f ðdv; dxÞÞ ;

we may get a somewhat stricter upper bound about ABC(T1) − ABC(T). Note that, from

Lemma 10, f(dv + 4, dx) − f(dv, dx) decreases in dx, and from Proposition 2, every neighbor of v
in �T has degree at least three, thus

X

xv2Eð�T Þ

ðf ðdv þ 4; dxÞ � f ðdv; dxÞÞ � ðdv � 1Þðf ðdv þ 4; 3Þ � f ðdv; 3ÞÞ :

Now together with (19), it follows that

ABCðT1Þ � ABCðTÞ � ðdv � 1Þðf ðdv þ 4; 3Þ � f ðdv; 3ÞÞ

þ4ðf ðdv þ 4; 4Þ � f ð9; 3ÞÞ þ f ðdv þ 4; 5Þ � f ðdv; 9Þ

þ2f ð1; 2Þ � f ð9; 4Þ � f ð9; 3Þ :

ð21Þ

For dv� 15, by (20), we have

ABCðT1Þ � ABCðTÞ < f ð15þ 4; 5Þ � f ð15þ 4; 4Þ þ 5f ð15þ 4; 4Þ � f ð15; 9Þ

� 5f ð9; 3Þ � f ð9; 4Þ þ 2f ð1; 2Þ

< 0 ;

i.e., ABC(T1)< ABC(T). For the remaining cases 9� dv� 14, we would turn to use (21), and a

negative upper bound, equivalently ABC(T1)< ABC(T), follows from direct calculation easily.

Combining the above arguments, the result follows.

Our main result is stated next. As we will see, the configuration depicted in Fig 10 is very

important since, minimal-ABC trees may contain two B1-branches only in two very particular

configurations.

Theorem 26. A minimal-ABC tree cannot contain two B1-branches, unless the two B1-

branches belong to the configuration depicted in Fig 10 with s = 0, t = 1, or s = 0, t = 3.

proof. Suppose to the contrary that T is a minimal-ABC tree containing exactly two B1-

branches. Observe that the two B1-branches are attached to the same vertex, say u, otherwise,

there are at least two Tk-branches, which is a contradiction to Proposition 8. Moreover, by

Proposition 15, u is not the root vertex of T. Denote by v the parent of u.

First, by Proposition 3, u contains no Bk-branch with k> 4. Next by Proposition 5, u con-

tains no B4-branch, and by Propositions 4 and 7, u contains no B�
1
-branch, no matter u has B3-

branches or B2-branches. Now we may deduce that the branches attached to u must be B3-, B2-

or B1-branches, i.e., T is of the structure depicted in Fig 10.

Set s and t for the numbers of B3- and B2-branches attached to u, respectively. Clearly, s +

t� 1, and s + t� 10 from Proposition 23.

We apply the transformation T depicted in Fig 15. And let dx be the degree of vertex x in T.

After applying T , the degree of vertex v increases by s + t, while the degree of vertex u
decreases by s + t, and the rest of the vertices do not change their degrees. The change of the
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ABC index after applying T is

ABCðT1Þ � ABCðTÞ ¼
X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ

þsðf ðdv þ sþ t; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 3; 3ÞÞ

þf ðdv þ sþ t; 3Þ � f ðdv; sþ t þ 3Þ :

ð22Þ

Clearly, f(dv + s + t, dx) − f(dv, dx)< 0 for xv 2 Eð�TÞ, and thus

ABCðT1Þ � ABCðTÞ < sðf ðdv þ sþ t; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 3; 3ÞÞ

þf ðdv þ sþ t; 3Þ � f ðdv; sþ t þ 3Þ :

On one hand, from Lemma 10, f(dv + s + t, 3) − f(dv, s + t + 3) increases in dv, thus

f ðdv þ sþ t; 3Þ � f ðdv; sþ t þ 3Þ � lim
dv!þ1

ðf ðdv þ sþ t; 3Þ � f ðdv; sþ t þ 3ÞÞ

¼

ffiffiffi
1

3

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 3

r

:

So it follows that

ABCðT1Þ � ABCðTÞ < sðf ðdv þ sþ t; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 3; 3ÞÞ

þ

ffiffiffi
1

3

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sþ t þ 3

r

:

ð23Þ

Furthermore, note that dv� du = s + t + 3 from Proposition 2, and both f(dv + s + t, 4) and f
(dv + s + t, 3) decrease in dv� s + t + 3, i.e., the right-hand side of (23) also decreases in dv� s
+ t + 3.

Fig 15. The transformation T in the proof of Theorem 26.

https://doi.org/10.1371/journal.pone.0195153.g015
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Besides the upper bound about ABC(T1) − ABC(T) as (23), by considering a bit precisely in

(22) for the term

X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ ;

we may get a somewhat stricter upper bound about ABC(T1) − ABC(T). Note that, from

Lemma 10, f(dv + s + t, dx) − f(dv, dx) decreases in dx, and from Proposition 2, every neighbor

of v in �T has degree at least three, thus

X

xv2Eð�T Þ

ðf ðdv þ sþ t; dxÞ � f ðdv; dxÞÞ � ðdv � 1Þðf ðdv þ sþ t; 3Þ � f ðdv; 3ÞÞ :

Now together with (22), it follows that

ABCðT1Þ � ABCðTÞ � ðdv � 1Þðf ðdv þ sþ t; 3Þ � f ðdv; 3ÞÞ

þsðf ðdv þ sþ t; 4Þ � f ðsþ t þ 3; 4ÞÞ

þtðf ðdv þ sþ t; 3Þ � f ðsþ t þ 3; 3ÞÞ

þf ðdv þ sþ t; 3Þ � f ðdv; sþ t þ 3Þ :

ð24Þ

Case 1. t = 0.

In this case, note that 1� s� 10, and dv� s + 3 from Proposition 2.

By direct calculation, we may deduce that the right-hand side of (23) is negative, equiva-

lently ABC(T1)< ABC(T), holds for the following cases:

• s = 1 and dv� 13;

• s = 2 and dv� 17;

• s = 3 and dv� 21;

• s = 4 and dv� 25;

• s = 5 and dv� 30;

• s = 6 and dv� 35;

• s = 7 and dv� 41;

• s = 8 and dv� 47;

• s = 9 and dv� 54;

• s = 10 and dv� 61.

For the remaining cases as follows:

• s = 1 and 4� dv� 12;

• s = 2 and 5� dv� 16;

• s = 3 and 6� dv� 20;

• s = 4 and 7� dv� 24;

• s = 5 and 8� dv� 29;

• s = 6 and 9� dv� 34;

• s = 7 and 10� dv� 40;
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• s = 8 and 11� dv� 46;

• s = 9 and 12� dv� 53;

• s = 10 and 13� dv� 60,

we would turn to use (24), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 2. t = 1.

In this case, note that 0� s� 9, and dv� s + 4 from Proposition 2.

By direct calculation, we may deduce that the right-hand side of (23) is negative, equiva-

lently ABC(T1)< ABC(T), holds for the following cases:

• s = 1 and dv� 46;

• s = 2 and dv� 38;

• s = 3 and dv� 39;

• s = 4 and dv� 43;

• s = 5 and dv� 49;

• s = 6 and dv� 55;

• s = 7 and dv� 61;

• s = 8 and dv� 68;

• s = 9 and dv� 76.

For the remaining cases as follows:

• s = 1 and 5� dv� 45;

• s = 2 and 6� dv� 37;

• s = 3 and 7� dv� 38;

• s = 4 and 8� dv� 42;

• s = 5 and 9� dv� 48;

• s = 6 and 10� dv� 54;

• s = 7 and 11� dv� 60;

• s = 8 and 12� dv� 67;

• s = 9 and 13� dv� 75,

we would turn to use (24), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 3. t = 2.

In this case, note that 0� s� 8, and dv� s + 5 from Proposition 2.

On one hand, the contradiction for s = 0 follows from Proposition 25.

On the other hand, by direct calculation, we may deduce that the right-hand side of (23) is

negative, equivalently ABC(T1)< ABC(T), holds for the following cases:

• s = 1 and dv� 1402;

• s = 2 and dv� 107;
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• s = 3 and dv� 84;

• s = 4 and dv� 81;

• s = 5 and dv� 84;

• s = 6 and dv� 89;

• s = 7 and dv� 96;

• s = 8 and dv� 104.

For the remaining cases as follows:

• s = 1 and 6� dv� 1401;

• s = 2 and 7� dv� 106;

• s = 3 and 8� dv� 83;

• s = 4 and 9� dv� 80;

• s = 5 and 10� dv� 83;

• s = 6 and 11� dv� 88;

• s = 7 and 12� dv� 95;

• s = 8 and 13� dv� 103,

we would turn to use (24), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 4. t = 3.

In this case, note that 0� s� 7, and dv� s + 6 from Proposition 2.

On one hand, the contradiction for s = 1, 2 follows from Proposition 25.

On the other hand, by direct calculation, we may deduce that the right-hand side of (23) is

negative, equivalently ABC(T1)< ABC(T), holds for the following cases:

• s = 3 and dv� 290;

• s = 4 and dv� 193;

• s = 5 and dv� 170;

• s = 6 and dv� 163;

• s = 7 and dv� 165.

For the remaining cases as follows:

• s = 3 and 9� dv� 289;

• s = 4 and 10� dv� 192;

• s = 5 and 11� dv� 169;

• s = 6 and 12� dv� 162;

• s = 7 and 13� dv� 164,

we would turn to use (24), and negative upper bounds, equivalently ABC(T1)< ABC(T), follow

from direct calculation easily.

Case 5. t = 4.
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In this case, note that 0� s� 6. The contradiction may be deduced from Proposition 25.

Case 6. t = 5.

In this case, note that 0� s� 5. The contradiction for the cases that s = 0 and s = 1, 2, 3, 4, 5

may be deduced from Propositions 24 and 25, respectively.

Case 7. t = 6.

In this case, note that 0� s� 4. The contradiction for the cases that s = 0 and s = 1, 2, 3, 4

may be deduced from Propositions 24 and 25, respectively.

Case 8. t = 7.

In this case, note that 0� s� 3. The contradiction for the cases that s = 0 and s = 1, 2, 3

may be deduced from Propositions 24 and 25, respectively.

Case 9. t = 8.

In this case, note that s = 0, 1, 2. The contradiction for the cases that s = 0 and s = 1, 2 may

be deduced from Propositions 24 and 25, respectively.

Case 10. t = 9.

In this case, note that s = 0, 1. The contradiction for the cases that s = 0 and s = 1 may be

deduced from Propositions 24 and 25, respectively.

Case 11. t = 10.

In this case, note that s = 0. The contradiction may be deduced from Proposition 24

directly.

Combining the above arguments, the result finally follows.

Discussion

The characterization of minimal-ABC trees is a rather active topic in chemical graph theory

these years, which has led to a lot of structural properties and potential conjectures.

It is known that every pendent vertex of minimal-ABC trees belongs to some Bk-branch. As

a strengthening, this paper proves that a minimal-ABC tree contains at most two B1-branches.

Moreover, we claim that a minimal-ABC tree can not contain two B1-branches simultaneously,

except for two cases that s = 0, and t = 1 or 3.

During the investigation of this paper, we also considered the two unsolved cases. However,

to the best of our knowledge, until now we only get a solution under some particular degree

conditions. In future research, the key point is to construct a more perfect graph transforma-

tion involve in general cases, which lead to a desired solution finally.

Actually, our ultimate goal is to show that the minimal-ABC trees contain no B1-branch,

when the order of that tree is large sufficiently.
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